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Abstract. Temperature is a primary driver of the structure and function of stream ecosystems. However,
the lack of stream temperature (ST) data for the vast majority of streams and rivers severely compromises
our ability to describe patterns of thermal variation among streams, test hypotheses regarding the effects of
temperature on macroecological patterns, and assess the effects of altered STs on ecological resources. Our
goal was to develop empirical models that could: 1) quantify the effects of stream and watershed alteration
(SWA) on STs, and 2) accurately and precisely predict natural (i.e., reference condition) STs in
conterminous USA streams and rivers. We modeled 3 ecologically important elements of the thermal
regime: mean summer, mean winter, and mean annual ST. To build reference-condition models (RCMs),
we used daily mean ST data obtained from several thousand US Geological Survey temperature sites
distributed across the conterminous USA and iteratively modeled ST with Random Forests to identify sites
in reference condition. We first created a set of dirty models (DMs) that related STs to both natural factors
(e.g., climate, watershed area, topography) and measures of SWA, i.e., reservoirs, urbanization, and
agriculture. The 3 models performed well (r2

= 0.84–0.94, residual mean square error [RMSE] = 1.2–2.0uC).
For each DM, we used partial dependence plots to identify SWA thresholds below which response in ST
was minimal. We then used data from only the sites with upstream SWA below these thresholds to build
RCMs with only natural factors as predictors (r2

= 0.87–0.95, RMSE = 1.1–1.9uC). Use of only reference-
quality sites caused RCMs to suffer modest loss of predictor space and spatial coverage, but this loss was
associated with parts of ST response curves that were flat and, therefore, not responsive to further variation
in predictor space. We then compared predictions made with the RCMs to predictions made with the DMs
with SWA set to 0. For most DMs, setting SWAs to 0 resulted in biased estimates of thermal reference
condition.

Key words: agriculture, dams, land use, modeling, prediction, Random Forests, reference condition,
reservoirs, rivers, streams, temperature, urbanization.

Quantifying the thermal regime may be key to
understanding the structure and function of all
ecosystems (Brown et al. 2004). In lotic ecosystems,
spatial and temporal variation in stream temperatures
(STs) (see Table 1 for definitions of acronyms used in
this paper) affects the distributions of individual
species (Vannote and Sweeney 1980) and, hence,
geographic variation in entire communities (Hawkins
et al. 1997). Life-history patterns, individual growth
and production, and ecosystem metabolism are also

temperature dependent (Benke et al. 1988, Acuña et
al. 2008). As a consequence, any natural or human-
induced change in thermal regime probably will affect
stream ecosystem structure and function.

Because of their ecological importance, STs are
extensively monitored by local, state, and federal
agencies (Haag and Luce 2008), and millions of dollars
are spent annually in thermal remediation efforts (Wu
et al. 2003, Seedang et al. 2008). However, determining
whether the thermal condition of a stream has been
altered requires that we compare observed STs to those
expected under natural conditions (Hawkins et al.
2010). To make such assessments in the absence of
historical data, reference-condition ST (RCST) must be
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predicted. Useful RCST predictive models should
account for the effects of naturally occurring stream
and watershed features on water temperatures. Alter-
natively, if reference-condition streams are rare or
unavailable, predictive models must account for the
effects of human-caused stream or watershed alter-
ation (SWA) on STs in a way that natural STs can be
inferred.

The natural and anthropogenic factors that can
affect STs are well known and vary spatially and
temporally within and among watersheds (Ward
1985, Poole and Berman 2001, Allan 2004, Caissie
2006, Webb et al. 2008). Incoming solar radiation and
its attenuation by streamside shading, incoming and
outgoing long-wave radiation, evaporative cooling,
and the stream surface area available on which these
heat-exchange processes occur all play critical roles in
determining STs. Other important factors include
spatial variation in groundwater inputs and local
climatic conditions, such as air temperature and
precipitation. Human activities that affect STs include
removal of streamside vegetation (Brown 1970,
Bartholow 2000, Hagen et al. 2006, McTammany et
al. 2007), dam operations, such as hypolimnetic vs
epilimnetic release (Sinokrot et al. 1995, Preece and
Jones 2002, Lessard and Hayes 2003, Olden and
Naiman 2010, Risley et al. 2010), power generation
and release of wastewater effluent (Stefan and Chau

1976, Kinouchi et al. 2007), runoff from urbanized
areas (Klein 1979, Kinouchi et al. 2007, Nelson and
Palmer 2007, Kaushal et al. 2010), and agricultural
irrigation extraction and return flows.

A variety of models have been developed to predict
STs. Most published ST models can be classified as
single-site physical, single-site empirical, or multisite
empirical models (see Hawkins et al. 2010). Both
single-site physical and empirical models have limi-
tations for use in regional ST assessments because
they are parameterized for individual stream reaches
or watersheds, and therefore, predictions at new,
unmeasured locations probably would be inaccurate.
In addition, application of single-site physical models
to assess many streams in a large region would be cost
and time prohibitive because they require measure-
ment and parameterization of heat-exchange process-
es at each reach (Edinger et al. 1968, Brown 1969,
Theurer et al. 1984, Morin et al. 1987, Caissie et al.
2007). Single-site empirical models require long-term
time-series measurements of stream and air temper-
atures that are related through regression (Cluis 1972,
Mohseni et al. 1998, van Vliet et al. 2011, Kelleher et al.
2012) or other empirical techniques (Chenard and
Caissie 2008), and such data are available for few
streams.

Multisite, empirical models hold the best potential
for use in regional assessments. These models can
make predictions at unmeasured locations (Hawkins
et al. 2010), are often based on easily obtained
geographical information system (GIS) predictors,
and do not require long ST records. These models
relate STs observed at multiple sites to local stream
and watershed attributes, such as air temperature,
watershed area, channel slope, elevation, and latitude
(Miyake and Takeuchi 1951, Vannote and Sweeney
1980, Donato 2002, Risley et al. 2003, Jones et al. 2006,
Wehrly et al. 2006, Isaak et al. 2010, McKenna et al.
2010). Such models should be able to predict RCSTs at
new locations if they are developed with data from
reference-condition sites. These models often use
predictor variables, such as elevation and latitude,
that are known to be correlated with ST but are not
necessarily causative. These models typically have
been focused on summer STs (Wehrly et al. 2009).
However, Allan and Castillo (2007) noted that streams
with similar summer STs can have different overall
thermal regimes resulting from differences in winter
STs, which could have substantial ecological effects
(Haidekker and Hering 2008), and suggested charac-
terizing the thermal regime to capture these differ-
ences.

When predicting RCST, models ideally would be
based on data collected at sites in thermal reference

TABLE 1. Definition of acronyms used in this paper.

Acronym Definition

BFI Base-flow index
CFD Cumulative frequency distribution
DM Dirty model
E Expected
LOWESS Locally weighted regression and smoothing

scatterplots
MAST Mean annual stream temperature
MSE Mean squared error
MSST Mean summer stream temperature
MWST Mean winter stream temperature
NID National Inventory of Dams
NLCD National Land Cover Dataset
NSE Nash–Sutcliffe coefficient of model efficiency
O Observed
PBIAS % bias
PDP Partial dependence plot
RCM Reference-condition model
RCST Reference-condition stream temperature
RF Random Forest
RMSE Root mean squared error
RMSE/SD Model RMSE/standard deviation of observed

stream temperatures
ST Stream temperature
SWA Stream and watershed alteration
USGS US Geological Survey
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condition. However, the number of reference-quality
sites present in a region may be limited, and these
sites may not represent the full range of naturally
occurring environments that need to be assessed. This
issue is especially problematic in regions with
substantial SWA (Kilgour and Stanfield 2006). How-
ever, if the effects of SWA can be accounted for in
models (Soranno et al. 2011), it is theoretically
possible to predict RCST by setting SWA to 0 (e.g.,
Baker et al. 2005). Such an approach would maximize
the range of natural conditions (environmental space)
to which models apply and should result in more
robust models than those derived from data collected
only at reference-quality sites. However, we do not
yet know if such models adequately account for the
effects of SWAs and, thus, produce unbiased esti-
mates of RCST. Our general goal was to develop
spatially explicit empirical models to predict refer-
ence-condition mean summer, mean winter, and
mean annual STs (MSST, MWST, and MAST, respec-
tively) at unmeasured locations across the contermi-
nous USA. Our specific objectives were to: 1) develop
models that included both natural factors and
measures of SWA as predictor variables (henceforth
dirty models [DM] because they contain the full range
of SWA values), 2) use these initial DMs to identify
stream reaches in thermal reference condition, 3)
build reference-condition models (RCMs) with data
from just those streams in thermal reference condi-
tion, and 4) compare general performance of both
DMs and RCMs and determine if DMs provided
similar estimates of RCST as RCMs when SWAs were
set to 0 in the DMs.

Methods

Overview of RCM development

We used an iterative process to identify US
Geological Survey (USGS) temperature sites in refer-
ence condition to develop models of RCST. We used
an extensive database of STs to first build DMs that
empirically related estimates of MSST, MWST, and
MAST to spatial variation in natural factors and SWA.
We then examined the relationship between STs and
each of the SWAs to identify thresholds in SWA
below which STs showed little or no association with
SWAs. We used these thresholds to identify sites in
thermal reference condition. Next, we built RCMs
with data from just those sites identified as being in
thermal reference condition. Last, to examine whether
RCSTs can be predicted with DMs, we compared
predictions made by setting SWA to 0 in DMs and
predictions from RCMs with known RCSTs.

ST data

The USGS provided daily mean ST measurements
for 3714 sites distributed across the conterminous
USA (Fig. 1). A long period of record was available
for some sites (e.g., 30 y), but we chose to analyze data
from a 10-y period that spanned 1999 to 2008 to match
years for which we had reliable landuse information
(agriculture and urbanization). Daily records were
often not continuous within or across the years of
record at all sites, but this 10-y analysis window
contained 2,766,369 daily records. We screened for
and removed outliers from the data by visually
examining plots of daily mean STs vs year, month,
and calendar day for each USGS site to identify
observations that were the result of instrument
malfunctions, did not fit typical seasonal patterns of
STs in the conterminous USA, or had values outside
those generally expected within the conterminous
USA (20.1uC ƒ ST ƒ 35uC). We retained winter ST
values as low as 20.1uC because streams can become
super-cooled to this temperature when air tempera-
tures are ,0uC for several days (Martin 1981), and this
value is within the reported range of accuracy of
USGS temperature measurements (Wilde 2006). After
quality-control screening, we excluded 98 sites from
further analyses. We used the retained data to
calculate MSST (July and August), MWST (January
and February), and MAST for each site–year combi-
nation. We required that a monthly record used in
analyses have recorded temperatures for §O of its
days. After these data manipulations, each USGS site
had from 1 to 10 y of site–year observations. We
randomly selected 1 site–year observation from each
site for modeling (Table 2). For the 10-y analysis
window, we identified 2136 MSST, 1580 MWST, and
996 MAST observations for modeling (Fig. 1).

Natural predictor variables

We used the Multi-Watershed Delineation Tool
(Chinnayakanahalli et al. 2006) to delineate the
upstream watershed boundaries for each site from
30-m USGS digital elevation models. For each
predictor, we calculated the mean values within a
watershed, the mean values within a 100-m-wide
riparian buffer within the watershed, and the point-
level measurement at the site (Appendix S1; available
online from: http://dx.doi.org/10.1899/12-009.1.s1).
The natural predictors included incoming solar
radiation (Kumar et al. 1997), streamside vegetation
height and density (Rollins and Frame 2006), Param-
eter-elevation Regressions on Independent Slopes
Model (PRISM) air temperature and precipitation
(Daly et al. 2008), dominant surficial geology type and
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% watershed in each geology type (Reed and Bush
2001), soil characteristics, such as permeability, water-
table depth, and bulk density (Wolock 1997), water-
shed shape and area, elevation range, channel slope,
runoff (McCabe and Wolock 2010), base-flow index
(BFI) (Wolock 2003), a stream flow-stability index
(Appendix S1), the enhanced vegetation index (Huete
et al. 2002), and the % area of each watershed in lake
and wetland land cover (Homer et al. 2007) (see
Appendix S1 for details). We based the selection of
these potential predictors on an extensive literature
review of the physical processes and stream and
watershed characteristics previously shown to be
important in either empirical or deterministic models.
Solar radiation was computationally intensive to
estimate for each watershed, so we tested the
predictive value of this factor in a preliminary

analysis of data obtained from 22 states west of the
Mississippi River before developing models for the
entire conterminous USA. Including solar radiation
estimates failed to improve the western USA models,
so we excluded solar radiation as a potential predictor
for the conterminous USA models (see Excluded
Predictors in Discussion). We did all spatial analyses
with ArcGIS 9.3.1 Spatial Analyst (Environmental
Systems Research Institute, Redlands, California). We
also used the method published by Isaak et al. (2010)
and applied inverse-distance weighting schemes to
watershed and riparian-buffer averages for several
predictors to place greater emphasis on values of the
predictor that were spatially closer to each ST site. We
used the weighting,

wi=e{
Df
De

� �
, ½1�

FIG. 1. Distribution of US Geological Survey sites with temperature data in the conterminous USA, and sites for which mean
summer (MSST), winter (MWST), and annual (MAST) stream temperatures were calculated.

TABLE 2. Summary statistics for mean summer (MSST), winter (MWST) and annual (MAST) stream temperature data.

Model Sites Minimum uC Maximum uC Mean uC

MSST 2136 4.5 33.7 21.3
MWST 1580 20.1 23.4 5.6
MAST 996 3.2 26 13.8
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where Df represents the flow distance from any

upstream pixel to the ST site and De represents an e-
folding distance, i.e., the distance over which the
weight decreases exponentially. We averaged the
inversely weighted upstream pixels within the wa-
tershed or riparian buffer.

Indices of SWA

Reservoirs.—Release of water impounded by large,
hypolimnetic-release dams results in cooler summer
and warmer winter STs than in unregulated streams
(Ward 1963, 1985). We used the georeferenced
National Inventory of Dams (NID) (USACE 2009) to
quantify the presence and size of dams and associated
reservoirs in each watershed. The NID provides dam
attributes, such as year of construction, structural
height, and volume of each reservoir. However,
examination of the NID revealed errors in the
geographic locations of many dams. Important attri-
butes, such as the year of completion and dam height,
were incomplete for many records. In addition, some
critical features, such as reservoir volume, were
repeated in the database if a reservoir had multiple
dikes or locks. Therefore, we screened 53,041 NID
records to ensure they represented unique dam
structures and had complete and accurate records of
year of completion and reservoir volume (Appendix
S2; available online from: http://dx.doi.org/10.1899/
12-009.1.s2).

Dam height may be a better indicator of hypo- vs
epilimnetic release, but we had to characterize
reservoirs within each watershed by the total, mean,
and maximum volumes of water they impounded.
We used reservoir volume because numerous NID
records lacked dam height information and, therefore,
could not be used to model STs. For each dam in each
watershed, we applied the exponentially decaying
inverse-distance weighting with De = 50, 100, 150,
and 200 km to account for the downstream attenua-
tion of reservoir effects in our models. These distances
were based on literature values (Preece and Jones
2002) and our own examination of sites below large
reservoirs in which we found that thermal effects of
reservoirs decreased exponentially with distance
downstream and sometimes extended to ,75 to
150 km. In addition, we normalized these values by
the watershed areas above each temperature site. We
did these calculations only if a dam was constructed
before the year temperatures were recorded at a site,
e.g., a dam completed in 2005 was not counted for a
ST recorded in 2000.

Agriculture and urbanization.—We estimated the
total and percentage of each watershed in agricultural

(row crop) and urban land uses (medium and high
intensities) from the 2001 (version 2.0) and 2006
National Land Cover Dataset (NLCD) (Homer et al.
2007; http://www.mrlc.gov/). We matched ST data
from 1999 to 2003 and 2004 to 2008 with the 2001 and
2006 NLCD layers, respectively, to ensure the esti-
mated SWA was within 2 y of their respective
temperature measurements. We also estimated the
total area of riparian buffers composed of agricultural
and urban land uses with the area of each land use
pixel inversely weighted with De = 1, 4, 15, and 25 km
above the ST sites. We normalized riparian estimates
of each SWA by upstream watershed area.

Modeling approach

Random Forests.—We used Random Forest model-
ing (RF) (Breiman 2001) to empirically model STs. RF
is a nonparametric, nonlinear modeling technique
based on the well known classification and regression
tree algorithm. However, an RF model is produced by
building hundreds of regression trees from random-
ized subsets of the data, and predictions to new sites
are simply the average of the predictions made by all
trees in the resulting forest (see Cutler et al. 2007). We
used the randomForest (Liaw and Wiener 2002)
function in the R statistical software package (version
2.15.1; R Development Core Team, Vienna, Austria) to
fit our models.

RF has been increasingly used in diverse natural-
science applications, including meteorology (Holden
et al. 2011), hydrology (Ordoyne and Friedl 2008),
geomorphology (Francke et al. 2008, Snelder et al.
2011), ecology (Cutler et al. 2007, Peters et al. 2007,
Chinnayakanahalli et al. 2011), and water-quality
monitoring (Carlisle et al. 2009, 2010, Catherine et al.
2010). RF has generally superior predictive perfor-
mance when compared with other modeling tech-
niques (Prasad et al. 2006, Banfield et al. 2007, Cutler
et al. 2007, Peters et al. 2007), and the RF algorithm is
easy to understand conceptually (Cutler et al. 2007).
RF models make no assumptions about normality of
data and are resistant to over-fitting and multi-
collinearity of predictor variables (Breiman 2001). In
addition, spatial and temporal autocorrelations in the
data do not affect RF predictions to new samples
(Karpievitch et al. 2009). RF produces validation
statistics by calculating the mean squared error
(MSE) and pseudo-R2 from the randomized subsets
of data that are withheld (out-of-bag samples) during
model development.

Variable selection.—We sought to produce RF mod-
els that were both interpretable and parsimonious in
terms of the number of predictor variables used.
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However, little guidance exists for variable selection
with RF (Genuer et al. 2010). Therefore, we selected
predictors that maximized the physical interpretabil-
ity of the model, reduced redundancy among predic-
tor variables, and maximized model performance. We
developed the RF models by iteratively adding
predictors that produced the greatest improvement
in the RF performance metrics, were physically
interpretable, and had low correlation with other
predictors. We stopped the selection processes when
additional predictors failed to decrease the square
root of the MSE by ,0.1uC or were redundant with
predictors already in the model.

Model performances.—We compared observed STs
with their out-of-bag predictions to calculate several
model-performance metrics (Moriasi et al. 2007): the
Nash–Sutcliffe coefficient of model efficiency (NSE),
% bias (PBIAS), and root mean squared error (RMSE)
normalized by the observed standard deviation
(RMSE/SD). NSE measures the total residual error
relative to the total variance within the data. Models
that perform well and have little bias have NSE values
that are similar to the squared correlation coefficient
(r2), but NSE is more sensitive to deviation from the
1:1 line. We report both NSE and r2. PBIAS estimates
the tendency of a model to over predict (PBIAS , 0)
or under predict (PBIAS . 0). RMSE measures the
absolute error associated with each model and is in
the units for which predictions are made (uC),
whereas RMSE/SD allows comparison between mod-
els. Smaller values of RMSE and RMSE/SD indicate
better model performance. In addition, we plotted
observed vs predicted STs and visually examined the
plots for outliers and biases.

Reference-site identification

To identify reference-quality sites, we used partial
dependence plots (PDPs) (Hastie et al. 2001) to
examine associations between ST and measures of
SWA. A PDP is a plot of the average of the response
variable (ST) vs a predictor variable and accounts for
the effects of other predictor variables within the
model (Hastie et al. 2001). We visually selected
thresholds for each SWA below which the response
in ST was minimized, while maximizing the number
of sites retained for modeling.

Two important considerations are the range of
natural conditions within which each model can be
applied and whether environmental space was lost
through reference-site selection. To compare the
predictor space associated with the RCMs and DMs,
we plotted the cumulative frequency distribution
(CFD) of each natural predictor used in each model.

In addition, we overlaid these plots onto the CFDs of
each predictor for all USGS sites with available ST
data. Although probably not representative of all
environments within the conterminous USA, the CFD
plots of each predictor at all USGS ST sites encompass
a large range of conditions. Thus, they allow
comparison between the predictor space of each
model and the predictor space of all ST sites in the
conterminous USA. When we observed a difference
between the RCM and DM in a predictor’s CFD, we
noted the point beyond which the reference-condition
and dirty predictors did not overlap. We then
examined the response of ST in the PDP beyond that
point to determine how the RCMs might be affected
by the lost predictor space. In addition, we compared
maps of reference and nonreference site locations to
identify regions where reference-site selection result-
ed in geographic underrepresentation.

RCMs vs DMs

We examined whether the DMs could be used to
predict RCSTs by comparing SWA-zeroed predictions
with RCM predictions and observed RCSTs. To make
the SWA-zeroed predictions, we used a leave-one-out
procedure that removed 1 site from the data,
developed a DM on remaining sites, and predicted
reference-condition ST at the withheld site by setting
its SWA to 0. This procedure was repeated for each
site across the full range of SWAs, i.e., true reference
to the highest levels of alteration. The out-of-bag
predictions can be obtained directly from the RF
models, but we used the leave-one-out procedure in
the RCMs to ensure comparability of predictions
made with the DMs and RCMs. At nonreference sites,
we simply applied the RCMs because these sites were
not used in model development.

Environmental and ecological assessments are often
conducted by comparing observed (O) conditions to
those expected (E) in the absence of human alteration,
computed as the deviation of E from O (e.g., O – E).
For an assessment to be effective, O – E should be near
0 when sites are in reference condition and should
depart measurably from 0 at thermally altered sites.
We first compared RCM and SWA-zeroed DM
predictions made at reference-condition sites to assess
whether biases were present in RCMs or DMs when
predicting to sites of known thermal condition. To
estimate biases in predictions, we calculated the mean
O – E at reference condition sites for both RCMs and
SWA-zeroed DMs. We also quantified the precision of
predictions as the standard deviation of O – E values
at known reference sites. To assess if the relationship
between O – E and SWA depended on whether RCMs
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or SWA-zeroed DMs were used to predict E, we
isolated the effects of each SWA by selecting sites that
failed the reference screening for the particular SWA
of interest, but passed the reference screening for the
other SWAs (e.g., failed agriculture but passed the
dam and urbanization screens). We then plotted O – E
values against the full range of each SWA and fit
locally weighted regression and smoothing scatter-
plots (LOWESS) lines to the data (Cleveland 1979). We
plotted a vertical line at the point for each SWA that
we had previously defined as the boundary between
reference and nonreference conditions. For streams to
the left of the boundary, i.e., streams in reference
condition, LOWESS lines should be near O – E = 0. As
SWA increases, the LOWESS lines should deviate
from O – E = 0. A LOWESS trend above O – E = 0
represents warming and below 0 represents cooling in
response to a particular SWA. If predictions made by
setting SWA to 0 perform similarly to predictions
from RCMs, the LOWESS lines of the 2 models should
show similar trends and overlap with each other. We
log(x)-transformed all SWA measures to aid in
interpretation of the plots.

Results

DMs

Mean summer stream temperature (MSST).—Nine
predictors were selected to model MSSTs (Fig. 2,
Appendix S3; available online from: http://dx.doi.
org/10.1899/12-009.1.s3), including 6 natural predic-
tors (Fig. 3) and 3 measures of SWA (Fig. 4). MSSTs
warmed with increasing values of 5 predictors: mean
summer air temperature, watershed area, soil bulk
density, and 2 measures of SWA: % watershed in
agricultural and urban land uses (henceforth agricul-
ture and urban indices, respectively). Factors nega-
tively associated with MSST, in rank order of
importance, were BFI, maximum upstream reservoir
volume (inversely weighted by a De = 50 km and
normalized by watershed area; reservoir index),
average channel slopes within the watershed, and
elevation ranges within watersheds (Figs 3, 4).

Mean winter stream temperature (MWST).—As in the
MSST model, mean winter air temperature was the
most important predictor of MWSTs (Figs 2, 3). In
addition to air temperature, 5 natural predictors
(Fig. 3) and 3 measures of SWA (Fig. 4) were selected
to model MWSTs (Fig. 2, Appendix S3). Two mea-
sures of SWA (the reservoir and urban indices) were
positively associated with MWSTs, whereas the
agricultural index was negatively associated with
MWSTs (Fig. 4). Compared with the MSST model, the
direction of the relationships between MWST and the

FIG. 2. Ranked importance (% increase in mean squared
error) of the predictor variables for the mean summer
(MSST), winter (MWST), and annual (MAST) stream
temperature models. Geol.= geological.
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FIG. 3. Partial dependence plots showing how stream temperature responded to the individual natural predictors selected for
the mean summer (MSST), winter (MWST), and annual (MAST) stream temperature dirty models. The vertical dashed lines
represent the extremes of values observed at reference sites, if different from observations used in dirty models (DMs). NA =

not applicable.

FIG. 4. Partial dependence plots showing how mean summer (MSST), winter (MWST), and annual (MAST) stream
temperature responded to individual measures of stream and watershed alteration. The vertical dashed lines represent values of
alteration below which we considered US Geological Survey stream temperature sites to be in thermal reference condition. NA =

not applicable.
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agricultural and reservoir indices were reversed (cf.
MSST and MWST PDPs in Fig. 4). Slightly warmer
MWSTs were associated with higher values of soil
and geologic permeability (Fig. 3). These factors may
be associated with the amount of shallow and deep
groundwater flow within the watershed. Cooler
MWSTs were associated with greater elevation range
and steeper average channel slopes within the
watershed. PDPs for watershed area and geologic
permeability showed little response in MWSTs but
both contributed to the overall performance of the
model. Most watersheds with large areas were
associated with slightly cooler MWSTs. Warmer
MWST values occurred at the largest watershed areas,
but the scarcity of data for large watersheds limited
the reliability of trend lines in this part of the PDP
(Fig. 3) (Hastie et al. 2001).

Mean annual stream temperature.—The predictor
variables (Fig. 2, Appendix S3) selected for the MAST
model and the directions of their relationships with
MAST were very similar to those observed for the
MSST model (cf. MSST and MAST; Figs 2, 3, 4).
However, the order and relative magnitude of associ-
ations between MAST and its predictors differed. For
example, the urban and agriculture indices were the 3rd

and 4th most important predictors in the MAST model,
whereas these predictors were ranked lower for the
MSST model (cf. MSST and MAST; Fig. 2). In contrast,
the reservoir index was ranked higher for the MSST
model, compared with the MAST model (Fig. 2). Mean
annual air temperatures, watershed area, and the
urban and agriculture indices were positively associ-
ated with MASTs (Figs 3, 4). Increasing values of BFI,
elevation range, average stream slopes within the
watershed, long-term precipitation, and the reservoir
index were all associated with cooler MASTs
(Figs 3, 4).

Reference-site selection and models

We used conservative thresholds to select refer-
ence-condition sites (e.g., ƒ 1% agriculture and
urbanization within the MSST watersheds). Applying
the SWA thresholds (Fig. 4) to identify reference-
condition sites for each model period identified 570
MSST, 481 MWST, and 273 MAST sites. The same
natural predictors that were selected in the DMs were
selected in the RCMs. The direction and pattern of ST
responses to the natural predictors were very similar
in the RCMs and DMs. PDPs are not shown here.

Reference screening decreased the geographic rep-
resentativeness of the data, especially in midwestern
states where agriculture is ubiquitous (cf. Figs 1 and 5).
Despite the loss of geographic coverage of the reference

data sets, CFD plots for the predictor variables showed
that most of the predictor space was retained (cf. RCM,
DM, and all USGS ST site CFD plots in Appendix S4;
available online from: http://dx.doi.org/10.1899/12-
009.1.s4), except for the largest watershed areas and
elevation ranges (Fig. 6). The largest watersheds were
not geographically concentrated, but the largest eleva-
tion ranges were concentrated in the Rocky and
Appalachian mountains. The reference MAST data
set lost additional predictor space at the lowest and
highest values of BFI (Fig. 6). Sites with the lowest BFI

FIG. 5. Distribution of US Geological Survey sites with
temperature data within the conterminous USA, and sites
for which mean summer (MSST), winter (MWST), and
annual (MAST) stream temperatures were used to develop
the reference-condition models.
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values were spatially concentrated in the Southwestern
and Central Plains States, such as Arizona, New
Mexico, Texas, Oklahoma, Kansas, and Missouri. Sites
with the highest BFI values occurred in the Rocky
Mountains and northern Michigan. For most predic-
tors, the reference-condition and SWA-influenced sites
covered the same range of predictor values as the full
set of USGS temperature sites. Only the highest stream

slopes and largest watershed areas were not included
in our models. However, DM PDPs showed that STs
were probably not sensitive to increased values of
these predictors (see vertical lines in Fig. 3), i.e.,
response scope was similar in RCMs and DMs.

Model performances

Both the DMs and RCMs explained a large
proportion of the variance in STs (r2 values = 0.84–
0.95, Table 3). The performance metrics and observed-
vs-predicted plots were similar between the DMs and
RCMs (Table 3), and only the DM observed-vs-
predicted plots are presented here (Fig. 7). PBIAS
values ranged between 20.7 (slight over-prediction of
MWST RCM) and 0.07 (slight under-prediction of
MSST RCM). These PBIAS values indicate little bias in
the models and were well below the values Moriasi et
al. (2007) suggested as indicative of good performance
for stream characteristics modeled at monthly time
steps with simulation models (i.e., stream flow PBIAS
, 610, sediment PBIAS , 615, and N and P PBIAS ,

625). The PBIAS values associated with both the
RCM and DM for MAST models were very small
(20.06 and 20.05, respectively), and observed and
predicted values were in good agreement (Fig. 7). The
NSE and RMSE/SD values also indicated good model

FIG. 6. Cumulative frequency distribution (CFD) plots of
natural predictors that had truncated ranges (vertical black
dashed lines) in the reference-condition models (black
dashed) compared with dirty models (solid white) for mean
summer (MSST), winter (MWST), and annual (MAST)
stream temperatures. Solid grey lines represent the CFDs
of all available US Geological Survey stream temperature
sites. NA = not applicable.

TABLE 3. The squared correlation coefficient (r2), Nash–
Sutcliffe coefficient (NSE), % bias (PBIAS), root mean
squared error (RMSE), and RMSE/observed standard
deviation (RMSE/SD) for the mean summer (MSST),
winter (MWST), and annual (MAST) stream temperature
models.

Model r2 NSE PBIAS
RMSE
(uC)

RMSE/
SD

DM

MSST 0.84 0.84 0.07 2.0 0.40
MWST 0.92 0.92 20.42 1.4 0.28
MAST 0.94 0.94 20.05 1.2 0.25

RCM

MSST 0.87 0.87 0.07 1.9 0.36
MWST 0.89 0.88 20.70 1.4 0.34
MAST 0.95 0.95 20.06 1.1 0.23

FIG. 7. Observed vs predicted mean summer (MSST),
winter (MWST), and annual (MAST) stream temperatures
with the least-squares fitted lines (dashes) and 1:1
lines (solid).
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performance based on values suggested by Moriasi et
al. (2007) (i.e., NSE § 0.75 and RMSE/SD ƒ 0.5;
Table 3). The MWST RCMs and DMs had absolute
RMSE values of 1.4uC. The MAST and MSST RMSE
values for the RCM was slightly lower than that for
the DM (MAST = 1.1 vs 1.2uC, MSST = 1.9 vs 2.0uC).

Predicting reference-condition ST with DMs

When applied to sites in reference condition, the
SWA-zeroed DMs produced biased predictions of
MSST and MAST (cf. LOWESS lines in Fig. 8; mean O
– E values in Table 4). In contrast, the RCM
predictions were unbiased. The MSST RCM was also
more precise than the MSST DM (Table 4). The biases
produced by the SWA-zeroed MSST and MAST DMs
carried over to predictions made at nonreference sites
(plotted to the right of the vertical dashed lines in
Fig. 8). For nonreference sites, the DMs overestimated
the effects of urbanization and agriculture relative to
the RCMs. Conversely, the DMs underestimated
cooling at nonreference sites below reservoirs. For

MWST, DM and RCM predictions agreed well
(Fig. 8). Both the DM and RCM slightly overestimated
MWST at reference-condition sites (LOWESS lines
below 0), but these biases were small (mean O – E in
Table 4).

The O – E LOWESS trends were consistent with the
PDP plots (cf. Figs 4 and 8). The MSST and MAST
models showed warming in response to increasing
values of agriculture within the watershed and
cooling in association with the reservoir index. In
contrast, the winter model showed the reverse
relationship with these measures of SWA. All models
displayed warming associated with greater urbaniza-
tion within the watershed. In addition, most of the O –
E LOWESS lines began to deviate from 0 at SWA
values that were lower than the thresholds we used to
define reference condition (vertical dashed lines in
Fig. 8), implying a response in ST to SWA below the
thresholds used to select reference-condition sites.

Discussion

Assessments of our models suggest they accurately
and precisely estimate STs across a large geographic
extent with varied environments, but several factors
must be considered. First, our models must be placed
in context with other published empirical ST models.
A favorable comparison of the performance of our
models with that of other published models should
provide additional confidence in their potential use
for: 1) assessing the thermal conditions of USA
streams, 2) providing a mechanistic understanding
of macroecological patterns in streams and rivers, and
3) exploring historical and future responses of streams
to climate change. In addition, we can gain insight
into the relative influence of certain landscape
features on STs by comparing the selected and

TABLE 4. Mean and standard deviation (SD) of mean
summer (MSST), winter (MWST), and annual (MAST)
stream temperature differences between observed (O)
conditions and those expected (E) in the absence of
human alteration (O – E) for dirty models (DM) and
reference-condition models (RCM).

Model Mean O – E SD O – E

DM

MSST 0.67 2.2
MWST 20.07 1.4
MAST 0.42 1.1

RCM

MSST 0.02 2.0
MWST 20.04 1.4
MAST 20.002 1.1

FIG. 8. Bias in model predictions of mean summer
(MSST), winter (MWST), and annual (MAST) stream
temperatures as a function of urbanization, agriculture,
and reservoir alteration. Bias is measured as the difference
between observed (O) and expected (E) reference-condition
stream temperatures. Expected values for MSST, MWST,
and MAST were derived from both reference-condition
models (dashed line) and dirty models (solid grey line) for
which stream and watershed alterations were set to 0.
Vertical dashed lines represent thresholds used to define
reference condition for each stream or watershed
alteration measure.
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excluded predictors of published empirical models
that were developed at different geographic scales.
Last, we briefly consider the use of DMs and RCMs to
infer RCST and the implications of our findings for
hindcasting of water-quality variables.

Model performance

Spatially explicit models that relate landscape
features to stream characteristics, such as STs, are
gaining popularity (Wang et al. 2006), but most
previous work has not reported performance statistics
that would allow objective comparison with our
models. Isaak et al. (2010) modeled summer STs (15
July–15 September) with data from 780 ST sites within
the Boise River, Idaho. Based on leave-one-out cross
validation, they reported an RMSE of 0.74uC and an
SD of observed STs of 2.7uC, resulting in an RMSE/SD
of 0.27. This value is smaller than the RMSE/SD
values of our MSST models but similar to those of our
MWST and MAST models (Table 3). Wehrly et al.
(2006) modeled mean July STs in lower Michigan, and
reported an SD of residual errors of 1.9uC. However,
Wehrly et al. (2006) did not report the SD of observed
STs. To compare the performance of their model with
ours, we used their reported range of observed July
STs (9.2–26.7uC) to calculate a normalized SD of
residual errors of 11%, which is higher than our
normalized SD of residual errors of 7% for MSST.
These values suggest similar or better performance of
our models but at a spatial scale several orders of
magnitude larger than was used in the 2 previous
studies. Our models are an important advance in
characterizing regional variation in STs, especially
given the spatial scale at which they can be applied.

Model applications

Assessments of the ecological condition of streams
are routinely conducted in the USA and elsewhere,
and researchers have expended substantial effort on
developing statistical tools to objectively assess the
biological condition of streams (reviewed by Hawkins
et al. 2010). Similar approaches could be applied with
the models presented here to assess the thermal
condition of streams. We used natural landscape
predictors that allow accurate predictions of STs at
unmeasured locations, and these site-specific predic-
tions of reference-condition STs can be used as
benchmarks to infer whether an assessed stream
reach is thermally impaired. Furthermore, ST models
could be used in support of ecological assessments
because ST is a major determinant of the distribution
of aquatic species within a landscape (Vannote and
Sweeney 1980, Haidekker and Hering 2008). Many

ecological assessments compare observed biota with
the biota predicted to occur under reference environ-
mental conditions (Moss et al. 1987, Hawkins et al.
2000, Simpson and Norris 2000). The species distri-
bution models used to predict reference-condition
biota typically use surrogates of natural ST, such as
latitude, elevation, or drainage area. These surrogates
are imperfect predictors of thermal reference condi-
tions in streams. Inclusion of well predicted STs in
species distribution models such as River InVerte-
brate Prediction and Classification System (RIVPACS;
Moss et al. 1987, Hawkins et al. 2000) should improve
the precision and accuracy of ecological assessments
and their interpretation. In addition, conducting a
thermal assessment in conjunction with a biological
assessment should aid in diagnosing whether altered
temperature is a likely cause of observed biological
impairment.

ST models will be essential tools in establishing a
more comprehensive understanding of ST changes
that have already occurred and probably will occur in
response to climate warming. For example, Isaak et al.
(2010) used a multisite empirical model in the Boise
River basin, Idaho, to account for variation in
observed STs between 1993 and 2006. They found
that the effects of climate change on thermal habitats
depend on landscape context and that the loss of
available Bull Trout (Salvelinus confluentus) thermal
habitat was greatest in headwater streams. However,
most empirical studies of the potential effects of
climate change on STs were based on empirical
stream–air temperature relationships at individual
sites (e.g., Mohseni et al. 1999, 2003), and thus, the
landscape context associated with differing vulnera-
bilities of STs to predicted changes in climate could
not be considered. Empirical models derived from
data that cover the range of conditions found within a
region of interest will have much greater utility in
assessing the potential region-specific effects of
climate change on STs and identifying individual
streams and regions that may be especially vulnerable
to climate change.

Excluded predictors

Those predictors that were excluded from the
models during calibration were as notable as the
predictors that were selected. We expected estimates
of solar radiation to be strongly associated with
variation in STs among sites, especially in summer.
However, solar radiation was not a significant
predictor in any model. When we included solar
radiation in the pilot western USA MSST model,
RMSE decreased by only ,0.1uC. If we substituted
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solar radiation for air temperature, MSST and MWST
RMSEs increased by 17 and 80%, respectively. The
observed lack of strong association between ST and
solar radiation may have been the result of inaccurate
estimates of solar radiation striking each stream.
However, Wehrly et al. (2006) also noted a weak
association between STs and solar radiation in a
multisite empirical model of STs in Michigan.
Conversely, Isaak et al. (2010) found that radiation
was an important predictor of STs in the Boise River
basin, Idaho. Whether solar radiation is an important
predictor of STs in empirical models may be related to
the scales at which models are developed, the effects
of cloud cover on solar radiation (not measured in this
analysis), and the spatial variability of radiation
relative to other predictors within the model. Wehrly
et al. (2006) suggested that studies in which solar
radiation is a good predictor of STs are generally
conducted in single watersheds where other environ-
mental predictors vary little relative to canopy cover
and, thus, the solar radiation striking the stream. In
short, at large spatial scales, air temperature may
integrate the multiple heat-exchange processes that
influence ST.

We also included several short- and long-term
measures of precipitation as potential predictors
(Appendix S1) and expected them to be strong
predictors of STs because of their relationship with
stream flow. However, long-term precipitation was
only moderately important as a predictor in the MAST
model. Additional research may be needed to better
characterize precipitation (e.g., timing of precipitation
events) for predicting MSST and MWST or to conclude
that precipitation is a weak predictor of STs at a large
geographic scale. Last, in contrast to the observation of
Wehrly et al. (2009), who found that mean July STs in
Michigan were positively related to the amount of
upstream lentic waterbodies, lakes and wetlands were
not selected in any of the models. The importance of
lentic waterbodies to July STs in Michigan and
Wisconsin may reflect the prominence of this land-
scape feature in these states and its role in influencing
STs at that scale relative to the conterminous USA.

RCMs vs DMs

Stream assessments must be precise and unbiased
to be useful. If a management goal were to maintain
or restore naturally occurring thermal reference
conditions, on average the SWA-zeroed MSST and
MAST O – E models would underprotect (Type I
error) sites with upstream reservoirs and overprotect
(Type II error) sites with urban and agricultural land
uses within the watersheds. For these thermal

attributes, the RCMs would provide more accurate
and defensible assessments. However, for MWST, use
of either the RCM or the DM would allow reasonably
precise and unbiased assessments. These results have
important implications for hindcasting of historical
conditions. The DMs we developed included both
reference and nonreference sites and, therefore, did
not extrapolate beyond the range of the data.
However, even with the benefit of a full spectrum of
SWA information, the MSST and MAST DMs pro-
duced biased predictions of reference-condition STs.
Models calibrated without data from sites in reference
condition would have to extrapolate predictions of
thermal reference conditions, which would almost
certainly result in larger biases than observed in our
DMs.

Our analyses also illustrate a specific challenge
associated with establishing reference-condition ex-
pectations from a network of reference sites that vary
in their quality (i.e., the amount of SWA potentially
affecting them). The most liberal land-cover thresh-
olds we defined were 1.5% of the watershed in
agriculture or urbanization in the MWST models. The
MSST and MAST thresholds were more conservative
(agriculture and urban indices ƒ1% in MSST water-
sheds, and ƒ1.2 and 1.3%, respectively, in MAST
watersheds). Yet several of the RCM O – E LOWESS
lines showed systematic deviation from 0 in response
to these SWAs below these thresholds (Fig. 8). The
deviations were small enough for urbanization and
agriculture that use of the thresholds we selected
would not seriously compromise predictions of true
RCSTs. However, the deviations in O – E values
associated with the reservoir index were larger, a
result implying that we should consider adjusting the
reservoir threshold when selecting reference sites. For
example, if the reference-condition threshold were
adjusted to a log10(reservoir index) value of 25, biases
in the O – E values at reference sites could be
minimized (Fig. 8). However, doing so would reduce
the MAST reference observations from 273 to 224 for
the conterminous USA and further reduce the spatial
and environmental representativeness of the model.
The addition of nonUSGS ST sites could increase the
number and environmental representativeness of ref-
erence-condition sites (e.g., http://greatnorthernlcc.
org/technical/stream-temp-maps). However, addi-
tional reference-quality streams are not likely to be
identified in regions with nearly ubiquitous SWA, such
as agriculture in the midwestern USA (Fig. 5). Selecting
sites that are ‘‘reference enough’’, while maintaining a
sufficient number of sites to be representative of the
environments within a region, is a major challenge in all
environmental assessments.
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The inability of the SWA-zeroed MSST and MAST
DMs to produce unbiased O – E values could be
caused by the coarseness of the SWA measures, such
as the reservoir index. First, because of incomplete
NID records, we were forced to use reservoir volumes
as a predictor. Reservoir volume is only weakly
associated with reservoir depth within the NID (r2

= 0.27), and the temperature of the water released by
a dam is a function of the depth at which it is released
(Bonnet et al. 2000, Lindim et al. 2011). The addition of
information to the NID that specifies the depth or type
of water release (e.g., hypolimnetic or epilimnetic)
might improve the accuracy of our models. Alterna-
tively, correcting and completing NID structure-
height information could improve results because
this attribute is probably better correlated with the
likelihood of thermal stratification in reservoirs than
volume and, thus, the temperature of released water.
Second, we expended considerable effort to screen
53,041 NID records, but errors still exist within the
data. We noted several outliers within the calibration
data sets while developing the models. These outliers
often were associated with inaccurate reservoir
location information, and correction improved pre-
dictions. However, missing or inaccurate information
may not always result in obvious outliers, but rather
noise within the models. Additional screening of the
NID could improve confidence in predictions.

Concluding remarks

Our RCMs accurately and precisely predicted
reference STs at unmeasured streams across a broad
range of environments in the conterminous USA. We
think these models represent a significant step toward a
more comprehensive assessment of the environmental
and ecological conditions of USA rivers and streams.
Thermal assessments would complement previous and
ongoing assessments of the biological (Paulsen et al.
2008) and hydrologic condition (Carlisle et al. 2009) of
USA streams and rivers. In addition, these models
provide a tool for understanding how specific SWAs
have affected STs and how other alterations, such as
climate change, might further alter them in the future.

To our knowledge, no investigators have compared
RCM predictions and DM hindcastings of reference
condition. Relative to RCMs, the DMs produced biased
estimates of reference-condition STs. These predictions
potentially could be improved with better landuse
information that accounts for more specific alterations,
such as reservoir-release temperatures, wastewater
treatment facilities in urban areas, irrigation withdraw-
als, and return flows associated with agricultural and
mining activities. However, these types of data are not

readily available everywhere and will take time to
develop. Unless a high degree of confidence exists that
the available measures of SWA account for nearly all of
the thermal alteration that occurs at different sites, we
recommend caution in using DMs to predict reference-
condition water quality.
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