Environmental temperature can affect the ability of mosquitoes to transmit an arbovirus. However, results of various studies indicate that these effects are not consistent among viruses or mosquito species, and there is no information available on the effect of environmental temperature on the ability of North American mosquito species to transmit West Nile (WN) virus. We evaluated the effect of incubation temperature (18, 20, 26, or 30°C) on the ability of Culex pipiens L. derived from specimens collected during the outbreak in New York in 1999 to transmit a strain of WN virus obtained from a crow that died during this outbreak. Although mosquitoes fed on the same viremic chickens, infection rates were directly related to subsequent incubation temperatures. In mosquitoes held at 30°C, virus was recovered from nearly all mosquitoes tested, disseminated infections were detected as early as 4 d after the infectious blood meal, and >90% of all mosquitoes had a disseminated infection 12 or more days after the infectious blood meal. In contrast, for mosquitoes held at 18°C, disseminated infections were not detected until 25 d after the infectious blood meal, and even after 28 d, <30% contained a disseminated infection. Results for mosquitoes held at 20 and 26°C were intermediate for both infection and dissemination rates. The effect of environmental temperature should to be considered when evaluating the vector competence of these mosquitoes and modeling risk of WN virus transmission in nature.
How to translate text using browser tools
1 January 2002
Effect of Environmental Temperature on the Ability of Culex pipiens (Diptera: Culicidae) to Transmit West Nile Virus
David J. Dohm,
Monica L. O’Guinn,
Michael J. Turell
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Medical Entomology
Vol. 39 • No. 1
January 2002
Vol. 39 • No. 1
January 2002
Culex pipiens
environmental temperature
West Nile virus