

Skull identification key for Central European shorebirds (Aves: Charadriiformes: Scolopaci and Charadrii)

Authors: Schäfer, Florian, and Schmitz, Gregor

Source: Integrative Systematics: Stuttgart Contributions to Natural History, 9(1): 267-282

Published By: Stuttgart State Museum of Natural History

URL: https://doi.org/10.18476/sbna.v9.a16

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

FLORIAN SCHÄFER & GREGOR SCHMITZ

Abstract

Although the shorebirds (Charadriiformes: Scolopaci and Charadrii) are among the most thoroughly studied bird orders in Central Europe, no precise key for the identification of their skulls was available. This paper seeks to remedy this lack by presenting a dichotomous identification key for 38 species of shorebirds from Germany. Photographs and biometric measurements of the skulls are included to support the identification process.

K e y w o r d s : Aves, Charadriiformes, Charadriidae, Scolopacidae, Burhinidae, Haematopodidae, Recurvirostridae, skull morphology, identification key.

Zusammenfassung

Obwohl die Watvögel (Charadriiformes: Scolopaci und Charadrii) zu den viel beobachteten Vogelgruppen zählen, lag bisher kein präziser Bestimmungsschlüssel für die Schädel der mitteleuropäischen Arten vor. Mit der vorliegenden Arbeit wird diese Lücke geschlossen und ein dichotomer Schlüssel zur Bestimmung von 38 in Deutschland lebenden Watvogelarten vorgestellt. Zur Erleichterung der Bestimmung sind Fotos und Messdaten beigefügt.

Contents

1	Introduction	267
2	Materials and Methods	269
3	Identification key	
4	Discussion	
5	References	274

1 Introduction

Although the shorebirds (Charadriiformes: Charadriidae and Scolopacidae) are a special focus of ornithologists, an identification key for the skulls of this group still does not exist for Central Europe. As part of a graduate thesis project at the University of Konstanz (SCHÄFER 2014), the skulls of 38 German shorebird species were measured and analyzed in terms of functional anatomy and feeding behavior. Based on the underlying data and measurements, a distinction can even be made between skulls of closely related species. In this paper, we present a dichotomous identification key. In addition, we include supportive morphometric data and illustrations.

The skull of the Charadriiformes is characterised by the well-developed rhynchokinesis of its bill (HOERSCHELMANN 1970, GUSSEKLOO et al. 2001). According to this the bill is schizorhinous or – rarely – secondary holorhinous (but in Pluvianidae and Burhinidae probably primary holorhinous) (MICKOLEIT 2004).

As mentioned in ELLROTT & SCHMITZ (2010), the skull identification key presented in BROWN et al. (2003) includes general skull types and the bill-cranium-ratio and was supplemented with illustrations and some basic morphometric data. Unfortunately, the number of spec-

imens examined was not specified (except when only one specimen was available). The illustrations were not very detailed, not suited to comparing species, and some important species were missing.

JANSEN & VAN GESTEL (2009) present the following measurements on their "skullsite": total length, length, width and height of cranium, upper bill length, skull relation (total length/upper bill length). The photographs are clear and informative. Unfortunately, the measurements are taken from just one specimen in each case. In addition, despite the enormous number of species included, some Central European species are missing.

Because Germany has a good cross-section of the Central European fauna, we based our analysis on the species list in BARTHEL & HELBIG (2005), but excluded very rare species in order to keep the identification key practical (see section 2 under "Species selection").

Acknowledgements

We are grateful to Dr. DORIS MÖRIKE and CHRISTIANE ZEITLER (Stuttgart State Museum of Natural History), Dr. ELISABETH STEFAN (Osteology Department of the Baden-Württemberg State Office for Monuments and Antiquities, Konstanz) for providing specimen. Dr. BERND LEISLER (Max Planck Institute for Ornithology, Radolfzell) helped us to define measurement methods and terminology. Finally, we would like to thank ESTHER GOLLAN (medicalart, Aachen) for the illustrations Figs. 1a and 1b. **Tab. 1.** Species included in the determination key. – Nomenclature according to BAUER et al. (2005), systematic order according to DEL HOYO et al. (1992).

Scientific name	English name	German name
Charadrii		
Burhinidae		
Burhinus oedicnemus (Linnaeus, 1758)	Stone curlew	Triel
Haematopodidae		
Haematopus ostralegus Linnaeus, 1758	Eurasian oystercatcher	Austernfischer
Recurvirostridae		
Himantopus himantopus (Linnaeus, 1758)	Black-winged stilt, Common stilt	Stelzenläufer
Recurvirostra avosetta Linnaeus, 1758	Pied avocet, Eurasian avocet	Säbelschnäbler
Charadriidae		
Vanellus vanellus (Linnaeus, 1758)	Northern lapwing, Peewit	Kiebitz
Pluvialis squatarola (Linnaeus, 1758)	Grey plover, Black-bellied plover	Kiebitzregenpfeifer
Pluvialis apricaria (Linnaeus, 1758)	European golden plover	Goldregenpfeifer
Charadrius dubius Linnaeus, 1786	Little ringed plover	Flussregenpfeifer
Charadrius hiaticula (Linnaeus, 1758)	Common ringed plover	Sandregenpfeifer
Charadrius alexandrinus Linnaeus, 1758	Kentish plover	Seeregenpfeifer
Charadrius morinellus (Linnaeus, 1758)	Eurasian dotterel	Mornellregenpfeifer
Scolopaci		
Scolopacidae		
Numenius phaeopus (Linnaeus 1758)	Whimbrel	Regenbrachvogel
Numenius grauata (Linnaeus, 1758)	Eurasian curlew	Großer Brachvogel
Limosa limosa (Linnaeus, 1758)	Black-tailed godwit	Uferschnenfe
Limosa lannonica (Linnaeus, 1758)	Bar-tailed godwit	Pfuhlschnepfe
Scolopax rusticola (Linnaeus, 1758)	Eurasian woodcock	Waldschnepfe
<i>Lymnocryptes minimus</i> (Brünnich, 1764)	Jack snipe	Zwergschnepfe
Gallinago gallinago (Linnaeus, 1758)	Common snipe	Bekassine
Phalaropus lobatus (Linnaeus, 1758)	Red-necked phalarope	Odinshühnchen
Phalaropus fulicarius (Linnaeus, 1758)	Red phalarope. Grev phalarope	Thorshühnchen
Actitis hypoleucos (Linnaeus, 1758)	Common sandpiper	Flussuferläufer
Tringa erythropus (Pallas, 1764)	Spotted redshank	Dunkler Wasserläufer
Tringa totanus (Linnaeus, 1758)	Common redshank	Rotschenkel
Tringa stagnatilis (Bechstein, 1803)	Marsh sandpiper	Teichwasserläufer
Tringa nebularia (Gunnerus, 1767)	Common greenshank	Grünschenkel
Tringa ochropus Linnaeus, 1758	Green sandpiper	Waldwasserläufer
Tringa glareola Linnaeus, 1758	Wood sandpiper	Bruchwasserläufer
Philomachus pugnax (Linnaeus, 1758)	Ruff	Kampfläufer
Arenaria interpres (Linnaeus, 1758)	Turnstone	Steinwälzer
Limicola falcinellus (Pontoppidan, 1763)	Broad-billed sandpiper	Sumpfläufer
Calidris canutus (Linnaeus, 1758)	Red knot	Knutt
Calidris alba (Pallas, 1764)	Sanderling	Sanderling
Calidris minuta (Leisler, 1812)	Little stint	Zwergstrandläufer
Calidris temminckii (Leisler, 1812)	Temminck's stint	Temminckstrandläufer
Calidris melanotos (Viellot, 1819)	Pectoral sandpiper	Graubrust-Strandläufer
Calidris ferruginea (Pontoppidan, 1763)	Curlew sandpiper	Sichelstrandläufer
Calidris maritima (Brünnich, 1764)	Purple sandpiper	Meerstrandläufer
Calidris alpina (Linnaeus, 1758)	Dunlin	Alpenstrandläufer

2 Materials und Methods

Species selection

Species selection is based on BARTHEL & HELBIG (2005). From the 61 shorebird species listed in this paper, we included 38, because the others are classified as vagrants with an average of less than five records per year since 1980.

Materials

The skull material originates mainly from the NIKOLAUS Collection (Stuttgart State Museum of Natural History). We also used specimens from the SCHMITZ Collection (University of Konstanz) and the collection of the Osteology Department of the Baden-Württemberg State Office for Monuments and Antiquities (Landesdenkmalamt Baden-Württemberg – Arbeitsstelle Osteologie) in Konstanz (particularly for skulls of *Numenius phaeopus*). We requested thirteen other collections to send us specimens of shorebirds, however none were available.

Of the 38 species selected, we analyzed ten specimens each, all of which met the necessary condition, i. e. no damage that could prevent proper measuring. An effort was made to maintain a balanced sex ratio in selecting the skulls. In contrast to the Anseriformes (cf. ELLROTT & SCHMITZ 2010), shorebird skulls are less common in collections. For the following species, less than ten specimens could be included: *Burhinus oedicnemus* (9), *Numenius phaeopus* (9), *Tringa glareola* (9), *Himantopus himantopus* (8), *Calidris canutus* (8), *Actitis hypoleucos* (7), *Limicola falcinellus* (6), *Calidris temminckii* (5), *Lymnocryptes minimus* (4), *Calidris minuta* (4), *Tringa nebularia* (4), *Tringa ochropus* (4), *Phalaropus fulicarius* (3), *Tringa stagnatilis* (3), *Charadrius morinellus* (2), *Calidris melanotos* (1), *Phalaropus lobatus* (1), *Calidris maritima* (1) (see Tab. 1 for the nomenclature).

For photographic documentation, we chose those individuals that were most representative (i. e. with measurements close to mean values).

Abbreviations and measurements

The morphological terminology is based on BAUMEL & WITMER (1993), JOSEPH & STRAUCH (1978), KING & MCLELLAND (1978), and HUMMEL (2000). The skulls were measured as follows (see also Figs. 1a, 1b, Tab. 2):

Skull

TL	Total length (= upper bill length plus cranial length, i. e. the total length was not measured separately)
CL	Length of cranium: measured from a theoretical
	line between the occipital ends of the nostrils to the prominentia cerebellaris
UBL	Length of upper bill: measured from tip of upper
	bill to a theoretical line between the occipital
	ends of the nostrils
	Cranium
СН	Height of cranium
CW	Width of cranium: measured behind postorbital process
OD	Diameter of orbita: measured from base of post-
	orbital process to base of lacrimal
SC	
30	Salt gland depressions: present ("yes") or absent ("no")

rowest extent

- Upper bill
- BTS
 Upper bill tip: protruding (cf. Fig. 6) "yes" or "no"

 HC
 Pits of Herbst corpuscles: present ("yes") or absent ("no")

 NL
 Length of nostril opening

 PL
 Length of premaxillar: measured from tip of
 - upper bill to rostral end of nostril
- UBS Shape of upper bill (see lateral view): divided into three categories: "straight", "curved down" or "curved up"

Lower bill

LBH Height of lower bill (in the region of the angulus mandibulae) LBL Length of lower bill

3 Identification key

The complete data set for all 38 species is presented in Tab. 2.

1	Upper bill length and cranial length almost equal (CL : UBL
	$= \max(1, 1, 1, 1).$
2	TI > 75 mm no supraoccipital foramina diameter of orbita
-	>22 mm (Fig. 48)
	(Burhinidae) only Burhinus oedicnemus
_	TL <75 mm, 2 supraoccipital foramina, diameter of orbita
	<22 mm
3	Orbital edges at the supraorbital isthmus parallel (Fig. 2),
	orbit edge never enlarged (Fig. 37), without distinct depres-
	sions of the salt glands Arenaria interpres
-	Orbital edges at the supraorbital isthmus concave (dorsal
	view) and dorsally conspicuously enlarged (Fig. 3), often
	with distinct depressions of the salt glands(Charadriidae) 4
4	Supraorbital isthmus with 2 distinct depressions of the salt
	glands (Fig. 4)
-	Supraorbital isthmus without distinct depression of the salt
_	glands (Figs. 3, 5)
3	$1L \leq 60 \text{ mm}$.
6	IL > 60 mm (Fig. 16) (vanellinae) only <i>vanellus vanellus</i> Prefrontale congniqueusly congreted from the frontale (der
U	sal orbit edge) (Figs 3 20) Charadrius alaxandrinus
_	Prefrontale and frontale fused (cf Fig 5) 7
7	TL > 48 mm (Fig. 14).
_	TL <45 mm
8	Dorsal orbit edge conspicuously enlarged, depression of
	the salt glands distinct, upper bill tip relatively solid, CW
	>15mm, OD > 12 mm (Fig. 19) Charadrius hiaticula
_	Dorsal orbit edge slightly enlarged, depression of the salt
	glands less distinct, upper bill tip slender, CW < 15mm, OD
	< 12 mm (Fig. 18) <i>Charadrius dubius</i>
9	Lateral edge of the prefrontale and frontale fused or at least
	in the same alignment (Fig. 5), UBL $< 32 \text{ mm}$ (Fig. 15)
	Pluvialis apricaria
	Lateral edge of the prefrontate separated from the frontate (of Fig. 2) LIPL $> 22 \text{ mm}$ (Fig. 17)
10	Ventral orbit edge closed i e fusion between lacrimal and
10	nostorbital process (Fig. 6)
_	Ventral orbit edge not closed (Fig. 7)
11	Cranium massive (CH $> 22 \text{ mm}$, CW $> 22 \text{ mm}$, SOW
	>9 mm), rostral part of upper bill laterally not enlarged
	(Fig 25) Scolongy rusticola
	(112.23)

Fig. 1a. Detailed morphological terminology of a shorebird skull (*Tringa totanus*), in dorsal, lateral and ventral views (not all terms are used in the text). – [dn] dental/angular with [dnam] angulus mandibulae; [ec] ectethmoid; [fic] fissura craniofacialis; [fom] foramen magnum; [fr] frontal; [jq] jugal/quadratojugal; [la] lacrimal; [mx] maxillar; [na] nasal with [nadb] dorsal bar and [navb] ventral bar; [nos] nostril; [oc] occipital; [orb] orbita; [pcb] prominetia cerebellaris; [pfr] prefrontal; [pl] palatine; [pmx] premaxillar with [pmxdb] dorsal bar and [pmxvb] ventral bar; [pa] parietal; [pt] pterygoid; [qd] quadrate; [sn] sphenoidal; [sfo] supraoccipital foramina; [tp] temporal with [tppp] postorbital process and [tpsp] suprameatic process.

Fig. 1b. Measurements of a shorebird skull (Tringa totanus); definitions and abbreviations see section 2.

Figs. 2–13. Details of shorebird skulls. – 2. Arenaria interpres, dorsal view. 3. Charadrius alexandrinus, dorsal view. 4. Vanellus vanellus, dorsal view. 5. Pluvialis apricaria, dorsal view. 6. Scolopax rusticola, lateral view. 7. Tringa totanus, lateral view. 8. Bill tips in lateral and dorsal views of (a) Limosa limosa and (b) L. lapponica. 9. Transversal cross section of the supraorbital isthmus of (a) Limosa limosa and (b) L. lapponica. 10. Calidris canutus, dorsal view. 11. Bill in lateral and dorsal views of (a) Limicola falcinellus and (b) Calidris sp. 12. Postorbital process in caudo-lateral view of (a) Calidris maritima and (b) C. ferruginea. 13. Lacrimal, orbital view, of (a) Tringa glareola and (b) T. ochropus. – Arrows indicate important characteristics (see text).

-	Cranium smaller (CH < 17 mm, CW < 17 mm, SOW < 7 mm), rostral part of upper bill lateral slightly enlarged laterally
12 -	TL > 75 mm, UBL > 55 mm (Fig. 26) <i>Gallinago gallinago</i> TL < 75 mm, UBL < 55 mm (Fig. 27)
13	<i>Lymnocryptes minimus</i> TL > 100 mm
_	TL < 100 mm
14	Rostral half of bill curved down
15	TL > 150 mm (Fig. 21) $Numenius arguata$
_	TL < 150 mm (Fig. 22)Numenius phaeopus
16	Bill straight, bill tip cap-shaped (Fig. 8a), supraorbital isth-
	mus V-shaped (Figs. 9a, 23) Limosa limosa
-	Bill straight or slightly curved up, tip of bill flat (Fig. 8b), supraorbital isthmus W-shaped (Figs. 9b. 24)
	Limosa lapponica
17	CW < 22 mm
-	CW > 22 mm (Fig. 45).
10	
10	Lacrimal planar 2-dimensional 20
19	Bill conspicuously up-curved, distinct processus prefron-
	tale (Fig. 46)
-	Bill straight, no distinct processsus prefrontale, prefrontale
20	and frontale fused (Fig. 4/)
20	(Figs 10 11b) bill tip short (PL ≤ 0.25 UBL) distinct Herbst
	corpuscles
_	Other combination of characters
21	Rostral half of nostrils differing from apical half by narrow
	slit shape, center of frontal-nasal hinge with a distinct trans-
	<i>Limicola falcinellus</i>
_	Nostrals consistently tapering towards bill tip, no distinct
	transversal dorsal indentation in center of frontal hinge
22	(Fig. 11b)
22	(Fig. 36)
_	CL <23 mm, prominetia cerebellaris not salient/prominent
	(Figs. 28–35)(Calidris) 23
23	TL < 40 mm
24	Bill tip slightly spoon-shaped (cf Fig 10) (Fig 30)
	<i>Calidris minuta</i>
_	Bill tip not widened, consistently tapering towards bill tip
25	(Fig. 31)
25	Bill slightly curved down (Figs 32–34) [The hill tin dista]
	of the rostral bending-zone can be shaped up or down; there-
	fore it is helpful to take the lower bill shape also into consid-
•	eration]
26	CW > 15 mm, CH > 14 mm, OD > 11 mm (Fig. 28)
_	CW < 15 mm. CH < 14 mm. OD < 10 mm
27	UBL > 35 mm (Fig. 35)
_	UBL < 32 mm (Fig. 29). <i>Calidris alba</i>
28	NL < 30 mm (Fig. 32) <i>Calidris melanotos</i>
- 29	NL > 52 Inff. 29 Postorbital process elongated (Figs. 12a, 34)
	<i>Calidris maritima</i>
_	Postorbital process relatively short (Figs. 12b, 33)
	Calidris ferruginea

30	TL > 50 mm, bill tip elongated and solid (PL > 11 mm)
_	TL < 50 mm, bill tip usually short, if elongated upper bill
	conspicuously dorso-ventrally flattened
31	TL > 81 mm
_	TL < 74 mm
32	Rostral fourth of bill tip (PL) conspicuously curved down,
	PL > 0.6 UBL (Fig. 39)
_	Rostral bill slightly curved up, $PL \pm 0.5 \text{ UBL}$ (Fig. 42)
	Tringa nebularia
33	TL > 66 mm 34
_	TL <63 mm 35
34	CW > 16 mm dorsal edge of lower bill extremely straight
• •	(Fig 40) Tringa totanus
_	CW < 15 mm dorsal edge of lower hill slightly un-curved
	(Fig 41) <i>Tringa stagnatilis</i>
35	NI < 19 mm interspace between lacrimal and processus
00	nrefrontale + oval (Figs 13a 44) Tringa glareola
_	NI > 23 mm interspace between lacrimal and processus
	nrefrontale slit-shaped (Figs 13h 43) Tringa achronus
36	Bill broad conspicuously flattened (Fig. 50)
50	Dhalaronus fulicarius
	Dill parrow not flattened
27	Bill finite (TL ≤ 42 mm (TL ≤ 17 mm) hill tip outromaly
31	Skull tiny (1L <45 mm, CL <17 mm), bill tip extremely
	pointed (Fig. 49)
-	Skull larger ($1L > 40$ mm, $CL > 18$ mm), bill tip not extremely
	pointed (Fig. 51)Actitis hypoleucos

4 Discussion

If indicated for a given specimen, an effort was made to maintain a balanced sex ratio in selecting the skulls. One noticeable sexual dimorphism in skulls has been identified for the genus Numenius (cf. GLUTZ VON BLOTZHEIM et al. 1986). In this case, the crania of the females are larger on average (CW and CH), and they tend to have longer bills (UBL) than the males. However, because the smallest skull of the larger species (Numenius arquata) was still larger than the largest skull of the smaller species (Numenius phaeopus), this sexual dimorphism was irrelevant in terms of identification. A sexual dimorphism has likewise been reported for the related genus Limosa (GLUTZ VON BLOTZHEIM et al. 1986), but is less pronounced. Although the skulls of Limosa limosa and L. lapponica overlap morphometrically, other characteristics can be used to distinguish between these two species.

Species in the genera *Calidris* and *Charadrius* are not easily distinguishable. The smaller *Calidris* species, as well as *Charadrius dubius* and *Ch. hiaticula* can best be distinguished using a combination of morphometric data. Skulls of *Ch. dubius* are generally larger than those of *Ch. hiaticula*, but a more precise distinction still is difficult.

Lateral extensions on the basal end of the fronto-nasal hinge were identified as taxonomically relevant structures. However, their morphological function has yet to be determined. This characteristic appears in all the *Calidris* species included in this study, but also in *Philomachus* and *Limicola*. The idea that *Limicola* is closely related to *Calidris* is further evidenced by the similarities in the behaviour and habits of the two genera. Our morphological analysis of the skulls supports the theory (GLUTZ VON BLOTZHEIM et al. 1999, JOSEPH & STRAUCH 1978) that even though *Philomachus* is similar in its habits to the shanks and tattlers (*Tringa*), it more probably is related to *Calidris*.

5 References

- BARTHEL, P. H. & HELBIG, A. J. (2005): Artenliste der Vögel Deutschlands. Limicola 19: 89–111.
- BAUER, H.-G., BEZZEL, E. & FIEDLER, W. (eds.) (2005): Das Kompendium der Vögel Mitteleuropas. Alles über Biologie, Gefährdung und Schutz, Vol. 1 Nonpasseriformes – Nichtsperlingsvögel, 808 pp.; Wiesbaden (Aula).

Tab. 2. Skull measurements (in mm) of 38 Central European shorebird species (max = maximum, \emptyset = mean, min = minimum, SD = standard deviation). For abbreviations see section 2 and Fig. 1b.

			Skull		Cranium							Lower bill				
Species		TL	CL	UBL	СН	CW	OD	SOW	SG	NL	PL	UBS	BTS	HC	LBL	LBH
<i>Burhinus</i> <i>oedicnemus</i> n=9	max Ø min SD	86.6 82.5 76.5 11.0	42.1 41.0 38.7 1.6	44.8 41.5 37.8 5.8	26.3 24.4 22.7 1.2	30.5 29.5 28.2 0.6	25.7 24.3 21.9 1.6	15.2 13.6 12.1 0.9	yes	24.9 22.4 19.4 3.0	22.2 19.1 14.6 4.6	straight	no	no	70.0 65.9 63.4 6.5	7.2 6.8 6.1 0.2
Pluvialis squatarola n=10	max Ø min SD	68.9 66.7 63.8 2.7	32.1 31.3 30.5 0.4	37.4 35.4 32.9 2.4	21.2 20.5 19.9 0.2	22.6 22.0 21.1 0.2	20.1 19.6 19.1 0.1	11.2 9.1 7.8 1.0	yes	24.6 22.8 20.2 1.7	13.8 12.6 10.1 1.4	straight	no	no	53.7 51.1 47.7 3.3	5.8 5.5 5.1 0.1
Vanellus vanellus n=10	max Ø min SD	67.9 63.3 60.7 3.8	31.5 29.7 29.1 0.6	36.4 33.6 31.4 1.9	20.6 20.1 19.5 0.1	22.0 21.1 20.4 0.3	18.6 18.3 17.5 0.1	12.5 11.1 9.3 1.2	yes	28.9 25.9 24.4 1.9	9.1 7.7 6.1 0.7	straight	no	no	47.9 46.1 44.3 1.8	5.8 5.1 4.7 0.1
<i>Pluvialis</i> <i>apricaria</i> n = 10	max Ø min SD	61.9 59.1 57.4 1.9	30.8 29.2 28.1 0.7	31.1 29.9 29.0 0.4	20.1 19.5 18.6 0.2	21.6 20.7 19.6 0.6	19.7 18.9 17.9 0.3	11.0 9.8 8.8 0.5	yes	23.3 21.9 19.1 2.5	10.8 8.0 6.7 2.1	straight	no	no	46.5 43.9 40.9 2.7	5.2 4.5 3.7 0.2
Charadrius morinellus n=2	max Ø min SD	51.1 50.5 49.5 1.8	26.7 26.2 25.7 0.5	25.7 24.3 22.8 4.2	17.5 17.4 17.3 0.0	17.6 17.5 17.4 0.0	16.0 15.4 14.8 0.7	8.3 7.7 7.0 0.8	yes	19.0 17.8 16.6 2.9	6.7 6.5 6.2 0.1	straight	no	no	36.0 35.5 35.0 0.5	3.3 3.3 3.3 0.0
<i>Charadrius</i> <i>hiaticula</i> n=10	max Ø min SD	43.8 40.0 37.2 3.9	22.7 21.5 20.1 0.7	21.1 18.5 17.1 1.6	14.9 14.1 13.6 0.2	16.6 15.9 15.0 0.2	13.8 13.2 12.2 0.3	8.0 6.6 5.5 0.7	yes	16.2 13.8 12.4 1.5	5.0 4.7 4.0 0.1	straight	no	no	31.2 28.1 26.0 2.5	3.1 2.7 2.5 0.0
<i>Charadrius</i> <i>alexandrinus</i> n = 10	max Ø min SD	40.9 39.6 38.6 0.6	21.3 20.5 19.7 0.2	20.0 19.1 18.5 0.3	13.7 13.2 12.9 0.1	15.7 15.3 14.7 0.1	14.0 13.3 12.0 0.3	5.4 4.6 3.7 0.4	yes	14.7 13.7 12.6 0.5	6.0 5.4 4.7 0.2	straight	no	no	29.8 28.6 27.1 0.6	3.0 2.5 2.3 0.0
<i>Charadrius</i> <i>dubius</i> n = 10	max Ø min SD	37.8 36.9 36.0 0.4	19.8 19.2 18.0 0.3	18.4 17.7 16.8 0.3	13.0 12.5 12.0 0.1	14.2 13.7 13.1 0.2	11.6 11.2 10.5 0.1	6.4 4.8 3.6 0.6	yes	14.0 12.9 11.6 0.6	6.5 4.8 4.0 0.6	straight	no	no	26.8 25.5 24.0 0.9	2.8 2.7 2.5 0.0
Recurvirostra avosetta n = 10	max Ø min SD	115.6 109.1 102.9 18.3	27.3 26.1 25.3 0.5	89.4 83.0 77.6 14.5	19.5 18.1 17.2 0.4	20.5 19.1 18.0 0.5	14.5 13.6 12.5 0.3	10.0 7.5 5.4 1.9	yes	36.3 34.8 32.0 2.4	53.7 48.2 42.3 13.2	curved up	no	no	104.0 97.7 90.1 17.8	4.7 4.3 4.0 0.1
Haematopus ostralegus n=10	max Ø min SD	115.0 106.1 95.0 35.9	35.6 33.4 32.0 1.5	82.5 72.7 61.8 36.7	25.7 24.6 23.3 0.6	26.3 24.7 23.7 0.7	19.7 19.0 18.5 0.1	12.1 10.5 9.4 0.8	yes	52.5 46.4 34.9 25.6	30.0 26.3 19.6 8.8	slightly curved up	no	no	101.0 91.2 78.6 42.7	8.0 7.5 6.5 0.2

			Skull		Cranium							Lower bill				
Species		TL	CL	UBL	СН	CW	OD	SOW	SG	NL	PL	UBS	BTS	HC	LBL	LBH
Himantopus himantopus	max Ø	104.2 97.5	29.0 27.8	75.5 69.7	19.2 18.3	20.3 19.8	17.5 16.5	9.5 8.9	yes	39.4 36.9	36.7 32.8	straight	no	no	90.6 85.8	4.3 4.1
n=8	min SD	91.0 17.1	26.2 1.0	63.3 17.2	17.4 0.4	18.9 0.2	15.7 0.4	8.2 0.2		33.1 4.4	25.6 15.0				82.5 7.5	3.9 0.0
Numenius arquata	max Ø	219.0 195.9	38.5 36.5	181.0 159.4	26.8 25.5	26.2 25.1	21.7 19.4	14.0 11.1	yes	168.0 141.5	30.0 17.9	curved down	yes	yes	196.0 173.8	9.4 8.1
n=10	min SD	164.2 240.9	31.2 4.8	133.0 188.5	21.0 2.8	20.5 2.9	15.1 3.3	6.3 4.4		118.0 263.2	13.0 33.4				146.0 183.3	3.0 3.5
Limosa lapponica	max Ø	142.4 129.5	29.9 28.5	113.0 101.0	19.6 18.6	21.5 20.5	16.6 15.4	7.1 6.5	no	105.0 93.5	10.0 7.5	straight	yes	yes	124.0 114.2	5.1 4.7
n-10	SD	111.5	20.3 0.9	85.0 107.5	0.3	0.4	0.6	0.5		116.3	2.3				98.0 93.3	4.3 0.1
Limosa limosa	max Ø	149.1 129.3	30.5 28.3	121.0 101.0	20.1 19.2	20.5 19.8	15.1 14.5	8.2 7.6	no	114.0 94.2	9.0 6.8	slightly curved	slightly	yes	129.0 111.8	5.4 4.9
n=10	min SD	115.3 89.2	27.3 1.0	87.5 90.8	18.1 0.4	18.8 0.3	13.4 0.3	7.1 0.1		81.1 90.6	5.2 1.3	up			100.4 88.9	4.1 0.1
Numenius phaeopus	max Ø	131.3 127.4	34.1 33.4	97.0 94.0	24.5 22.2	23.6 22.2	20.2 19.3	7.1 6.5	yes	85.2 82.3	12.6 11.7	curved down	yes	yes	117.5 99.4	7.6 6.7
n=9	min SD	122.3	32.6 0.4	89.7 13.3	21.2 2.4	20.6 1.5	0.5	5.8 0.3		79.6 9.7	10.1				88.1 163.8	6.0 0.6
Scolopax rusticola	max Ø	119.6 112.9	30.6 28.9	89.0 84.0	24.3 23.3	23.9 23.0	17.9 17.0	12.5 10.6	no	78.0 72.7	13.0 11.3	straight	yes	yes	94.0 88.4	5.2 4.6
n=10	min SD	104.5 17.9	0.8	76.0 16.0	0.5	0.3	0.5	9.3		66.0 13.1	0.9				82.0 14.9	4.2 0.1
Gallinago gallinago	max Ø	100.3 94.8	23.1 22.2	78.7 72.6	16.6 15.7	16.9 16.4	12.2 11.4	6.4 5.5	no	65.3 61.5	13.6 11.1	straight	yes	yes	87.4 79.5	3.0 2.7
n=10	SD	87.6	0.3	65.6 17.9	0.2	0.1	0.2	5.0 0.2		57.4 9.6	8.2 3.4				69.3.2 4.6	2.5 0.0
Lymnocryptes minimus	max Ø	69.6 68.2	20.9 19.8	49.0 48.4	14.4 13.9	15.0 14.3	10.1 9.8	4.5 3.8	no	42.4 41.1	8.4 7.3	straight	yes	yes	54.7 52.2	3.2 3.0
11-4	SD	2.1	18.0	47.9 0.2	0.3	0.5	9.4 0.1	0.3		1.4	1.7				2.9	0.0
Actitis hypoleucos	max Ø	49.8 48.7	20.9 19.8	29.9 28.9	13.6 13.0	13.9 13.3	11.7 10.7	3.4 2.8 2.4	no	25.4 23.7	6.9 5.2	straight	yes	yes	39.2 38.4	3.0 2.7
	SD	0.5	0.5	0.3	0.2	0.1	0.3	0.2		22.0	2.2	1.			0.8	0.0
fulicarius	Ø min	47.2 45.7 44.8	18.0 17.7	29.8 28.0 27.1	12.0 11.6 11.3	12.0 11.8	9.6 9.4 9.2	2.6 2.5 2.5	no	25.1 23.3 21.8	5.5 4.7 4.1	straight	no	yes	38.7 36.4 34.6	2.7 2.6
Dhalayopus	SD	1.7	0.1	2.3	0.1	0.1	0.0	0.0		2.8	0.4	atraight			4.4	0.0
<i>lobatus</i> n=1	ø	41.4	15.4	26.0	10.6	10.9	8.2	1.5	110	22.0	4.0	straight	110	yes	33.5	1.8
Tringa erythropus	max Ø	94.5 88.7	26.0 25.3	68.6 63.4	16.9 16.3	17.8 16.9	13.9 13.3	6.2 5.4	no	25.4 23.3	45.2 40.1	straight	no	yes	82.6 77 .2	4.5 4.1
n=10	min SD	82.8 13.9	24.2 0.3	57.0 12.2	15.6 0.1	16.4 0.2	12.2 0.2	4.5 0.2		21.8 1.4	34.4 9.3				71.0 12.2	3.4 0.1
Tringa nebularia	max Ø	92.0 87.0	27.5 27.1	64.5 59.9	18.0 17.5	18.6 18.2	15.7 15.2	5.7 5.1	no	35.6 30.6	33.3 29.3	slightly curved	no	yes	79.3 75.4	5.2 5.0
n=4	min SD	81.9 18.2	26.5 0.2	55.4 15.3	17.0 0.2	17.7 0.1	14.6 0.2	4.4 0.4		25.4 17.6	22.8 21.0	up			72.7 9.0	4.8 0.0
Tringa totanus	max Ø	73.7 71.4	25.2 24.5	48.7 46.9	16.9 16.3	17.2 16.8	14.0 13.1	4.7 4.2	no	29.1 27.0	21.4 19.9	straight	no	yes	62.0 59.4	4.4 4.0
n = 10	min SD	67.3 3.6	22.3 0.7	44.7 2.0	14.7 0.4	16.2 0.1	12.3 0.3	3.9 0.1		25.0 1.8	17.7 1.3				57.8 1.8	3.6 0.1

			Skull		Cranium							Lower bill				
Species		TL	CL	UBL	СН	CW	OD	SOW	SG	NL	PL	UBS	BTS	HC	LBL	LBH
<i>Tringa</i> <i>stagnatilis</i> n=3	max Ø min SD	72.5 68.6 66.0 11.7	20.8 20.7 20.6 0.0	51.8 47.9 45.2 11.9	13.9 13.6 13.2 0.1	14.4 14.1 14.0 0.1	11.2 11.0 10.9 0.0	3.3 3.0 2.6 0.1	no	28.8 27.1 24.9 4.0	23.0 20.8 17.5 8.5	straight	no	yes	61.0 57.9 55.3 8.4	2.8 2.7 2.6 0.0
<i>Tringa</i> <i>ochropus</i> n=4	max Ø min SD	62.4 59.5 56.5 6.0	21.8 21.1 20.7 0.2	40.6 38.4 35.5 4.7	14.3 13.9 13.2 0.2	14.6 14.4 14.2 0.0	12.1 11.5 11.2 0.2	4.0 3.8 3.6 0.0	no	26.3 25.3 23.8 1.3	14.3 13.1 11.7 1.1	straight	no	yes	53.2 49.0 45.6 9.9	3.2 2.9 2.6 0.1
<i>Tringa</i> <i>glareola</i> n=9	max Ø min SD	56.5 54.4 51.8 2.5	22.0 21.5 21.1 0.1	34.5 33.0 30.6 2.0	14.4 14.0 13.4 0.1	15.0 14.4 13.8 0.2	12.7 11.8 10.7 0.6	4.5 3.9 3.0 0.2	no	18.3 17.4 16.4 0.5	16.7 15.6 13.2 1.2	straight	no	yes	46.1 44.5 42.6 1.5	3.2 2.9 2.7 0.0
Philomachus pugnax n=10	max Ø min SD	70.5 65.9 58.9 21.3	26.8 25.3 23.0 2.9	44.0 40.6 35.7 9.2	17.1 16.2 15.1 0.4	18.0 17.0 15.8 0.8	14.3 13.0 11.8 0.7	5.6 4.4 3.3 0.7	no	35.8 32.6 28.2 6.0	9.4 8.0 6.00 1.0	slightly curved down	yes	yes	58.3 54.1 46.6 20.3	4.8 3.9 3.3 0.2
Calidris maritima n=1	ø	62.9	21.5	41.4	14.0	15.2	10.2	2.8	no	34.1	7.3	curved down	yes	yes	51.0	2.9
<i>Calidris</i> <i>ferruginea</i> n=10	max Ø min SD	65.5 61.3 55.1 9.3	19.5 18.9 18.2 0.2	46.3 42.4 36.2 9.0	13.3 12.8 12.2 0.1	14.6 14.1 13.6 0.1	10.2 9.9 9.3 0.1	4.0 3.2 2.4 0.2	no	40.5 36.9 32.1 7.9	7.0 5.5 4.1 0.6	curved down	yes	yes	53.5 49.6 44.1 7.8	3.4 3.1 2.8 0.1
Calidris canutus n=8	max Ø min SD	62.1 60.3 54.5 6.3	23.2 22.5 21.9 0.2	40.2 37.8 32.0 7.3	15.5 15.1 14.7 0.1	16.7 16.5 16.0 0.1	12.7 12.1 11.4 0.2	4.2 3.8 3.3 0.1	no	34.2 32.1 26.0 7.7	6.4 5.7 5.1 0.2	straight	yes	yes	52.0 47.8 42.9 9.4	3.9 3.6 3.4 0.0
<i>Calidris</i> <i>alpina</i> n=10	max Ø min SD	60.4 57.4 55.5 2.5	19.2 18.7 17.7 0.2	41.6 38.7 36.6 2.6	13.2 12.7 12.3 0.1	14.4 14.0 13.8 0.0	9.5 9.1 8.5 0.1	3.3 3.0 2.5 0.1	no	36.6 34.0 32.2 2.9	5.5 4.7 4.1 0.2	straight	yes	yes	49.1 45.3 43.2 3.7	3.2 2.8 2.5 0.1
Calidris melanotos n=1	ø	56.6	21.5	35.1	14.4	15.0	10.0	2.9	no	29.6	5.5	curved down	yes	yes	44.4	3.0
<i>Limicola</i> <i>falcinellus</i> n=6	max Ø min SD	56.1 52.6 50.3 5.4	18.4 17.6 16.9 0.3	38.3 35.0 32.8 4.0	12.1 11.7 11.2 0.1	13.6 13.1 12.5 0.2	10.3 9.3 8.5 0.4	2.9 2.7 2.5 0.0	no	34.1 31.8 29.7 3.0	4.2 3.2 2.5 0.4	straight	yes	yes	47.1 43.8 41.0 5.3	3.4 3.2 2.5 0.4
<i>Calidris</i> <i>alba</i> n=10	max Ø min SD	50.7 48.6 46.8 1.9	20.2 19.0 18.4 0.2	31.4 29.6 28.1 1.1	13.2 12.8 12.6 0.1	14.9 14.6 14.1 0.1	11.1 10.4 10.0 0.2	3.2 2.9 2.6 0.0	no	25.2 23.6 22.2 0.8	6.7 6.0 5.5 0.1	straight	yes	yes	39.8 38.4 36.5 1.6	3.4 2.9 2.6 0.1
Arenaria interpres n=10	max Ø min SD	49.0 46.9 44.8 1.7	23.6 23.0 22.3 0.2	25.9 23.9 22.0 1.3	15.9 15.3 15.0 0.1	17.2 16.9 16.7 0.0	13.2 12.6 11.7 0.2	4.5 4.0 3.5 0.1	no	17.7 15.5 14.2 1.2	9.4 8.4 7.8 0.2	straight	yes	no	37.6 36.3 33.4 1.6	4.1 3.8 3.2 0.1
<i>Calidris</i> <i>temminckii</i> n=5	max Ø min SD	39.1 37.9 35.8 2.5	16.7 16.3 15.6 0.2	22.5 21.6 20.2 1.5	10.9 10.6 10.3 0.1	11.9 11.5 10.7 0.2	8.4 8.1 7.8 0.1	2.4 2.2 2.0 0.0	no	18.8 17.7 16.3 1.0	4.5 3.9 3.2 0.3	straight	yes	yes	28.8 27.6 26.0 1.4	2.2 2.0 1.8 0.0
<i>Calidris</i> <i>minuta</i> n=4	max Ø min SD	39.8 37.7 36.8 2.0	16.1 15.7 15.5 0.1	23.9 22.0 20.8 1.9	10.7 10.6 10.4 0.0	12.0 11.7 11.2 0.1	8.9 8.2 7.4 0.4	2.4 2.0 1.8 0.1	no	20.0 17.8 16.1 2.7	4.7 4.2 3.9 0.1	straight	yes	yes	30.9 28.6 27.5 2.5	2.3 2.2 2.2 0.0

Figs. 14–20. Skulls of Charadriidae, lateral view. – 14. *Charadrius morinellus*. 15. *Pluvialis apricaria*. 16. *Vanellus vanellus*. 17. *Pluvialis squatarola*. 18. *Charadrius dubius*. 19. *Ch. hiaticula*. 20. *Ch. alexandrinus*.

Figs. 21–27. Skulls of *Numenius*, *Limosa* and snipes, lateral view. – 21. *Numenius arquata*. 22. *N. phaeopus*. 23. *Limosa limosa*. 24. *L. lapponica*. 25. *Scolopax rusticola*. 26. *Gallinago gallinago*. 27. *Lymnocryptes minimus*.

Figs. 28–38. Skulls of various sandpipers, lateral view. – 28. Calidris canutus. 29. C. alba. 30. C. minuta. 31. C. temminckii. 32. C. melanotus. 33. C. ferruginea. 34. C. maritima. 35. C. alpina. 36. Philomachus pugnax. 37. Arenaria interpres. 38. Limicola falcinellus.

Figs. 39–44. Skulls of Tringa, lateral view. – 39. Tringa erythropus. 40. T. totanus. 41. T. stagnatilis. 42. T. nebularia. 43. T. ochropus. 44. T. glareola.

Figs. 45–51. Skulls of Haematopodidae, Recurvirostridae, Burhinidae, *Phalaropus* and *Actitis*, lateral view. 45. *Haematopus* ostralegus. 46. *Recurvirostra avosetta*. 47. *Himantopus himantopus*. 48. *Burhinus oedicnemus*. 49. *Phalaropus lobatus*. 50. *P. fulicarius*. 51. *Actitis hypoleucos*.

- BAUMEL, J. J. & WITMER, L. M. (1993): Osteologia. In: BAUMEL, J. J., KING, A. S., BREAZILE, J. E., EVANS, H. E. & VANDEN BERGE, J. C. (eds.): Handbook of Avian Anatomy – Nomina Anatomica Avium, 2nd edition, pp. 45–132; Cambridge, Massachusetts (Nuttall Ornithological Club).
- BROWN, R., FERGUSON, J., LAWRENCE, M. & LEEDS, D. (2003): Federn, Spuren und Zeichen der Vögel Europas – Ein Feldführer, 3rd edition, 336 pp.; Wiebelsheim (Aula).
- DEL HOYO, J., ELLIOT, A. & SARGATAL, J. (eds.) (1992): Handbook of the Birds of the World, Vol. 3. Hoatzin to Auks, 821 pp.; Barcelona (Lynx Edicions).
- ELLROTT, C. & SCHMITZ, G. (2010): Skull identification key of Central European waterfowl (Aves: Anseriformes: Anatidae). – Stuttgarter Beiträge zur. Naturkunde, Neue Serie 3: 347–362.
- GLUTZ VON BLOTZHEIM, U., BAUER, K. & BEZZEL, E. (1986): Handbuch der Vögel Mitteleuropas, Bd. 7. Charadriiformes (2. Teil), 3. Auflage, 839 pp.; Wiesbaden (Aula).
- GLUTZ VON BLOTZHEIM, U., BAUER, K. & BEZZEL, E. (1999): Handbuch der Vögel Mitteleuropas, Bd. 6. Charadriiformes (1. Teil), 3. Auflage, 839 pp.; Wiesbaden (Aula).
- GUSSEKLOO, S. W. S., VOSSELMAN, M. G. & BOUT, R. G. (2001): Three-dimensional kinematics of skeletal elements in avian

prokinetic and rhynchokinetic skulls determined by roentgen stereophotogrammetry. – Journal of Experimental Biology **204**: 1735–1744.

- HOERSCHELMANN, H. (1970): Schnabelform und Nahrungserwerb bei Schnepfenvögeln (Charadriidae und Scolopacidae). – Zoologischer Anzeiger 184: 302–327.
- HUMMEL, G. (2000): Anatomie und Physiologie der Vögel, 320 pp.; Stuttgart (E. Ulmer).

JANSEN, J. & VAN GESTEL, W. (2009): Skullsite. www.skullsite.com.

- JOSEPH, G. & STRAUCH, J. (1978): The phylogeny of the Charadriiformes (Aves): a new estimate using the method of character compatibility analysis. – Transactions of the Zoological Society of London 34: 263–345.
- KING, A. S. & MCLELLAND, J. (1978): Anatomie der Vögel. Grundzüge und vergleichende Aspekte, 231 pp.; Stuttgart (E. Ulmer).
- MICKOLEIT, G. (2004): Phylogenetische Systematik der Wirbeltiere, 671 pp.; München (Friedrich Pfeil).
- SCHÄFER, F. (2014): Vergleichende Schädelanatomie der Limikolen (Charadriidae und Scolopacidae) –funktionsmorphologische und taxonomische Aspekte. – Graduate thesis, University of Konstanz, Biology Department, 68 pp.

Authors' addresses:

FLORIAN SCHÄFER, Bundesallee 190, 10717 Berlin, Germany; e-mail: florian.schaefer.mail@web.de

Dr. GREGOR SCHMITZ (corresponding author), Botanischer Garten, Universität Konstanz, 78457 Konstanz, Germany; e-mail: gregor.schmitz@uni-konstanz.de

Manuscript received: 7.V.2015, accepted: 11.XI.2015.