Point counts are one of the most common ways of collecting data to determine the relative abundance of birds. Many studies and monitoring programs, including the North American Breeding Bird Survey, use relative differences in counts of birds to assess changes in abundance over time and space. Many factors influence whether relative differences in counts of birds between various environmental conditions are reflective of actual differences in bird density. A major assumption of relative abundance is that birds with different song frequencies and amplitudes are heard at the same distances in different environmental conditions. We compared sound transmission in forest habitats and along low-use forestry roads, and calculated detection radius for different species to test the assumption that differences in bird counts between forest interior and roadside locations reflect actual differences in bird abundance. A playback–recording experiment was used to broadcast sounds through forest interior, along a forest edge, and down forestry roads in conifer and deciduous forests to determine whether sound propagation differed across environments. Sound attenuated significantly faster in forests than along roads or forest edges. Similarly, the distance at which bird songs could be detected was significantly shorter in forest than along the road or forest edge for 20 of 25 species. We found the area surveyed to be up to twice as large on road compared to within forests, which suggests that roadside surveys might inflate avian density estimates in comparison to off-road counts. Local atmospheric conditions also influenced detection probability, but the magnitude of the effect was weaker than the land-cover effect. Major differences in detection between roads and interior forest suggest that comparisons of surveys conducted along roadsides and in forest areas should be done carefully if the goal is to make direct comparisons of abundance.
How to translate text using browser tools
1 February 2017
Sound attenuation in forest and roadside environments: Implications for avian point-count surveys
Daniel A. Yip,
Erin M. Bayne,
Péter Sólymos,
James Campbell,
Darren Proppe
ACCESS THE FULL ARTICLE
The Condor
Vol. 119 • No. 1
February 2017
Vol. 119 • No. 1
February 2017
bioacoustics
detection distance
detection radius
roadside survey
survey bias