BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Open Access
How to translate text using browser tools
1 March 2014 Description of the First Zoëal stage of Geograpsus Crinipes (Dana, 1851) (Decapoda: Brachyura: Grapsidae) from the Red Sea
Ahmed E. Al-Haj, Ali M. Al-Aidaroos
Author Affiliations +
Abstract

Ovigerous females of the species Geograpsus crinipes (Dana, 1851) were collected from the Rabigh coast of the Red Sea. The morphology of the first zoëal stage is illustrated and described in detail from laboratory-hatched material. The characteristic features of this stage are compared with those of the closely related first zoëal stage larva of G. lividus (H. Milne Edwards, 1837) from the Pacific coast of Panama, the Gulf of Mexico and Jamaica. Morphological differences with respect to the larvae of G. lividus populations are discussed.

INTRODUCTION

The study of crustacean systematics and phylogeny has from the very earliest times involved the recording of larval characters; and details of larval morphology reveal phylogenetic relationships among different brachyurans (Martin & Davis 2001). Consideration given to larval characters solves many of the existing problems of brachyuran taxonomy. Brachyuran larval culture and subsequent description will lead to correct identification of planktonic zoëae obtained from marine samples. Data on larval development and growth are poor for some brachyuran groups, and most larval descriptions deal only with the first zoëal stages because of the difficulties encountered in appropriately feeding the small late larval stages (Ingle 1987; Cuesta & Rodríguez 2000).

The family Grapsidae MacLeay, 1838, currently includes 40 species assigned to eight genera (Ng et al. 2008). The genus Geograpsus Stimpson, 1858, includes five species (Ng et al. 2008) and only one species, Geograpsus crinipes (Dana, 1851), is known from the Red Sea (Holthuis 1977). This species is widely distributed throughout the Indo-Pacific regions (Sakai 1976). The first grapsid zoëae can be distinguished from other grapsid larvae by the reduction of the antennal exopod to a small seta (Fransozo et al. 1998; Landeira & Cuesta 2012). At present, there are three descriptions of the larval stages of a species of Geograpsus, namely G. lividus (A. Milne Edwards, 1837). The first zoëal stage of this species was described from Panamanian waters (Cuesta & Schubart 1999) and the western Atlantic (Guerao et al. 2001). More recently, details of the complete larval development of G. lividus from Jamaican waters were published by Cuesta et al. (2011).

In the present study, larvae of G. crinipes were reared in the laboratory; and no larval stages could be obtained beyond the first zoëal stage. This is described and illustrated, and compared with the larvae of G. lividus.

MATERIAL AND METHODS

Ovigerous Geograpsus crinipes crabs were collected by hand from the rocky shore of Rabigh (22°79′N 39°03′E) on 12 July 2010. The females were held in aquaria (50× 20×25 cm), provided with a gravel base and rocky refuge, and fed fragments of fresh fish.

The seawater was changed every day until hatching took place. The eggs hatched on 15 July 2010. Approximately 250 larvae survived for four days. Soon after hatching, the healthy and actively swimming larvae were removed and separated in individual (each larva in 80 ml of filtered seawater) and mass bowls (20 larvae in 800 ml of filtered seawater). The temperature was kept constant at 27°C, salinity at 37 ‰ and photoperiod at 12 h light and 12 h dark (Al-Aidaroos 2005; Cuesta et al. 2011). The larvae were fed the rotifer Brachionus sp., together with algae.

Larval specimens were dissected in polyvinyl lactophenol using a stereomicroscope and allowed to clear for 24 h. Coverslips were sealed with clear nail varnish. Appendages were drawn using an Olympus BH-2 microscope equipped with differential interference contrast (DIC) and which had a camera lucida. At least five replicates of each appendage were drawn in order to detect any variations (Clark & Al-Aidaroos 1996).

The first-stage zoëa is described and fully illustrated. The sequence of the zoëal description is based on the malacostracan somite plan and described from anterior to posterior. Setal armature of appendages is described from proximal to distal segments and in order of endopod to exopod (Clark et al. 1998). The long antennular aesthetascs and the long plumose natatory setae of the first and second maxillipeds have been drawn truncated. Figures were drawn to scale with the aid of a camera lucida (Clark & Paula 2003).

Measurements are given to the nearest 0.01 mm and are based on a total of five larvae. A micrometer was used for measuring zoëal rostrodorsal length (RDL) from the tip of the rostral spine to the tip of the dorsal spine; carapace length (CL) from the base of the rostral spine to the posteriormost carapace margin; and carapace width (CW) as the maximum width of the carapace or the distance between the tips of the minute lateral spines. The pleon length (ABL) was measured from the first pleonite anterior margin to the posterior furca of the telson (Cuesta et al. 2011). Furcal length (fl) was deduced from an imaginary line across the base of the outer seta at the posterior margin of the telson to the furcal tip; and the basal telson length (bt) from a line across the anterior margin of the telson to the posterior margin (base of the outer seta) (Cuesta et al. 2011; Landeira & Cuesta 2012).

Specimens of Geograpsus crinipes have been deposited at the Senckenberg Natural History Museum in Frankfurt, catalogue number SMF 43574.

RESULTS

Family Grapsidae MacLeay, 1838
Genus Geograpsus Stimpson, 1858
Geograpsus crinipes Dana, 1851 Figs 13

  • First zoëa.

  • Size (mm): RDL = 0.89±0.01, CW=0.52±0.02, CL = 0.43±0.07, ABL=0.84±0.02

  • Carapace (Fig. 1A): Globose. Dorsal spine short and without setae. Rostral spine straight, shorter than dorsal spine. Lateral spine reduced to minute spine. There is a pair of dorsolateral setae. Anterodorsal, posterior and ventral margins without setae. Eyes: sessile.

  • Antennule (Fig. 1B): Uniramous. Endopod absent. Exopod unsegmented, with 2 long and 1 shorter unequal terminal aesthetascs, and 1 simple seta.

  • Antenna (Fig. 1C): Well-developed protopod process, longer than rostral spine, with 2 rows of 7 spinules of increasing size distally towards the tip. Endopod absent. Exopod reduced to a small bud with a simple terminal seta.

  • Mandible: Palp absent.

  • Maxillule (Fig. 2A): Coxal endite with 5 plumodenticulate setae. Basal endite with 5 setae and 2 minute spines. Endopod 2-segmented, proximal segment with 1 distal seta; distal segment with 1 subterminal and 4 terminal setae. Exopod setae absent.

  • Maxilla (Fig. 2B): Coxal endite bilobed, with 5+4 setae. Basal endite bilobed, with 5+4 setae. Endopod bilobed, with 4 (2 sub terminal + 2 terminal) setae. Exopod (scaphognathite) margin with 4 plumose setae and a setose posterior stout process.

  • First maxilliped (Fig. 2C): Coxa without setae. Basis with 8 setae arranged 2+2+2+2. Endopod 5-segmented, with 1, 2, 1, 2 and 5 (1 subterminal + 4 terminal) setae. Exopod 2-segmented, distal segment with 4 terminal plumose natatory setae.

  • Second maxilliped (Fig. 2D): Coxa without setae. Basis with 4 setae arranged 1+1+1+1. Endopod 3-segmented, with 0, 1 and 5 (2 subterminal, denticulate + 3 terminal) setae, respectively. Exopod 2-segmented, distal segment with 4 terminal natatory setae. Third maxilliped: Absent.

  • Pereiopods: Absent.

  • Pleon (Figs 3A, B): Five somites, somite 2 with 1 pair of dorsolateral processes directed anteriorly. Somites 3–5 with 1 pair of dorsolateral processes directed ventrally, somites 2–5 with 1 pair of posterodorsal setae, also with posterolateral processes, these especially well-developed in somites 3–4. Pleopods absent.

  • Telson (Figs 3A, B): Forks short, slightly divergent; with a minute spine at base of each furcal arm, and lateral margins without spines. Posterior margin with 3 pairs of stout spinulate setae, medial setae shorter than the proximal ones; bt/fl > 1.

  • Fig. 1.

    Geograpsus crinipes (Dana, 1851), first zoëa: (A) lateral view of carapace; (B) antennule; (C) antenna.

    f01_19.jpg

    Fig. 2.

    Geograpsus crinipes (Dana, 1851), first zoëa: (A) maxillule; (B) maxilla; (C) first maxilliped; (D) second maxilliped.

    f02_19.jpg

    DISCUSSION

    In many cases, only the first zoëal stage had been described for species in the family Grapsidae because of the difficulties in culturing larvae using techniques commonly employed in the laboratory for the later larval stages of various species of Brachyura (Guerao et al. 1999). Larval morphology is poorly documented in the Grapsidae, with the exception of the genus Metopograpsus (Cuesta et al. 2011, Table 2).

    The morphological features of the first zoëal stages of Geograpsus lividus and G. crinipes correspond to those that define the zoëae of Grapsidae according to Fransozo et al. (1998), Cuesta et al. (1997), Cuesta and Schubart (1999) and Landeira and Cuesta (2012). Fransozo et al. (1998) distinguished zoëae of G. lividus on the Brazilian coast from other grapsid species on the basis of three characteristics: (a) telson furca with minute outer seta-like spines (type A); (b) fourth abdominal segment with minute medio-lateral process; and (c) fourth abdominal segment not laterally expanded. In the present study, G. crinipes was found to have somewhat similar characters to G. lividus. Only one important character is different and it can be used to distinguish between these species: lateral spines are not present on the telson of G. crinipes (there are 2–3 spines in G. lividus) (Table 1).

    Consistent morphological differences could also be observed between the first zoëal stages of the two populations of G. lividus. The abdomen of the larvae from the Atlantic coast of Mexico has dorsolateral processes on somite 5, which are absent in the Pacific population (Cuesta & Schubart 1999). However, according to Schubart (2011), G. lividus from the Pacific could be G. occidentalis based on mtDNA data. The same processes on somite 4 are more developed in Atlantic specimens than in their Pacific and Jamaican counterparts (Guerao et al. 2001). This variation may follow a temperature gradient rather than necessarily being indicative of geographic separation (Cuesta et al. 2011).

    When these zoëae with are compared with those from Jamaica, differences in size are seen to be a prominent feature, with the Jamaican larvae being the smallest and those from the Gulf of Mexico the largest. According Guerao et al. (2001), Atlantic zoëae of G. lividus have three minute outer spines on the furcal arms of the telson, while there are only two in the Pacific population. The zoëal stage of G. lividus of the Pacific coast of Panama and that from the Gulf of Mexico could be distinguished from each other by the morphological features of the antennae, furcal arms of the telson, and abdomen (Cuesta et al. 2011).

    Fig. 3.

    Geograpsus crinipes (Dana,1851), first zoëa: (A) lateral view and (B) dorsal view of abdomen and telson.

    f03_19.jpg

    As in the case of G. lividus, geographical differences may exist between the larvae of G. crinipes, also due to the temperature gradient and other factors. Therefore, further research is required on the larval stages of G. crinipes from different regions in order to understand geographical variation as well as to enable keys to the zoëae of this species to be formulated confidently. This, in turn, will facilitate accurate plankton identification from marine collections.

    TABLE 1

    Morphological differences among first zoëas of the genus Geograpsus. Abbreviations: A—aesthetascs, CL—carapace length, CW—carapace width; nd—no data, P—pleonites, RDL—rostradorsal lengh, S—setae.

    t01_19.gif

    ACKNOWLEDGMENTS

    Sincere thanks are due to Prof. Meachil Türkay for identification of the berried female crabs. We also thank King Abdul Aziz City for Science and Technology for providing financial support to the research project [P-S-(10-0029)].

    REFERENCES

    1.

    A.M. Al-Aidaroos 2005. The first three zoeal stages of the crab Metopograpsus messor (Forskål, 1775) (Crustacea: Brachyura: Grapsidae). International Journal of Biology and Biotechnology 2(1): 29–36. Google Scholar

    2.

    PF. Clark & A.M. Al-Aidaroos 1996. The first zoeas of Actaeodes hirsutissimus (Rüppell, 1830) and A. tomentosus(H. Milne Edwards, 1834) (Crustacea: Decapoda: Brachyura: Xanthidae: Actaeinae). Journal of King Abdulaziz UniversityMarine Sciences 7: 207–214. Google Scholar

    3.

    PF. Clark & J. Paula 2003. Descriptions of ten xanthoidean (Crustacea: Decapoda: Brachyura) first stage zoeas from Inhaca Island, Mozambique. The Raffles Bulletin of Zoology 51 (2): 323–378. Google Scholar

    4.

    P.F. Clark , D.D. Calazans & G.W. Pohle 1998. Accuracy and standardization of brachyuran larval descriptions. Invertebrate Reproduction and Development 33 (2–3): 127–144. Google Scholar

    5.

    J.A. Cuesta & A. Rodríguez 2000. Zoeal stages of the intertidal crab Pachygrapsus marmoratus (Fabricius, 1787) (Brachyura, Grapsidae) reared in the laboratory. Hydrobiologia 436: 119–130. Google Scholar

    6.

    J.A. Cuesta & C.D. Schubart 1999. First zoeal stages of Geograpsus lividus and Goniopsis pulchra from Panama confirm consistent larval characters for the subfamily Grapsinae (Crustacea: Brachyura: Grapsidae). Ophelia 51 (3): 163–176. Google Scholar

    7.

    J.A. Cuesta , J.I. González-Gordillo & A. Rodríguez 1997. First zoeal stages of Grapsus adscensionis (Osbeck) and Planes minutus (Linnaeus) (Brachyura: Grapsidae) described from laboratory hatched material, with notes on larval characters of the Grapsinae. Journal of Natural History 31 (6): 887–900. Google Scholar

    8.

    J.A. Cuesta , G. Guerao , C.D. Schubart & K. Anger 2011. Morphology and growth of the larval stages of Geograpsus lividus (Crustacea, Brachyura), with the descriptions of new larval characters for the Grapsidae and an undescribed setation pattern in extended developments. Acta Zoologica 92 (3): 225–240. Google Scholar

    9.

    A. Fransozo , JA. Cuesta & M.L. Negreiros-Fransozo 1998. The first zoeal stage of two species of Grapsidae (Decapoda, Brachyura) and a key to such larvae from the Brazilian coast. Crustaceana 71 (3): 331–343. Google Scholar

    10.

    G. Guerao , P. Abello & P. Torres 1999. Morphology of the first zoea of the shamefaced crab Calappa granulata (Linnaeus, 1758) Crustacea, Brachyura, Calappidae), obtained in the laboratory. Graellsia 55: 157–162. Google Scholar

    11.

    G. Guerao , C.D. Schubart & J.A. Cuesta 2001. The first zoeal stages of Grapsus grapsus (Linnaeus) and Geograpsus lividus (H. Milne Edwards) (Decapoda, Brachyura, Grapsidae) from the western Atlantic. Nauplius 9 (2): 111–121. Google Scholar

    12.

    L.B. Holthuis 1977. The Grapsidae, Gecarcinidae and Palicidae (Crustacea: Decapoda: Brachyura) of the Red Sea. Israel Journal of Zoology 26 (3–4): 141–192. Google Scholar

    13.

    R.W. Ingle 1987. The first zoea of three Pachygrapsus species and of Cataleptodius floridanus (Gibbes) from Bermuda and Mediterranean (Crustacea: Decapoda: Brachyura). Bulletin of the British Museum (Natural History), Zoology Series 52 (1): 31–41. Google Scholar

    14.

    J.M. Landeira & J.A. Cuesta 2012. Morphology of the second zoeal stage of Grapsus adscensionis (Osbeck, 1765) (Crustacea, Decapoda, Grapsoidea) confirms larval characters of the family Grapsidae. Zootaxa 3540: 59–64. Google Scholar

    15.

    J.W. Martin & G.E. Davis 2001. An updated classification of the recent Crustacea. Natural History Museum of Los Angeles County Science Series 39: i–vii+1–124. Google Scholar

    16.

    P.K.L. Ng , D. Guinot & P.J.F. Davie 2008. Systema Brachyurorum: Part I. An annotated checklist of extant brachyuran crabs of the world. The Raffles Bulletin of Zoology, Supplement series 17: 1–286. Google Scholar

    17.

    T. Sakai 1976. Crabs of Japan and the adjacent seas. Vol. 1. Tokyo: Kodansha. Google Scholar

    18.

    C.D. Schubart 2011. Reconstruction of phylogenetic relationships within Grapsidae (Crustacea: Brachyura) and comparison of trans-isthmian versus amphi-atlantic gene flow based on mtDNA. Zoologischer Anzeiger 250 (4): 472–478. Google Scholar
    Ahmed E. Al-Haj and Ali M. Al-Aidaroos "Description of the First Zoëal stage of Geograpsus Crinipes (Dana, 1851) (Decapoda: Brachyura: Grapsidae) from the Red Sea," African Invertebrates 55(1), 19-26, (1 March 2014). https://doi.org/10.5733/afin.055.0104
    Published: 1 March 2014
    KEYWORDS
    Brachyura
    crab
    Decapoda
    Geograpsus
    Geograpsus crinipes
    Geograpsus lividus
    Grapsidae
    Back to Top