Amphipod silk is a fibrous, self-secreted, adhesive substance employed in tube-building by amphipod species within the Corophiidea, Ampeliscoidea and Aetiopedidea. In the present study we provide a detailed characterisation of a novel, marine-based silk production system situated in pereiopods 3 and 4 in the corophioid Crassicorophium bonellii and the aorid Lembos websteri. The silk material is a mixture of protein and mucopolysaccharides. Ultrastructural and histological analyses revealed that silk in both species is produced in several rosette-type glands, presumed to be of two different types. These glands are distributed among all limb articles apart from the coxa but mainly in the basis and merus of pereiopods 3 and 4. Secretion commences in the basis and a thread-like secretion product leaves the glandular pereiopod through a cuticular pore near the dactylar tip. The silk's physical and chemical properties most likely change while moving through the dactylar duct, which subdivides into several small ductules and terminates in a spindle-shaped chamber. This chamber, which communicates with the exterior, may be considered a silk reservoir in which the silk appears fibrous. For the first time an independently evolved, marine arthropod silk processing and secretion system is described.
How to translate text using browser tools
1 March 2012
Spinning a Marine Silk for the Purpose of Tube-Building
Katrin Kronenberger,
P. Geoffrey Moore,
Kevin Halcrow,
Fritz Vollrath
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Crustacean Biology
Vol. 32 • No. 2
March 2012
Vol. 32 • No. 2
March 2012
amphipod silk
Crassicorophium bonellii
Lembos websteri
silk glands
tube-building