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Abstract

Indirect topographic variables have been used successfully as surrogates for

disturbance processes in plant species distribution models (SDM) in mountain

environments. However, no SDM studies have directly tested the performance of

disturbance variables.

In this study, we developed two disturbance variables: a geomorphic index

(GEO) and an index of snow redistribution by wind (SNOW). These were developed

in order to assess how they improved both the fit and predictive power of presence-

absence SDM based on commonly used topoclimatic (TC) variables for 91 plants in

the Western Swiss Alps. The individual contribution of the disturbance variables was

compared to TC variables. Maps of models were prepared to spatially test the effect

of disturbance variables.

On average, disturbance variables significantly improved the fit but not the

predictive power of the TC models and their individual contribution was weak (5.6%

for GEO and 3.3% for SNOW). However their maximum individual contribution

was important (24.7% and 20.7%). Finally, maps including disturbance variables (i)

were significantly divergent from TC models in terms of predicted suitable surfaces

and connectivity between potential habitats, and (ii) were interpreted as more

ecologically relevant.

Disturbance variables did not improve the transferability of models at the local

scale in a complex mountain system, and the performance and contribution of these

variables were highly species-specific. However, improved spatial projections and

change in connectivity are important issues when preparing projections under

climate change because the future range size of the species will determine the

sensitivity to changing conditions.

DOI: 10.1657/1938-4246-41.3.347

Introduction

Mountain ecosystems are likely to be sensitive to global

warming because of area reductions with increasing elevation

(Guisan et al., 1995; Theurillat et al., 1998; Theurillat and Guisan,

2001; Diaz et al., 2003; Beniston, 2006). A recent global

assessment of the potential impacts of climate change on these

ecosystems predicts that they will experience unprecedented rates

of warming during the 21st century, two to three times greater

than observed during the 20th century (Nogués-Bravo et al.,

2006).

In the last decade, species distribution models (SDM; Guisan

and Zimmermann, 2000; Guisan and Thuiller, 2005) have become

efficient tools that provide a rapid estimate of the potential

impacts of climate change on plant distributions (Bakkenes et al.,

2002; Thomas et al., 2004; Thuiller et al., 2005). These tools

statistically relate multiple abiotic habitat characteristics (sensu

Kearney and Porter, 2004) with observed species occurrences, thus

fitting the original definition of the Hutchinsonian environmental

niche without explicitly requiring a mechanistic link between

environmental gradients and population fitness (Guisan and

Thuiller, 2005; Araujo and Guisan, 2006). In this study, using

presence-absence data for 91 species, we intend to quantify the

importance of two disturbance variables—a geomorphic index and

a snow distribution index—in order to predict plant species

distribution, compared to a set of commonly used topoclimatic

variables. The following aspects make our study novel: (i) process-

based disturbance variables specific to mountain systems were

developed to improve predictions of plant distribution, and (ii) a

statistical framework to test the contribution of these variables

was also constructed.

Alpine environments, with their large landscape variability,

represent a modeling challenge for plant species distribution

(Guisan et al., 1998). The conic shape of mountains with large

altitudinal gradients generate variations in temperature, including

growing-season temperature, rainfall regime, contrasting energy

fluxes between exposed and shaded faces and high variations in

ultraviolet light (Seastedt et al., 2004). These factors are thought to

explain much of the observed diversity of plant species distribution

patterns.

One crucial task when building species distribution models is

selecting the environmental predictor variables. These variables

can be classified as indirect, direct, or resource variables (Fig. 1;

Austin and Heyligers, 1989; Huston, 1994; Guisan and Zimmer-

mann, 2000; Guisan and Thuiller, 2005). Indirect variables, such

as altitude, slope and curvature, can only influence plant

distributions through their correlation with variables that express

variations in temperature and moisture that have a direct
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physiological impact on plants (Fig. 1). Temperature and rainfall

are direct variables, while resource variables are those that are

consumed by plants, e.g. nitrogen (Fig. 1; Austin, 2006).

At the micro- to local scale in mountain environments,

models based on indirect predictors like topography can still

provide accurate predictions. However, at the meso- to global

scale, like Switzerland and other large areas, models based on

indirect predictors lose power compared to models based on more

proximal predictors (Guisan and Hofer, 2003; Guisan and

Thuiller, 2005). This is because, at these scales, the same indirect

predictor values at distant sites can translate into very different

values for the more proximal predictors (i.e. direct or resource

gradients), due to major climatic or geologic differences that take

place between entire regions within the modeled area. Hence,

although models fitted with indirect predictors at the local scale

can still provide accurate predictions for the same area, they might

lack the power to predict other areas, i.e. they can show weak

transferability (Randin et al., 2006).

In order to generate models of plant distribution in alpine

systems that have both high predictive power and good

transferability to other areas, we need to develop and use variables

that have a direct physiological effect on species or constitute

resources used by the species (Fig. 1; Austin, 1980, 1985, 2006;

Austin et al., 1984; Austin and Heyligers, 1989; Guisan and

Zimmermann, 2000). A limited number of studies have used

resource variables to project the geographic distribution of plant

species, and in these rare cases, a limited set of tree species in

complex dynamic simulations was used (Aassine and El Jai, 2002;

Lischke et al., 2006; Schumacher and Bugmann, 2006). The main

limitation of using resource variables is the lack of spatially

explicit data (Austin and Meyers, 1996). In contrast, direct

variables have been widely and successfully used to predict

vegetation distribution in mountain regions (Guisan et al., 1998;

Guisan and Theurillat, 2000; Dirnböck et al., 2003; Dullinger et

al., 2004; Randin et al., 2006). However, disturbance variables

(sensu Guisan and Thuiller, 2005; see Fig. 1) also have a direct

impact on plant species distribution and have been neglected in

most modeling studies even when the geomorphic control of

vegetation was already demonstrated (Jenny, 1941; Walsh et al.,

1994, 2003; Butler et al., 2003, 2007).

At high elevations in mountain areas, like those found in the

alpine and nival vegetation belts of the Swiss Alps, the rugged

landscape configuration leads to active and dynamic hydrome-

chanical processes, like geomorphic ones. These processes affect

vegetation at the local scale (Burga, 1999) but also modify the

species diversity at a larger scale (Nichols et al., 1998).

Geomorphic processes like rock slides, avalanches, or solifluction

(Johnson and Billings, 1962; Erschbamer, 1989; Malanson et al.,

2002; Körner, 2003) are processes that have an important impact

on the soil surface and strongly drive the distribution of plant

species and communities. Some adaptive traits of plant species are

highly correlated with the conditions encountered in extremely

disturbed situations, such as large root networks on moving rock

slides (Jonasson and Callaghan, 1992).

In the alpine landscape, the spatial and temporal distribution

(depth, persistence) of snow cover is influenced by topography and

wind (Greene et al., 1999; Liston et al., 2000; Tappeiner et al.,

2001). The snow cover itself determines species composition and

spatial vegetation patterns (Walsh et al., 1994; Körner, 2003).

Snowpack limits the length of the growing season (Billings and

Bliss, 1959) but also offers protection against climatic stress,

particularly wind desiccation (Schaefer and Messier, 1995), and

constitutes a direct reservoir of nutrients for plant growth

(Bowman, 1992). Snow also affects soil and vegetation moisture

levels and can represent a severe stress factor through its dynamic

effects, like avalanche paths or wind-induced snow translocation

(Erschbamer, 1989; Körner, 2003). As a result, its overall effect is

to decrease plant productivity (Billings and Bliss, 1959) and

photosynthetic activity (Körner, 2003).

Topographic position (Gottfried et al., 1998; Guisan et al.,

1998; Gottfried et al., 1999; Guisan and Theurillat, 2000;

Dirnböck et al., 2003), drainage surface (Leathwick et al., 1998),

or distance to ridges (Moore et al., 1991; Dirnböck et al., 2002)

have been used as surrogates for disturbance processes in plant

distribution modeling studies. Most of these studies were

conducted in mountain environments (Gottfried et al., 1998,

1999; Guisan et al., 1998; Guisan and Theurillat, 2000; Dirnböck

et al., 2003). Land-use and land-use change scenarios were only

used in one SDM study of a mountain region in Austria

(Dirnböck et al., 2003). Snow cover has been used in a few studies

in the Alps (Guisan and Theurillat, 2000; Dirnböck and Dullinger,

2004; Randin et al., 2006), but we are not aware of any study that

uses a physical, mechanistic map of snow redistribution by wind as

an input variable in plant species distribution models. Geomorphic

processes have never been included in SDM. Finally, thus far,

SDM studies have never quantified the importance of disturbance

compared to other variables.

Methods

STUDY AREA

The study area of Anzeindaz (46u159 to 46u189N, 7u79 to

7u119E) is a west-east–oriented plateau of 25 km2 located in the

western Alps of Switzerland (Fig. 2a). This area is bordered to the

North by the Diablerets massif and to the South by the Muveran

massif. Elevation ranges from 1900 to 3210 m at the top of the

Diableret peak. Annual temperature and precipitation vary from

1uC and 1800 mm at 1900 m to 25uC and 2600 mm at 3000 m

along the elevation gradient (Bouët, 1985). The soil parent

material is mainly calcareous.

The lowest part of the Anzeindaz study area is just below the

natural treeline ecotone. However, centuries of wood exploitation

and cattle grazing have lowered this ecocline (Villaret, 1973;

Gehrig-Fasel et al., 2007). Trees are now absent from the area

since subalpine and alpine grasslands are still grazed by cattle

every summer. This probably has little effect on the composition

FIGURE 1. Hierarchical modeling framework of resource, direct,
and indirect variables used in species distribution models (adapted
from Guisan and Thuiller, 2005).
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of alpine meadows. The study area of Anzeindaz contains 300

plant species, which corresponds to one-tenth of the Swiss flora

(Villaret, 1973; Aeschimann and Burdet, 1994).

This area is also well known by geographers because of its

wide range of geomorphic processes, and several studies have

provided detailed geomorphic maps of the area (Loye and Pahud,

1996; Rappaz and Hunziker, 1996).

A small valley in the area, the Vallon de Nant, was used as an

independent evaluation area for validating the predictive models

(Fig. 2a). This area is similar to the Anzeindaz study area and is a

good representation of the alpine environment. In addition, mean

and standard deviation of species prevalence in Anzeindaz and

Nant are comparable (mean 5 0.231 with SD 5 0.095 in

Anzeindaz and mean 5 0.197 with SD 5 0.128 in Nant).

However, the Vallon de Nant has geographic peculiarities and

less slope and aspect variation than the calibration area due to its

unique south-north orientation. Nevertheless, this area was chosen

because of the availability of geomorphic maps (Phillips, 1993).

SPECIES DATA

During the summers of 2002–2003, 49 vegetation plots were

sampled in Anzeindaz (as part of the sampling of a larger area; see

Randin et al., 2006) following a random-stratified sampling strategy

restricted to non-woody vegetation (grassland, rock, and scree).

Stratification was completed using elevation, slope, aspect, and

simplified classes of geology. Plots were 64 m2 (8 3 8 m), and the

presence of all species growing on this surface was recorded. We

registered the exact coordinates of the center of each plot using a

Geoexplorer 3 Trimble GPS system, with an accuracy of less than

1 m after differential post-correction. A second random-stratified

sampling was performed during the summer of 2004, which

especially focused on geomorphic units and provided 32 additional

plots. The 91 species that occurred in more than 10 plots were used

in the analyses (Appendix). Nomenclature follows Aeschimann and

Heitz (1996). The Nant data set was collected during the summers of

2002–2003 using the same random-stratified sampling strategy. This

data set is composed of 31 vegetation plots of 64 m2 with presence-

absence records for the same 91 species.

CLIMATIC AND TOPOGRAPHIC VARIABLES

Climate data were derived from the national meteorological

stations at different altitudes. Long-term monthly means for

average temperature (uC) and sum of precipitation (mm) for the

period 1961–1990 were used. Climatic data were spatially

interpolated with a 25 m DEM (Swisstopo, 2001), and thus all

derived data were also at this resolution of 25 m. The method of

computation and a description of the variables are given in

Zimmermann and Kienast (1999) and Zimmermann et al. (2007).

In this study, we used three climatic and two topographic variables

(Table 1) expected to be of greatest ecophysiological significance

for plants (Guisan and Zimmermann, 2000; Pearson et al., 2002;

Körner, 2003; Guisan and Thuiller, 2005). Days with temperatures

above 0uC were derived from interpolated daily temperatures and

summed for the growing season (Zimmermann and Kienast,

1999). Moisture index was calculated as the difference between

precipitation and evapotranspiration, and expressed the amount

FIGURE 2. (a) Geographic lo-
cation of the study area with
Anzeindaz and Nant regions.
Nant is used for an independent
evaluation of model maps of (b)
the geomorphic index and (c) the
snow distribution, which are used
as predicting variables in dis-
tribution models.
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of soil water potentially available at a site. The sum of mean daily

values for the months of June, July, and August and the annual

amounts of potential global solar radiation were also calculated.

Topographic position (Zimmermann et al., 2007) and slope (ESRI,

2005) were derived from the DEM. Positive values of topographic

position represent relative ridges, tops, and exposed sites, whereas

negative values indicate sinks, valleys, or toe slopes.

GEOMORPHIC DISTURBANCE VARIABLE

Published geomorphic maps of Anzeindaz and Nant (Phillips,

1993; Rappaz and Hunziker, 1996) were first digitalized using

ArcGIS 9.1 software (ESRI, 2005). Geomorphic units were then

merged into three classes to produce an index of geomorphic

disturbance (GEO; Fig. 2b) that has a potential impact on plant

species and is characterized by relative age of deposits, speed of

movements, scale, frequency, soil, and vegetation cover (Table 2).

SNOW DISTURBANCE VARIABLE

The snow distribution index (SNOW) was made with the

physically based numerical SnowTran-3D snow transport model

(SnowTran-3D; Liston and Sturm, 1998), using the 25 m DEM

and average dominant wind data. Local wind direction and

intensity was calculated in a quasi-physically based meteorological

model (MicroMet; Liston and Elder, 2006b). An initial layer of

1 m of uniform snow was then applied to the whole area and

SnowTran-3D was run to simulate areas of snow accumulation

and wind erosion. Snow was blown for 5 days with an average

dominant wind of 280u at 15 m s21 (data provided by MeteoS-

wiss). The resulting snow-depth distribution was divided by the

original 1 m of uniform snow, producing a map indexing snow

redistribution by wind. Index values ranged between 0 and positive

infinite values, with values above 1 indicating snow accumulation,

values below 1 indicating snow erosion and null values indicating

complete erosion (Fig. 2c).

MODELING FRAMEWORK

The steps of the analyses are summarized in Figure 3. A

topoclimatic model (TC model) was first calibrated in the

Anzeindaz study area for each species. The geomorphic variable

(GEO) and the snow variable (SNOW) were added separately to

the TC model (resulting in the GEO and SNOW models,

TABLE 1

Topographic and climatic variables used in the present study to model the distribution of species.

Variables Units Details Method References

Temperature degree days uC * day * yr21 Sum of days multiplied by daily mean

temperature .0uC
ArcInfo AML Zimmermann and Kienast

(1999)

Moisture index (average of monthly

values June–August)

mm * day21 Monthly average of daily water balance

(precipitation-evapotranspiration)

ArcInfo AML Zimmermann and Kienast

(1999)

Global solar radiation (sum over

the year)

kJ * m22 * yr21 Daily global solar radiation ArcInfo AML Zimmermann et al.

(2007)

Slope degrees Slope inclination DEM, ArcInfo, GRID

routine

ESRI (2005)

Topographic position Unitless Concave vs. convex land surface ArcInfo AML Zimmermann et al. (2007)

TABLE 2

Classification of geomorphologic units by their relative age of deposits, speed of movements, scale, frequency, soil, and vegetation cover.

Geomorphic perturbations

No perturbation Low Medium High

0 1 2 3

Age of deposits Absence of deposit Ancient deposits Recent deposits Recent deposits

Speed and type of

movement

Absence of movements Slow movements No movements but occasional

impacts of rock deposits/slow

movements with mechanic

constraints on root system

High and impact of rocks and snow/

slow movements with mechanic

constraints on root system

Scale — — Occasionally at a large scale

(affecting an entire slope)

Usually at a large scale and affecting

an entire slope

Frequency — — Episodic events for rock fall and

gravity accumulation, yearly

cycle/dynamic for solifluction

and active glacial deposit

Yearly cycles/dynamic (e.g. spring

avalanche, mudflow after

summer storm)

Soil Developed soil Developed soil but hygric

stress due to the rock

texture

Sparse developed soil Absence of soil

Vegetation cover High vegetation cover High vegetation cover Sparse vegetation cover with

small patches

Patches of vegetation only

composed of few individuals of

highly specialized species

Initial units of

geomorphic maps

Soil on stabilized rock Stabilized glacial deposit Rock fall Avalanche paths

Stabilized dejection cone Gravity accumulation Rock scree

Lapiaz Solifluction Active rock glacier

Active glacial deposit
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respectively). The fits of the TC models were compared to those of

the GEO and SNOW models. We also compared the predictive

power of TC models with GEO and SNOW models using: (1) a

cross-validation procedure on the training data set (Anzeindaz),

and (2) a fully independent evaluation on the test data set (Nant).

We used variation partitioning to quantify the independent

contribution of TC, GEO, and SNOW variables. Finally, TC,

GEO, and SNOW models calibrated in Anzeindaz were imple-

mented into a geographic information system (GIS) to produce

potential habitat maps of presence-absence for each species. The

connectivity of the predicted maps derived from the TC models

was then compared to those of the GEO and SNOW models.

Finally, a set of species was selected to illustrate the difference in

spatial projections between the models.

STATISTICAL ANALYSES

All statistical analyses were performed in R version 2.6.1 (R

Development Core Team, 2007) and the Design packages

available on the R website (http://cran.r-project.org). Analyses

were run on all species that occurred more than 10 times in the

training data set (91 plant species; Appendix).

For each species, a generalized linear model (GLM;

McCullagh and Nelder, 1989) with a binomial variance and a

logistic link function was fitted using presence-absence as the

response variable and climate and topographic variables as

predictors (TC model). An Akaike information criterion (AIC)-

based stepwise procedure in both directions was used to select the

most significant predictors (Akaike, 1973). Predictor values were

allowed up to second-order polynomials (linear and quadratic

terms), with the linear term being forced in the model each time

the quadratic term was retained. In a second step, the geomorphic

index and the index of snow distribution by wind were

independently added to the TC model to produce the GEO and

SNOW model.

MODEL FIT

The model fit was estimated using the adjusted geometric

mean squared improvement R2 (Cox and Snell, 1989; Nagelkerke,

1991). This R2 was rescaled for a maximum of 1 and adjusted for

both the number of observations and predictors in the model.

MODEL PREDICTIVE POWER

The predictive power of GLM was first evaluated by running

a tenfold cross-validation (van Houwelingen and Le Cessie, 1990)

on the training data set. During the cross-validation procedure,

the original prevalence of the presence and absence of the species

in the data set was maintained in each fold.

Comparisons of predictions from the cross-validation (prob-

ability scale) and observations (presence-absence) were based on

the area under the curve (AUC) of a receiver-operating

characteristic plot (ROC; Fielding and Bell, 1997). AUC accepts

values between 0 and 1, with 0.5 meaning no agreement; 0

representing an inverse relationship (errors better predicted); and 1

representing a perfect agreement.

Secondly, an external evaluation was made by predicting all

models of the Nant data set and comparing predictions and

observations with the AUC values. This represents a fully

independent evaluation, as recommended by Fielding and Ha-

worth (1995) or Vaughan and Ormerod (2003), and an estimate of

the generality and the geographic transferability of the models

(Randin et al., 2006). Since the independent evaluation area

(Nant) does not provide a sufficient number of sampling plots (31

plots) for a robust evaluation (Vaughan and Ormerod, 2003), it

can only be used as an indicative and explorative test set for

evaluating model predictions.

VARIATION PARTITIONING

A variation partitioning approach (Borcard et al., 1992)

based on partial correlation analyses was used to quantify the

deviance added by the GEO or SNOW variable in the TC model.

This approach allows variation to be partitioned into four

identifiable fractions of deviance, including (1) pure topoclimatic,

(2) shared topoclimatic and geomorphic (or snow cover), (3) pure

geomorphic (or snow cover) and (4) unexplained variation. The

adjusted geometric mean squared improvement R2 was used as an

estimator of the explained deviance without adjustment for the

number of observations and predictors.

POTENTIAL HABITAT MAPS

Maps of spatial projections of TC, GEO, and SNOW models

were prepared for species with an AUC that was improved by the

GEO or SNOW variable in the GLM of the cross-validation

evaluation. Spatial projections of GLM were reclassified into

presence-absence using a ROC-optimized threshold that jointly

maximized the percentage of presence and absence that was

correctly predicted (i.e. the probability Pfair is where sensitivity 5

specificity; Liu et al., 2005). A mask based on forests, roads,

urbanized areas, and rivers was applied to avoid prediction of the

species in impossible situations.

Three maps were prepared for some exemplar species, based

on (1) TC model, (2) GEO (or SNOW) model, and (3) their

difference. Map 3 was prepared by subtracting maps 1 and 2 (i.e.

TC – GEO, or TC – SNOW).

INDEX OF CONNECTIVITY

An index was developed to compare the connectivity between

suitable habitat projections of the TC and GEO/SNOW models of

species for which the predictive power of the TC model was

improved by the GEO/SNOW variable. We hypothesized that the

model improvement by these variables would lead to a higher

fragmentation of the projected potential suitable habitats as

proposed by Patten and Knight (1994).

Let CSi be the number of cells predicted to be suitable in a 3

3 3 cell moving window around a suitable focus cell i. Let CTi be

the total number of cells in the 3 3 3 cell window around the focus

FIGURE 3. Analytical framework of the study (SDM = species
distribution model).
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cell i. CTi reaches a maximum of 8 if cells have not been removed

by the mask. We calculated the connectivity index CI as follows:

CIGLM~

PN
i~1

CSi

CTi

� �

N
ð1Þ

The connectivity index reaches a maximum value of 1 when

all cells surrounding the focus suitable cell are also suitable. The

change in potential suitable surface and connectivity between TC

and GEO/SNOW models was quantified using the Wilcoxon

signed-rank test, treating the sample as if it were grouped by

species.

Results

DIFFERENCE IN MODEL FIT AND PREDICTIVE POWER

The boxplot (Fig. 4) showed that the fits of the model were,

on average, significantly higher for models including geomorphic

and snow disturbance variables (GEO and SNOW models),

compared to pure topoclimatic models (TC models). The highest

level of improvement reached 25.1% for the GEO model of

Hippocrepis comosa and 21.6% for the SNOW model of Agrostis

rupestris.

By contrast, the predictive power of the TC models evaluated

by cross-validation remained significantly higher than GEO and

SNOW models. The improvement by geomorphic and snow

disturbance variables was modest but significant, reaching up to

9.7% and 8.3% for Pedicularis verticillata, respectively.

On average, there was no significant differences in the

predictive power between TC and GEO models and between TC

and SNOW models (Fig. 4) when evaluation was performed in the

independent study area (Nant). In addition, the predictive power,

although remaining low overall in Nant, revealed greater

improvements than the internal validation for some species,

reaching 13.8% for the GEO model of Dryas octopetala and

15.4% for the SNOW model of Saxifraga paniculata.

VARIATION PARTITIONING

The contribution of the geomorphic index in the explanation

of additional deviance in topoclimatic models was weak on

average (5.6%, Table 3). Nonetheless, it reached 24.5% in the best

model for Hippocrepis comosa (Fig. 5). The contribution of the

snow index was, on average, also weak (3.3%), with a maximum

independent contribution of 20.7% for the model of Agrostis

rupestris (Table 3; Fig. 5).

POTENTIAL HABITAT DISTRIBUTION MAPS

AND CONNECTIVITY

The geomorphic index improved the predictive power of 23

species, whereas 19 species were improved by the snow distribu-

tion index.

When considering the subset of 23 species, the connectivity

between cells with suitable habitat significantly decreased when

the geomorphic index was added to the TC model (Wilcoxon

signed-rank test: P , 0.001). The same decrease in connectivity

was observed for the subset of 19 species when the snow

distribution index was added to the TC model (Wilcoxon

signed-rank test: P , 0.001).

Based on model performance, four species were selected to

illustrate spatial projections from presence-absence models (Ap-

pendix). Agrostis capillaris and Galium megalospermum were

selected to show the improvement gained by the geomorphic

index. Sedum atratum and Silene acaulis were selected to

demonstrate improvement by the snow distribution index. The

resulting maps can be compared with those of the two disturbance

variables in the study area (Figs. 2b and 2c).

Comparisons of spatial projections of TC and GEO models

(Fig. 6; Table 4) showed that the occurrence of A. capillaris was

predicted more often on surfaces with low or no geomorphic

perturbations. On the contrary, Gallium megalospermum was

predicted more often on surfaces with medium to high perturba-

tions. When comparing TC and SNOW models, boxplots (Fig. 7)

showed that the occurrence of Sedum atratum was predicted more

often on areas with a high accumulation of snow, whereas Silene

acaulis was predicted exclusively on surfaces with low snow

FIGURE 4. Boxplots of model fit (R2 on the calibration data set)
and predictive power (AUC from cross-validation and from the Nant
data set) of the three models. (a) TC = topoclimatic, GEO = with
geomorphic index, (b) TC = topoclimatic, SNOW = with snow
distribution index. The P values indicate the significance of the
Wilcoxon signed rank tests between models. The . or , symbols
indicate the direction of the test.

TABLE 3

Percentage of mean, minimum, and maximum of the contribution for each identifiable fraction of GEO and SNOW models separated by the
variation partitioning method. TC = topoclimatic.

Geomorphic index (GEO) Snow distribution index (SNOW)

Mean Min Max Mean Min Max

TC 36.3 14.4 76.0 TC 55.0 16.7 88.0

GEO 5.6 0.3 24.5 SNOW 3.3 0.0 20.7

TC+GEO 18.9 26.4 47.8 TC+SNOW 0.2 214.9 10.2

Unexplained 39.2 7.0 78.0 Unexplained 41.6 8.6 76.6
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accumulation when the snow distribution index was included into

the TC model of the two species. These differences were both

significant (Wilcoxon signed-rank test; P , 0.001).

Discussion

In this study, we quantified the importance of two

disturbance variables—a geomorphic index (GEO) and a snow

distribution index (SNOW)—in models of alpine plant species

distribution, compared to more commonly used topoclimatic

variables (TC). Model fit and predictive power were signifi-

cantly improved by the two disturbance variables for some

species. However, on average, predictive power was not

improved across the entire set of 91 species. Hence, the

contributions of these variables were species-specific, with

significant improvements of up to 30% (fit) and 10% (predictive

power) for some species.

MODEL FIT AND PREDICTIVE POWER OF

DISTURBANCE VARIABLES

On average, GEO and SNOW significantly improved the

models’ fit. However, their predictive power, as evaluated by

cross-validation, remained significantly lower than topoclimatic

models. One reason for the weak overall evaluation of models that

incorporate the geomorphic index may reside in the development

of the underlying geomorphic maps. Geomorphic processes were

delimited on the map by large adjacent polygons but had no

transition zones between them. Since these abrupt limits do not

exist in nature, the use of a continuous perturbation index should

be more powerful than the semi-quantitative index used in this

study. Another problem with the geomorphic maps is that the

geographer did not initially define their units in relation to

vegetation. A different classification that predicts vegetation

patterns could prove beneficial. This situation highlights the

problem of using existing and available data for a purpose other

than what they were originally intended (Yoccoz et al., 2001).

The low predictive performance of the snow distribution

index illustrates the difficulty of capturing the complex processes

of snow distribution in mountain systems. Patterns of snow

accumulation were not only generated by the dominant wind

translocation, but also by avalanches or more complex wind

translocation pathways. Due to the steep slopes and the high

elevation amplitude (up to 1300 m) found within the study area,

avalanches could explain the patterns of snow distribution in

Anzeindaz and Vallon de Nant. Moreover, snow beds and exposed

ridges represent landscape features that are already considered in

models with topography. Consequently, topoclimatic variables

commonly used in SDMs may be sufficient to capture the main

geomorphic influences on the vegetation. In addition, the

dominant wind that was blown in order to distribute the snow

on the landscape is not necessarily the wind that really shapes the

snow after snowfalls at the microscale.

Several studies have recommended the use of direct or

disturbance variables instead of indirect variables in SDM

(Guisan and Thuiller, 2005) as a way to ensure better model

transferability in space or time (Randin et al. 2006). However,

to our knowledge, no study has formally tested the predictive

power of disturbance variables in a remote area. Surprisingly,

the average predictive power of the GEO and SNOW models

was low when evaluated in the remote area of Nant, even

though Nant is very close to Anzeindaz. One explanation for

the GEO variable could be that the quality of existing maps of

geomorphology as vegetation predictors strongly depends on

the interpretation of the landscape made by geographers. Thus,

artificial differences between the two geomorphological maps of

Anzeindaz and Nant may have been generated by the different

interpretations of two geographers. However, this does not

explain the low predictive power of the SNOW variable that

has been generated using standardized numerical simulations in

both study areas. Thus, the explanation we support is the

difference in interactions between topography, climate, and

geomorphic processes that occur in the two study areas (see

Villaret, 1973; Loye and Pahud, 1996; Rappaz and Hunziker,

1996 for Anzeindaz; and Dutoit, 1984; Phillips, 1993 for Nant).

Anzeindaz is a west-east–oriented valley, whereas Nant is

south-north–oriented. This difference leads to different climatic

and energetic contrasts that partly control geomorphic processes

and also to distinct snow distribution patterns by wind.

Edaphic and geologic differences in combination with climate

may also lead to different morphology in avalanches or debris

flow (Butler and Walsh, 1990). Therefore, our results show the

difficulty of generating a set of spatially ecologically meaningful

disturbance variables that can be generalized to a complex

mountain environment, even at the local scale.

When evaluated in Nant, the predictive power of TC and

GEO/SNOW models were, on average, the same. First, this may

demonstrate that evaluation in a remote area is a severe method

for all sets of variables. Second, this finding may also show that

both direct and disturbance variables are not sufficient to ensure

transferability at the local scale in a mountain environment. Thus,

when considering a high-elevation ecosystem at this scale, the need

to shift to models that incorporate resource variables and

transport processes of nutrients should be emphasized, as already

proposed by Seastedt et al. (2004) with the landscape continuum

model (LCM).

FIGURE 5. Fraction of explained deviance (independent contri-
bution) among the target variables (TC = topoclimatic variables
alone, GEO/SNOW = geomorphic index or snow distribution index
alone, [TC + GEO]/[TC + SNOW] = joint contribution of TC with
GEO or SNOW and unexplained deviance by the model) for the five
species having the highest R2 for (a) the geomorphic index and (b)
the snow distribution index separated by the variation partitioning.
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VARIATION PARTITIONING

The strong influence of topoclimatic variables when added to

TC models could explain the low average contribution of both

disturbance variables (5.6% and 3.3% for the GEO and SNOW

variables, respectively), as highlighted by the variance partitioning

results. Indeed, the intensity of geomorphic processes (i.e. screes,

solifluction, and avalanche paths; Butler and Walsh, 1990; Walsh

et al., 2003) as well as snow redistribution patterns (Liston and

Sturm, 1998; Liston and Elder, 2006a), are highly controlled by

topoclimatic attributes. However, what is supposedly improved in

geomorphic and snow predictors is that slope, curvature,

radiation, or precipitation also act in combination with edaphic

or geologic characteristics (Butler et al., 2003). Our results tend to

suggest that more refinement is needed in the preparation of

geomorphic and snow predictors in alpine environments.

In contrast, the maximum contributions of GEO and SNOW

variables in models were important, reaching 24.5% and 20.7%,

respectively. This suggests that geomorphic disturbances and snow

are only critical and dominant spatial drivers for a part of the

plant species in alpine systems, as already shown in previous

studies (Erschbamer, 1989; Walker et al., 1993; Patten and Knight,

1994; Butler et al., 2007).

FIGURE 6. Potential filtered
habitat maps for the four exem-
plar species: (a–c) Agrostis capil-
laris, (d–f) Galium megalosper-
mum, (g–i) Sedum atratum, and
(j–l) Silene acaulis. The three
maps for each species correspond
(by column) to (a, d, g, j) TC
models, (b, e, h, k) GEO or
SNOW models, and (c, f, i, l)
the difference between TC and
GEO or SNOW models.

TABLE 4

Difference in spatial projections when adding the GEO variable in TC models.

Classes of geomorphic disturbance

Agrostis capillaris Gallium megalospermum

Surface unchanged km2

% predicted with GEO

Surface unchanged km2

% predicted with GEO

+ 2 + 2

No perturbations (0) 0.67 123.4 0.0 1.29 0.0 17.2

Low perturbations (1) 4.50 11.2 0.0 4.77 1.2 3.7

Medium perturbations (2) 2.02 0.0 18.8 2.15 11.4 0.0

High perturbations (2) 1.73 7.9 0.0 1.75 0.8 6.0
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SPECIES GEOGRAPHIC PROJECTIONS

The contrasted results between the low average contribution

of GEO and SNOW for the complete data set and the high

contribution reached by individual species show the limits of such

a global view on the most common species in a region. A minority

of the species was influenced by the disturbances, and the impact

of the GEO and SNOW variables on the models strongly differs

between species. For instance, Agrostis capillaris is a species that

has a large ecological tolerance and is mainly found in exploited

colline to subalpine meadows and pastures (Aeschimann et al.,

2005). This species can be occasionally and locally abundant but is

generally never dominant and avoids perturbations. As expected,

the GEO models more often predicted suitable habitats for this

species in areas without perturbation (+123%). On the contrary,

Gallium megalospermum is a species typically found in the

calcareous screes of subalpine and alpine zones (Aeschimann et

al., 2005). Its potential suitable habitats were more often predicted

correctly in areas with medium perturbations (+11.4%) and less

often in areas without perturbations (217.2%). Sedum atratum is

found in calcareous snow beds, whereas Silene acaulis prefers

southern slopes and windy ridges (Braun-Blanquet, 1975). The

divergence of SNOW models projections compared to TC models

for these species was consistent with field observations, since

Sedum was predicted significantly more often in areas of high

snow accumulation and Silene was predicted in low accumulation

sites.

DISTURBANCE VARIABLES FOR SPATIAL PROJECTIONS

UNDER CLIMATE CHANGE

As shown by significant changes in the connectivity of spatial

projections of GEO and SNOW models, disturbance variables in

topoclimatic models might remain as important factors to include

in SDM when they are used to derive projections of the impacts of

climate change on plant species and diversity. For the set of species

sensitive to GEO and SNOW variables, geomorphic perturbations

and snow distribution can be facilitators or inhibitors, thus acting

as barriers or corridors for plant dispersal, as proposed by Butler

(2001). Therefore, the migration rate of pioneer species from low

altitudes, which are adapted to mechanical perturbations, could be

accelerated, whereas populations of species found at high

elevations would continue to be found at low elevations in some

abyssal situations where low competition is regulated by

perturbation. Moreover, rockfalls caused by the degradation of

permafrost are likely to increase in a warmer climate (Gruber et

al., 2004), thus leading to changes in connectivity or barriers for

sensitive species.

FURTHER IMPROVEMENT

Expert approaches in GIS, advanced remote sensing tech-

niques or high resolution DEM (i.e. LIDAR) may be used to more

precisely determine the intensity of geomorphic perturbation

(Tarboton, 1997; Meissl, 2001; Walsh et al., 2003; Noetzli et al.,

2006). For example, the size and spatial organization of stones in a

rockslide may provide information about the intensity and

frequency of the perturbation events that occurred.

The snow distribution model used in this study was only

based on a single climatic variable: the dominant wind. Therefore,

the simulation of snow distribution used to derive our index only

represented one possible realization, without any associated

variation. More complex physical models of snow distribution

should be tested in the future (Gurtz et al., 1999; Liston and Elder,

2006a) that are based on (1) several simulation runs, (2) more

thorough observed climatic data recorded over longer periods, and

(3) more complex processes of snow formation and melting. In

addition, the use of physical models should be encouraged as a

surrogate to remote sensing data (Dirnböck et al., 2003) in SDM

study because they can be easily projected under climate change

scenarios (see Randin et al., 2009, for implementation).

Vegetation feedback on snow distribution should also be

considered when using such models (Hiemstra et al., 2002; Liston

and Elder, 2006a). Depending on their height, vegetation patches

can contribute greatly to snow redistribution by wind in

combination with topographic attributes and improve physical

model prediction at a fine scale and high resolution when included

as a spatial layer (Hiemstra et al., 2002).

Statistical models of species’ distribution were fitted using

species presence-absence data. In further studies, models could be

fitted using abundance data, since this could sensibly change the

results. A recent study that tested the effect of various land-use (a

form of human disturbance) treatments on plant species distribu-

tion showed that abundance is ecologically more informative than

simple presence/absence data (Randin et al., in press). Similarly,

using ordinal models, Dirnböck et al. (2003) showed that land use

could explain up to 50% of variation in species abundance.

In this study, we did not test for significant AUC

improvement like Delong et al. (1988), based on the papers from

Hanley and McNeil (1982, 1983), and recently used by Thuiller et

al. (2003). With their method, the areas under the curve of each of

the two nested models are directly compared, which could be an

alternative to our analytical framework.

Finally, the causes of the low numbers of models that were

improved by the disturbance variables and the high variability

among species cannot be directly seen from our results. However,

aspects of our results can be used to identify potential reasons (i.e.

species traits) and propose hypotheses to guide further investiga-

tions.

Conclusion

Overall, the contributions of disturbance variables were, on

average, low, but highly dependent on the species considered. In

the mountain area, geomorphic variables proved to be important

for some species.

Most models fitted with geomorphic and snow variables

failed to predict in the remote area, thus suggesting that it is

FIGURE 7. Boxplots of the simulated snow distribution index for
the potential occurrences predicted with TC and SNOW models for
Sedum atratum and Silene acaulis. Difference between the snow
distribution index of occurrences predicted with TC and SNOW
were significantly different (Wilcoxon test: P , 0.001).
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difficult to obtain spatially explicit and ecologically meaningful

disturbance variables at the local scale.

Whether or not disturbance variables are considered can yield

important changes in surface area and connectivity predicted by

species distribution models. Changes in projected surfaces were

interpreted as ecologically relevant when the two disturbance

variables were considered. This is an important issue when

preparing climate change projections, because the species’ range

size maintained in the future will determine the species sensitivity

to changing conditions.

Further studies should develop a continuous geomorphic

index based on more ecologically meaningful units of geomor-

phology. These studies should also consider using more complex

models of snow distribution, even at the expense of longer

computing times.
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APPENDIX

Model fit (R2), model predictive power (AUC) for the three models (TC = topoclimatic; GEO = topoclimatic model with the geomorphic

variable; SNOW = topoclimatic model with the snow variable) and independent contribution (deviance, R2) of the three groups of variables

(TC = topoclimatic variables; GEO = geomorphic variable; SNOW = snow variable) in the variation partitioning analysis.

Names

Occur-

rences

R2 (Anzeindaz

data set)

AUC by cross-

validation

(Anzeindaz

data set)

AUC with the

Nant dataset

(transferability)

Variation partitioning

with GEO (R2)

Variation partitioning

with SNOW (R2)

TC GEO SNOW TC GEO SNOW TC GEO SNOW TC GEO

TC +
GEO Unexplained TC SNOW

TC +
SNOW

Un-

explained

Adenostyles glabra 20 0.588 0.575 0.623 0.846 0.752 0.857 0.875 0.881 0.911 0.368 0.004 0.251 0.377 0.640 0.041 20.021 0.340

Agrostis rupestris 10 0.478 0.555 0.694 0.785 0.801 0.817 0.767 0.700 0.800 0.247 0.088 0.270 0.395 0.662 0.207 20.145 0.275

Agrostis capillaris 19 0.495 0.636 0.495 0.853 0.902 0.807 0.607 0.690 0.607 0.403 0.151 0.105 0.341 0.502 0.013 0.006 0.479

Alchemilla

conjuncta aggr. 41 0.629 0.656 0.619 0.838 0.859 0.821 0.767 0.767 0.763 0.507 0.038 0.159 0.296 0.629 0.001 0.037 0.333

Alchemilla

xanthochlora

aggr. 22 0.678 0.835 0.689 0.914 0.870 0.847 0.896 0.738 0.888 0.537 0.151 0.166 0.146 0.698 0.017 0.005 0.280

Alchemilla glabra

aggr. 14 0.201 0.173 0.194 0.681 0.569 0.666 0.867 0.867 0.800 0.161 0.004 0.060 0.775 0.234 0.013 20.013 0.766

Androsace

chamaejasme 18 0.595 0.622 0.602 0.847 0.725 0.863 0.433 0.400 0.433 0.237 0.039 0.389 0.335 0.622 0.016 0.003 0.359

Anthoxanthum

odoratum aggr. 23 0.501 0.493 0.564 0.806 0.791 0.840 0.767 0.767 0.653 0.323 0.011 0.228 0.437 0.594 0.067 20.043 0.382

Anthyllis vulneraria

s.l. 32 0.733 0.768 0.757 0.909 0.800 0.873 0.620 0.600 0.667 0.425 0.041 0.335 0.200 0.773 0.028 20.014 0.213

Asplenium viride 10 0.454 0.483 0.455 0.846 0.754 0.807 0.810 0.833 0.798 0.302 0.047 0.178 0.472 0.384 0.015 0.097 0.504

Bartsia alpina 20 0.576 0.687 0.615 0.820 0.843 0.816 0.758 0.764 0.709 0.341 0.114 0.267 0.278 0.630 0.046 20.022 0.346

Aster bellidiastrum 26 0.502 0.583 0.490 0.835 0.856 0.817 0.606 0.633 0.606 0.217 0.093 0.310 0.381 0.492 0.002 0.034 0.472

Botrychium lunaria 10 0.000 0.054 0.061 0.474 0.480 0.390 0.500 0.620 0.694 0.000 0.089 0.000 0.911 0.000 0.085 0.000 0.915

Campanula barbata 10 0.616 0.631 0.607 0.845 0.800 0.820 0.967 0.967 0.967 0.356 0.027 0.289 0.328 0.636 0.001 0.009 0.354

Carduus defloratus

s.str. 19 0.383 0.361 0.387 0.786 0.698 0.767 0.703 0.710 0.697 0.362 0.003 0.052 0.583 0.426 0.020 20.012 0.567

Campanula

scheuchzeri 39 0.538 0.533 0.536 0.845 0.836 0.815 0.641 0.714 0.662 0.339 0.013 0.234 0.414 0.579 0.010 20.006 0.418

Carex sempervirens 35 0.771 0.810 0.777 0.911 0.819 0.907 0.489 0.524 0.522 0.477 0.043 0.316 0.164 0.712 0.011 0.082 0.195

Carlina acaulis

subsp.

caulescens 12 0.410 0.483 0.470 0.771 0.702 0.804 0.785 0.746 0.715 0.413 0.088 0.027 0.472 0.491 0.070 20.051 0.490

Cerastium

latifolium 12 0.458 0.442 0.461 0.836 0.830 0.845 0.658 0.669 0.692 0.438 0.005 0.034 0.523 0.435 0.016 0.037 0.512

Leucanthemum

vulgare aggr. 16 0.419 0.445 0.425 0.827 0.766 0.758 0.892 0.885 0.892 0.406 0.045 0.056 0.492 0.460 0.020 0.002 0.518

Cirsium

spinosissimum 23 0.277 0.309 0.277 0.690 0.689 0.699 0.812 0.804 0.783 0.306 0.058 20.011 0.647 0.310 0.019 20.015 0.686

Coeloglossum viride 12 0.335 0.394 0.449 0.764 0.653 0.796 0.586 0.586 0.466 0.186 0.080 0.166 0.568 0.397 0.125 20.045 0.524

Crepis aurea 20 0.632 0.638 0.687 0.897 0.857 0.910 0.573 0.567 0.533 0.382 0.019 0.269 0.331 0.695 0.060 20.044 0.289

Deschampsia

cespitosa 10 0.377 0.460 0.368 0.765 0.720 0.701 0.850 0.823 0.850 0.488 0.097 20.064 0.479 0.426 0.007 20.002 0.569

Dryas octopetala 18 0.566 0.587 0.591 0.844 0.801 0.835 0.207 0.345 0.233 0.233 0.035 0.366 0.366 0.540 0.033 0.059 0.368

Euphorbia

cyparissias 11 0.673 0.801 0.737 0.897 0.899 0.901 0.919 0.931 0.919 0.760 0.126 20.062 0.176 0.627 0.066 0.071 0.237

Euphrasia minima 17 0.691 0.761 0.869 0.908 0.899 0.968 0.818 0.848 0.755 0.460 0.076 0.246 0.218 0.855 0.173 20.149 0.121

Festuca quadriflora 20 0.388 0.398 0.377 0.806 0.737 0.757 0.196 0.214 0.179 0.232 0.032 0.172 0.564 0.394 0.005 0.009 0.592

Festuca rubra aggr. 28 0.695 0.718 0.708 0.892 0.917 0.877 0.670 0.634 0.652 0.331 0.033 0.380 0.257 0.722 0.019 20.012 0.271

Festuca violacea

aggr. 11 0.291 0.292 0.303 0.668 0.629 0.717 0.623 0.579 0.689 0.244 0.027 0.083 0.646 0.307 0.029 0.020 0.645

Galium anisophyllon 35 0.701 0.746 0.763 0.880 0.877 0.860 0.866 0.796 0.862 0.376 0.050 0.355 0.219 0.787 0.062 20.057 0.208

Galium

megalospermum 24 0.665 0.728 0.681 0.876 0.831 0.853 0.700 0.653 0.727 0.609 0.068 0.082 0.241 0.682 0.023 0.009 0.287

Geum montanum 15 0.616 0.655 0.662 0.879 0.866 0.878 0.707 0.724 0.586 0.350 0.049 0.285 0.315 0.612 0.052 0.024 0.313

Gentiana campestris

s.str. 19 0.563 0.593 0.581 0.820 0.820 0.809 0.538 0.638 0.469 0.151 0.043 0.444 0.361 0.576 0.027 0.020 0.377

Gentiana purpurea 10 0.704 0.759 0.707 0.845 0.718 0.890 0.698 0.698 0.681 0.470 0.060 0.256 0.214 0.731 0.010 20.005 0.264

Gentiana verna 19 0.589 0.577 0.608 0.869 0.768 0.844 0.798 0.821 0.726 0.314 0.005 0.306 0.375 0.621 0.027 20.001 0.353
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Names

Occur-

rences

R2 (Anzeindaz

data set)

AUC by cross-

validation

(Anzeindaz

data set)

AUC with the

Nant dataset

(transferability)

Variation partitioning

with GEO (R2)

Variation partitioning

with SNOW (R2)

TC GEO SNOW TC GEO SNOW TC GEO SNOW TC GEO

TC +
GEO Unexplained TC SNOW

TC +
SNOW

Un-

explained

Globularia

cordifolia 15 0.708 0.718 0.746 0.933 0.848 0.917 0.452 0.476 0.488 0.689 0.020 0.041 0.250 0.688 0.041 0.042 0.229

Gypsophila repens 13 0.439 0.502 0.424 0.757 0.807 0.758 0.707 0.720 0.707 0.339 0.077 0.142 0.442 0.473 0.000 0.009 0.518

Helianthemum

nummularium

s.l. 15 0.511 0.513 0.516 0.812 0.772 0.766 0.350 0.365 0.335 0.366 0.020 0.182 0.432 0.523 0.017 0.025 0.436

Helictotrichon

versicolor 11 1.000 1.000 1.000 0.813 0.708 0.771 NA NA NA 0.486 0.000 0.514 0.000 0.973 0.000 0.027 0.000

Hieracium bifidum

aggr. 15 0.226 0.279 0.227 0.745 0.677 0.723 0.774 0.833 0.780 0.161 0.079 0.083 0.676 0.231 0.020 0.014 0.735

Hippocrepis comosa 10 0.582 0.833 0.589 0.824 0.746 0.796 0.488 0.571 0.488 0.610 0.245 20.007 0.152 0.598 0.017 0.005 0.380

Hieracium villosum

aggr. 12 0.434 0.423 0.436 0.793 0.717 0.781 0.412 0.412 0.450 0.372 0.011 0.090 0.527 0.466 0.016 20.004 0.522

Hieracium murorum

aggr. 10 0.697 0.372 1.000 0.873 0.738 0.700 0.633 0.433 0.450 20.083 20.727 0.811 1.000 0.972 0.273 20.245 0.000

Homogyne alpina 28 0.693 0.738 0.719 0.912 0.894 0.894 0.833 0.860 0.833 0.297 0.053 0.411 0.239 0.737 0.032 20.030 0.260

Pritzelago alpina

s.str. 15 0.516 0.584 0.512 0.844 0.859 0.863 0.785 0.798 0.819 0.580 0.079 20.040 0.380 0.501 0.008 0.040 0.451

Leontodon hispidus

s.l. 29 0.641 0.675 0.634 0.893 0.897 0.889 0.702 0.702 0.685 0.331 0.044 0.328 0.297 0.605 0.002 0.054 0.339

Ligusticum

mutellina 25 0.469 0.507 0.482 0.775 0.773 0.785 0.718 0.709 0.700 0.240 0.054 0.268 0.437 0.518 0.025 20.009 0.466

Lotus alpinus 11 0.479 0.579 0.467 0.845 0.832 0.830 0.592 0.489 0.595 0.229 0.113 0.263 0.395 0.485 0.001 0.008 0.506

Lotus corniculatus 22 0.408 0.394 0.435 0.759 0.730 0.741 0.824 0.843 0.861 0.412 0.010 0.055 0.523 0.505 0.038 20.038 0.495

Luzula multiflora 12 1.000 0.000 1.000 0.928 0.864 0.839 0.983 0.914 0.966 20.283 21.000 1.283 1.000 0.967 0.000 0.033 0.000

Myosotis alpestris 13 0.260 0.254 0.288 0.670 0.633 0.596 0.704 0.642 0.712 0.258 0.023 0.057 0.662 0.335 0.044 20.020 0.641

Nardus stricta 14 0.752 0.820 0.784 0.915 0.911 0.809 0.879 0.948 0.862 0.413 0.069 0.357 0.160 0.780 0.035 20.009 0.195

Pedicularis

verticillata 11 0.637 0.677 0.647 0.806 0.790 0.747 0.286 0.304 0.304 0.330 0.048 0.343 0.279 0.657 0.018 0.017 0.309

Phleum alpinum

aggr. 19 0.430 0.574 0.420 0.794 0.780 0.812 0.573 0.467 0.560 0.400 0.149 0.072 0.378 0.471 0.006 0.001 0.522

Phyteuma

orbiculare 21 0.291 0.295 0.308 0.687 0.631 0.649 0.611 0.602 0.519 0.326 0.030 0.018 0.626 0.362 0.032 20.018 0.623

Plantago alpina 27 0.524 0.524 0.601 0.843 0.801 0.881 0.613 0.619 0.631 0.391 0.018 0.157 0.434 0.613 0.082 20.065 0.369

Plantago atrata

s.str. 23 0.696 0.711 0.695 0.884 0.866 0.881 0.729 0.719 0.705 0.574 0.024 0.152 0.249 0.719 0.006 0.007 0.267

Poa alpina 33 0.545 0.555 0.538 0.840 0.819 0.819 0.696 0.746 0.692 0.390 0.025 0.189 0.395 0.554 0.005 0.025 0.416

Poa minor 13 0.495 0.486 0.491 0.810 0.743 0.808 0.793 0.788 0.808 0.491 0.011 0.029 0.469 0.508 0.009 0.012 0.471

Potentilla aurea 22 0.637 0.779 0.658 0.893 0.898 0.884 0.653 0.660 0.660 0.365 0.139 0.299 0.196 0.678 0.028 20.014 0.308

Poa cenisia 11 0.176 0.168 0.323 0.687 0.697 0.787 0.473 0.412 0.342 0.152 0.024 0.044 0.780 0.167 0.160 0.029 0.643

Potentilla crantzii 18 0.408 0.433 0.444 0.821 0.796 0.804 0.759 0.759 0.707 0.195 0.045 0.242 0.517 0.448 0.048 20.010 0.514

Polygala alpestris 13 0.569 0.600 0.559 0.803 0.761 0.788 0.900 0.900 0.933 0.417 0.044 0.184 0.355 0.601 0.002 0.000 0.397

Polygonum

viviparum 32 0.667 0.715 0.686 0.888 0.895 0.895 0.704 0.700 0.752 0.332 0.056 0.352 0.260 0.695 0.026 20.011 0.290

Pulsatilla alpina

s.str. 10 0.257 0.444 0.251 0.758 0.707 0.711 0.634 0.634 0.644 0.154 0.203 0.121 0.522 0.285 0.013 20.009 0.712

Ranunculus alpestris 14 0.671 0.712 0.687 0.836 0.819 0.813 0.769 0.712 0.769 0.518 0.048 0.178 0.256 0.686 0.023 0.010 0.281

Ranunculus

montanus aggr. 34 0.756 0.771 0.757 0.932 0.919 0.884 0.822 0.814 0.831 0.421 0.022 0.353 0.204 0.766 0.007 0.008 0.218

Saxifraga

paniculata 14 0.355 0.356 0.425 0.817 0.697 0.820 0.715 0.685 0.869 0.186 0.025 0.201 0.588 0.340 0.081 0.047 0.532

Salix retusa 20 0.713 0.751 0.750 0.906 0.821 0.894 0.613 0.628 0.622 0.457 0.044 0.284 0.215 0.757 0.040 20.015 0.218

Saxifraga

oppositifolia 13 0.448 0.452 0.445 0.767 0.783 0.744 0.607 0.619 0.601 0.462 0.025 0.013 0.500 0.486 0.011 20.011 0.513

Saxifraga aizoides 28 0.250 0.241 0.241 0.623 0.613 0.641 0.513 0.548 0.526 0.308 0.021 0.017 0.654 0.328 0.011 20.003 0.664

Scabiosa lucida 23 0.362 0.430 0.346 0.748 0.772 0.728 0.634 0.646 0.634 0.183 0.086 0.211 0.520 0.385 0.001 0.009 0.605

Sedum atratum 11 0.189 0.306 0.248 0.683 0.742 0.713 0.522 0.625 0.598 0.144 0.137 0.086 0.634 0.229 0.075 0.000 0.696

Sesleria caerulea 31 0.623 0.645 0.616 0.877 0.846 0.841 0.569 0.621 0.574 0.368 0.034 0.283 0.315 0.623 0.003 0.028 0.346

Selaginella

selaginoides 23 0.900 0.918 0.901 0.918 0.847 0.878 0.519 0.585 0.515 0.449 0.020 0.460 0.070 0.880 0.004 0.030 0.086
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Names

Occur-

rences

R2 (Anzeindaz

data set)

AUC by cross-

validation

(Anzeindaz

data set)

AUC with the

Nant dataset

(transferability)

Variation partitioning

with GEO (R2)

Variation partitioning

with SNOW (R2)

TC GEO SNOW TC GEO SNOW TC GEO SNOW TC GEO

TC +
GEO Unexplained TC SNOW

TC +
SNOW

Un-

explained

Silene acaulis 12 0.746 0.752 0.811 0.891 0.841 0.899 0.593 0.426 0.505 0.287 0.016 0.478 0.220 0.662 0.065 0.102 0.170

Silene vulgaris s.l. 12 0.511 0.620 0.553 0.766 0.698 0.682 0.625 0.639 0.639 0.583 0.110 20.011 0.318 0.540 0.048 0.032 0.380

Soldanella alpina 31 0.603 0.650 0.645 0.871 0.873 0.872 0.704 0.688 0.688 0.313 0.058 0.309 0.319 0.656 0.049 20.033 0.328

Taraxacum

officinale aggr. 12 0.271 0.259 0.300 0.734 0.638 0.745 0.638 0.603 0.707 0.267 0.016 0.022 0.695 0.294 0.046 20.005 0.665

Thymus praecox

subsp.

polytrichus 21 0.568 0.628 0.564 0.883 0.854 0.853 0.649 0.595 0.601 0.612 0.072 20.023 0.339 0.576 0.007 0.013 0.403

Thesium alpinum 14 0.419 0.448 0.478 0.744 0.717 0.784 0.552 0.517 0.552 0.311 0.047 0.152 0.490 0.463 0.067 0.000 0.470

Thlaspi repens 25 0.600 0.596 0.596 0.904 0.829 0.868 0.794 0.803 0.815 0.512 0.012 0.108 0.368 0.621 0.007 20.001 0.373

Trollius europaeus 13 0.570 0.609 0.562 0.817 0.903 0.846 0.889 0.870 0.889 0.387 0.050 0.216 0.347 0.584 0.003 0.019 0.394

Trifolium pratense

s.str. 24 0.599 0.664 0.649 0.868 0.844 0.876 0.873 0.867 0.893 0.311 0.072 0.318 0.298 0.656 0.055 20.026 0.316

Trifolium thalii 14 0.451 0.475 0.458 0.805 0.657 0.823 0.713 0.759 0.731 0.272 0.043 0.207 0.479 0.498 0.020 20.020 0.501

Vaccinium

gaultherioides 12 0.782 0.828 0.791 0.887 0.845 0.884 NA NA NA 0.358 0.047 0.446 0.149 0.794 0.013 0.010 0.183

Vaccinium myrtillus 15 0.624 0.825 0.634 0.767 0.869 0.811 0.983 1.000 0.931 0.388 0.187 0.274 0.151 0.648 0.018 0.014 0.321

Vaccinium vitis-

idaea 10 0.705 0.751 0.714 0.861 0.865 0.826 NA NA NA 0.291 0.052 0.436 0.221 0.676 0.015 0.051 0.257

Veronica aphylla 16 0.486 0.488 0.501 0.778 0.766 0.743 0.633 0.625 0.647 0.352 0.021 0.186 0.442 0.554 0.026 20.016 0.437

Viola calcarata 14 0.469 0.501 0.468 0.846 0.835 0.803 0.536 0.607 0.512 0.178 0.049 0.317 0.456 0.436 0.012 0.059 0.492
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