The morphology of the nephrons of the coelacanth Latimeria chalumnae was investigated by electron microscopy. Each nephron is composed of a large renal corpuscle with well vascularized glomerulus, ciliated neck segment, proximal tubule divided into first and second proximal segments, ciliated intermediate segment, distal tubule, collecting tubule, and duct. The podocytes of visceral epithelium contain large bi-lobed nuclei and their surface membranes pinch off vesicles into the cytoplasm. The processes of the podocytes give rise to pedicels that enclose narrow filtration slits. The endothelium of glomerular capillaries is attenuated and fenestrated. The short cytoplasmic processes of mesangial cells do not penetrate deeply into the sub-endothelial lamina. The glomerular basement membrane is about 286 nm in thickness. The pedicels also arise from podocyte cell bodies, and are connected by diaphragms and enclose slits, which open into narrow urinary spaces between podocytes. The cuboidal cells of the short neck segment display cilia with a characteristic pattern of 9 2 microtubules. The first proximal tubule segment differs from the second proximal segment in having densely packed microvilli, prominent endocytotic-lysosomal apparatus, and numerous basal membrane infoldings associated with mitochondria. The lateral cell membranes like those of other segments are straight and joined by desmosomes and apical adhering and tight junctions. The distal tubules display few short luminal microvilli and numerous basal mitochondria. The distal tubule, collecting tubule and duct are devoid of intercalated cells. The ultrastructure of the L chalumnae nephrons correlates well with their osmoregulatory function and resembles that of freshwater rainbow trout.
How to translate text using browser tools
1 May 2014
Ultrastructural Study of the Kidney in the Coelacanth Latimeria chalumnae (Rhipidistia: Coelacanthini)
Mohinder S. Jarial,
Vincent H. Gattone,
John H. Wilkins
ACCESS THE FULL ARTICLE
Zoological Science
Vol. 31 • No. 5
May 2014
Vol. 31 • No. 5
May 2014
basal membrane infoldings
endocytotic apparatus
fenestrated endothelium
mesangium
mitochondria
podocytes