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ABSTRACT—Complementary DNAs (cDNAs) encoding follicle-stimulating hormone (FSH) B, luteinizing
hormone (LH) B and glycoprotein hormone (GPH) a subunits were isolated and characterized from ayu
pituitary using a PCR technique. The FSH 3, LH 3 and GPH a subunit cDNAs were found to be 556, 588 and
621 base pair (bp) long, encoding 384, 432 and 357bp long open reading frames, respectively. The deduced
amino acid sequences of the putative mature forms of ayu GPH a and LH 3 subunits were on average 63%
homologous with those of other teleosts, whereas ayu FSH 3 subunit was on average 42% homologous.
These results show that ayu has two different types of gonadotropins (FSH and LH), as in other teleosts.
FSH B subunit MRNA was mainly detected during early vitellogenesis and spermatogenesis. In contrast, LH
B subunit MRNA was detected during the late phase of gonadal development, suggesting that the primary
function of FSH may be to initiate gametogenesis, while LH may have a role in the development of gametes.

INTRODUCTION

In teleosts, gonadotropins (GtHs) are the most important
hormones in the regulation of gonadal development and matu-
ration (Nagahama, 1987). It is generally accepted that two
forms of GtH, follicle-stimulating hormone (FSH), or GtH |,
and luteinizing hormone (LH), or GtH I, exist in all teleosts
(Xiong et al., 1994). These hormones are heterodimers con-
sisting of two different noncovalently linked polypeptides,
glycoprotein hormone (GPH) a and  subunits. The GPH «
subunit is common to both FSH and LH, whereas the 3 sub-
unit is distinct and provides each hormone with a unique bio-
logical specificity (Pierce and Parsons, 1981).

Ayu, Plecoglossus altivelis, are widely distributed in
Japan. It is an annual and amphidromous fish that spawns in
rivers. A distinct environment (water current and fine gravel)
is necessary for their spawning, and only after reaching such
an environment the fish acquire the physiological conditions
necessary for spawning. These physiological conditions
include an elevation of milt volume and a decrease in
spermatocrit value in males (Ito et al., 1992), and develop-
ment of maturational competence of oocyte in females (Soyano
et al., 1996). These facts suggest that the spawning environ-
ment induces endocrine changes that would lead to spawn-
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ing in ayu. It is probable that GtH(s) are involved in the pro-
cess. In fact, Hirose et al. (1983) reported that LH-RH treat-
ment increased serum levels of GtH Il in ayu, followed by an
immediate final maturation of oocytes. However, there is little
information about the role of GtH in gonadal development and
maturation or relationship between physiological conditions
induced by the spawning environment and GtH control of
gonadal maturation in ayu. To understand the role of GtH,
changes in the synthesis and secretion of GtH(s) during
gonadal development, maturation and spawning should be
observed. Ayu GtH(s), however, have not been isolated or
characterized.

In the present study, as an initial step, the cDNAs encod-
ing pituitary FSH 3, LH B and GPH a subunits of ayu were
isolated and characterized. In addition, changes in mRNA tran-
scription of these subunits during gonadal development and
maturation were examined using Northern blot analysis.

MATERIALS AND METHODS

Fish

Juvenile ayu were purchased from a commercial supplier and
reared in an outdoor pond from May to October at the National
Research Institute of Fisheries Science, Ueda Station. They were fed
a commercial diet and maintained under ambient photoperiod and
temperature. Ayu, reared at the Ueda station, usually spawn from
early to mid October. Pituitary samples for cDNA cloning of ayu GtH
subunits were collected during the maturational period (October).
Samples to examine the seasonal changes in the levels of GtH mRNA
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Table 1. Gonadal stages** and gonadosomatic index (GSI) of ayu

Germ cell contents*? GSI(%)
Stages Date Female Male Female Male
| 18, June Perinuclear Spermatogonia <0.7 <0.7
1l 2, July Perinuclear Spermatogonia <0.7 <0.7
1] 4, August Primary yolk Spermatocyte 1.4+0.21 0.7+0.09
\ 7, September Secondary yolk Spermatotid 9.8+0.62 8.8+0.27
\% 2, October Tertiary yolk Spermatozoa 23.9£1.10 9.7+0.33

*! These were based on oocyte and testes histological characteristics.
*2 Germ cell contents shown are those which appeared most in each gonad.

using Northern blot analysis were collected in five different periods as
shown in Table 1. All pituitary samples were collected immediately
after decapitation and stored at —80°C before use.

Preparation of total cytoplasmic RNA and poly- (A)" RNA

Total cytoplasmic RNA was extracted from approximately twenty
pituitaries by single-step guanidium isothiocyanate-phenol-chloroform
extraction (Chomczynski and Sacchi, 1987) using an ISOGEN kit
(Nippongene, Toyama, Japan) according to the manufacturer’'s
instructions.

From the total cytoplasmic RNA, poly- (A)" RNA was isolated
using Oligotex dT30<super> (TaKaRa Shuzo, Ootu, Japan). Total
cytoplasmic RNA (50 pl) was added to 150 pl of elution buffer (10 mM
Tris-HCI pH 7.5, 1 mM EDTA, 1.0% SDS) and 200 pl Oligotex dT30
latex. After incubation at 65°C for 5 min, it was immediately placed on
ice for 3 min. The above mixture was added to 40 ul 5 M NaCl and
incubated at 37°C for 10 min to bind poly- (A)" RNA to the latex. The
latex was centrifuged and the aqueous portion removed. The latex
was then suspended in 200 pl TE buffer (10 mM Tris-HCI pH 7.5, 1
mM EDTA) and incubated at 65°C for 5 min to elute the poly- (A)*
RNA. After centrifugation, the poly- (A)" RNA contained in the aque-
ous phase was collected by ethanol precipitation, and resuspended
in 10 pl diethylepyrocarbonate (DEPC) H,O. Total cytoplasmic and
poly- (A)" RNA concentrations were assessed by spectrophotometric
absorbance at 260 nm.

Double-stranded cDNA synthesis

Double-stranded cDNAs were obtained using the ZAP-cDNA
synthesis kit (Stratagene, La Jolla, CA) according to the manufacturer’s
protocol. After the addition of phosphorylated EcoRl linkers and Xhol
digestion, cDNAs were inserted into the EcoRI-Xhol site of the Uni-

ZAP XR vector (Stratagene, La Jolla, CA) in a sense orientation.

Cloning of ayu GtH subunit cDNAs

The locations of the oligonucleotide primers used in PCR for cDNA
cloning of ayu GtH subunits are shown in Fig. 1. The primer sets, A
and B, were based on the conserved sequences of each GtH subunit
cDNA as follows: chum salmon, Oncorhynchus keta (Sekine et al.,
1989), striped bass, Morone saxatilis (Hassin et al., 1995) and mum-
michog, Fundulus heteroclitus (Lin et al., 1992) for FSH B; chum
salmon (Sekine et al., 1989) and common carp, Cyprinus carpio (Chang
et al., 1988) for LH B; chum salmon (Kitahara et al., 1988) and com-
mon carp (Huang et al., 1991) for GPH a. Primer sequences were:

FSH B subunit A: 5TGCAGYTGGTYSTCATGG 3'

FSH B subunit B: 5'CWYCTCRTAGGACCASTC 3'

LH B subunit A:  5'ATCTGCAGYGGYCACTGC 3'

LH B subunitB:  5'ACAGTCRGAMGTGTCCAT 3'

GPH a subunit A: 5'GGMTGTGAGGARTGYAMACTSAA 3'

GPH a subunit B: 5'GCWACGCAGCATGTRGCTTCAGA 3'

(R: AIG, Y: CIT, S: CIG, W: AIT, M: AIC)

The primer sets, C and D, for each ayu GtH subunit were
designed after obtaining the sequence information of the cDNA frag-
ments amplified by the above primer A and B sets: Uni-ZAP XR vec-
tor sequences upstream (ZAP-F) and downstream (ZAP-R) of the
cDNA inserts were used for external primers. Primers were synthe-
sized on an Applied Biosystems DNA synthesizer (model 392, Foster
City, CA).

The reaction mixture for PCR contained 2.5 U Taqg and 1 x the
supplied buffer (Ex Taq, TaKaRa Shuzo), together with 50 ng Uni-
ZAP XR vector inserted pituitary cDNA, 0.2 mM of each dNTP, and
0.5 uM of the upstream and downstream primers, in a total volume of
20 pl. The following cycle was repeated 35 times: denaturation at

Uni-ZAP XR GtH subunit insert Uni-ZAP XR
------- > L e L L e L L) o l-=--=--
First clone of each subunit fragment
ZAP-F 1Primer A PrimerD 1
- 5' Lo —> 'L 3'
~A—Eorl Il ML Jasamn
: | %1 - } rTTTT 4 XAO |
! -1 - -<!
' Primer C! | Primer B ZAP-R!
N :IIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIHIIII!

Second clone of each subunit fragment

Fig. 1. Schematic representation of FSH 3, LH 3 and GPH a subunit cDNA inserts (with asymmetric, Eco Rl and Xho | arms) in Uni-ZAP XR
vector (not drawn to scale). Gray boxes (primers A and B) depict the relative locations of the target sequences for the oligonucleotide primers
used in the PCR reaction. Primers C and D were specific sequences of each subunit. Directions of the primers are indicated by arrows. Clones
of the PCR products are indicated by solid lines above the diagram. ZAP-F and ZAP-R represent primers corresponding to the Uni-ZAP XR
vector sequence located upstream and downstream of the GtH cDNA insert, respectively.
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94°C for 20 sec, annealing at 50—55°C for 30 sec and extension at
72°C for 1 min.

The main product in each PCR was subcloned into pCR 2.1 vec-
tors using a TA cloning system (Original TA Cloning Kit, Invitrogen,
Carlsbad, CA). The resulting plasmid DNAs were purified by an alka-
line lysis method (Sambrook et al., 1989). And both strands sequenced
using a Taq dye primer cycle sequencing kit (Applied Biosystems).
Sequence analysis and comparisons were carried out using DNASIS
software (Hitachi Co. Ltd., Tokyo, Japan).

Northern blot analysis

Total cytoplasmic RNA (2.5 pg) from five pituitaries of ayu were
separated by electrophoresis on 1% agarose gels containing form-
aldehyde, and transferred onto nylon membrane (Hybond-N*,
Amersham, Bucks, U.K.). Images of ethidium bromide stained gels
were captured by a gel documentation system (Printgraph, ATTO,
Tokyo, Japan). Probes were labeled with digoxigenin (DIG)-dUTP
using a PCR DIG Probe Synthesis Kit (Roche, Barsel, Switzerland)
according to the manufacturer’s instructions. Membranes were pre-
hybridized at 42°C for 2 h in 5 x SSPE (0.75 M NaCl, 43.25 mM
NaH,PO,, 6.25 mM EDTA) containing 50% formamide, 2% Denhardt's
solution, 0.02% sodium dodecyl sulfate (SDS) and denatured calf thy-
mus DNA (100 pg/ml). Hybridization was carried out at 42°C for 12 h
in the same solution as described above containing denatured DIG-
dUTP labeled cDNA probe. Membranes were washed at 65°C for 2 x
10 min in 2 x SSPE containing 0.1% SDS, for 2 x 20 minin 1 x SSPE
containing 0.1% SDS and for 2 x 20 min in 0.1 x SSPE containing
0.1% SDS. After washing, labeled mRNA on membranes was
detected using a DIG Luminescent Detection Kit (Roche Diagnostics
K.K., Tokyo, Japan), according to the instructions of the manufac-
turer, and copied using x-ray film. Developed photo images and
images of ethidium bromide stained gels were analyzed using image-
analysis software (NIH image 1.61, National Institute of Health, USA)
to measure the intensity of each hybridization signal and 18S rRNA.
Data was standardized by dividing the levels of each subunit by that
of 18S rRNA.

RESULTS AND DISCUSSION

Double-stranded cDNA synthesis and PCR amplification
Two hundred micrograms of total cytoplasmic RNA was
obtained from approximately 20 pituitaries. From this total
cytoplasmic RNA, approximately 2.5 ug poly- (A)" RNA was
isolated. This poly- (A)" RNA was reverse-transcribed to cDNA
and ligated into Uni-ZAP XR vector for PCR amplification.

PCR amplification of partial FSH 3, LH 3 and GPH a sub-
unit cDNAs produced major bands of approximately 240, 180
and 170 bp using Primer A and B sets, respectively. After
sub-cloning these three fragments, several clones were
sequenced. The sequencing analysis revealed that these
clones encoded part of the open-reading frames of FSH 3, LH
3 and GPH a subunits.

The PCR amplification of the 5'-end portions of FSH f3,
LH B and GPH a subunits was performed using Primer ZAP-
F and C sets. The main products of PCR for FSH 3, LH 3 and
GPH a were approximately 140, 260 and 190 bp, respectively.
Sequencing analysis revealed that these products contained
5'-end portions of each subunit cDNA.

The fragments containing 3'-end portions of FSH 3, LH 3
and GPH a subunits were amplified using Primer D and ZAP-
R sets. The main products of PCR for FSH (3, LH  and GPH
o were approximately 380, 330 and 450 bp, respectively.
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Sequencing analysis indicated that these products contained
3-end cDNAs of each subunit, encoding the open reading
frames of the C-terminal portions.

The second clones, 5’ and 3' PCR products, were identi-
cal to the portion where they overlapped the first clone (first
PCR fragment). The full length sequence of each subunit cDNA
was compiled from these three fragments. In addition, the full
length of each subunit was amplified using specific primers
and sequenced for reconfirmation. These results indicated that
ayu has two different types of GtH, FSH and LH, as in other
teleosts.

Sequence determination and analysis

The ayu FSH B and LH  subunit cDNAs were 556 and
588 bp long and contained full 384 and 432 bp open reading
frames, respectively. From a comparison with FSH 3 and LH
B subunits of other teleosts, the deduced amino acid se-
guences indicated that the signal peptide comprised of 15 and
23 amino acids and the mature subunit comprised of 113 and
121 amino acids (Fig. 2-A and 2-B), respectively. Alignment
of the deduced amino acid sequence of mature FSH 3 and
LH B subunits from ayu with those of other telesots is shown
in Fig. 3-A and 3-B. The positions of 12 cysteines and 1 puta-
tive N-linked glycosylation site in LH B were completely
conserved among these teleosts. However, the position and
number of cysteines in FSH  varied among teleosts. Many
teleost FSH B subunits contain 12 cysteines (ayu, masu
salmon, striped bass, etc.) at specific positions. Mummichog
and Japanese eel FSH 3 subunits also contain 12 cysteines,
but the position of the third cysteine in these fish is clearly
different from that of the teleosts mentioned above. Further-
more, goldfish FSH 3 contains 13 cysteines. In addition to the
variation in the position and number of cysteine residues in
FSH B, the percentage homology of ayu FSH 8 with those of
other teleosts (36—46%) was lower than that of LH (3 (48—
69%). Thus, our results show that the primary structure of LH
3 has been conserved better than that of FSH (3 during teleost
evolution, as described by Kato et al. (1993).

The ayu GPH a subunit cDNA was 621 bp long, contain-
ing full 357 bp open reading frame. From a comparison with
GPH a subunits of other teleosts, the deduced amino acid
sequence indicated that the signal peptide comprised of 23
amino acids and the mature subunit comprised of 96 amino
acids (Fig. 2-C). Alignment of the deduced amino acid se-
guence of mature GPH a subunit from ayu with those of other
teleosts is shown in Fig. 3-C. The positions of 10 cysteines
and 2 putative N-linked glycosylation sites were completely
conserved. The percentage of homology was 73% with masu
salmon al, 67% with masu salmon a2 and Japanese eel,
and in the range of 54—64% with other teleosts.

Northern hybridization analysis

Northern blot analysis using cloned FSH (3, LH  and GPH
o cDNAs as probes showed specific hybridization of each with
a single band of approximately 700 bp (Fig. 4). Since the
expression of FSH B (GtH | B) and LH (3 (GtH Il B) subunit
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A gcaaatctgtccccttgtggaatatttttgtacttcacacagatgagg 48
ATG CAG CTG GTT GTC ATG GCA GTG ATG CTT GTT CTG GTG CAG GCT GAA TCC AAC 102
M [o] L v v M A v M L v L v [o] A E S N 18
TGT GAG TAT GGC TGC CAA CTA GCT AAC ATC TCC ATC ACC TTG GAG AAG ACT GAA 156
C E Y G (o] [o] L A N I S I T L E K T E 36
TGT GGG AGC CAC CCT GTT ATA ATC GAA ACC ACC TCC TGT ACC GGC ATG TGT GGA 210
(o] G S H P v I I E T T S C T G M C G 54
ACC AAG GAC TGG AAC TAT ATT AGC TCT TCG GGC CAG GAA CCT CAG GTC ACC TGC 264
T K D | N Y I S S S G [¢] E P Q v T (o] 72
AAC TTT AAA GAG TGG TCC TAT GGG ACT TAC TAC ATG CAA GAC TGC CCC TTT GGG 318
N F K E W S Y G T Y Y M Q D C P F G 90

GTG GAC CCA GTT TTA ACC TAC CCT GTG GCC AAG AGC TGT GCA TGT ACA ACG TGT 372
v D P v L T Y P v A K S Cc A C T T C 108
TCC ATT GCT AGC ACA GAG TGT GAT CCC ATG CAC ATG GAC ATG GCA AGT TGC CTG 426
S I A S T E Cc D P M H M D M A S (o L 126
TCC TTC tga agagaaaatggctggattagcattgacatatagagtacagcaattatttgaaatgccag 494

S F * 128
aataatacattactgtgtcctctcatgcttgaaactttaa aataaaaaagattatcagcctc poly A 556
B tgcagagtcggg 12
ATG TTG GGA ACT TCG GTC AGC TGT GTT CCG TTC CTC CTG CTG CAG CCT ATC AAC 66
M L G T S v S C v P F L L L L H L L 18
CTG CAT CTG CTT TTT TGC TTG AAT CCC TCT GTG GCA GCC CAC CTG CAG CAC TGC 120
F ¢ L N P S V A A H L 9 H ¢ 9 P I N 36
CAA ACT GTG TCT TTG GAG AAG GAA GGA TGT CCC ACC TGC CTG GTG TTT GAG ACA 174
Q T v S L E K E G C P T o] L v F E T 54
TCC ATC TGC GGC GGA CAT TGC CTC ACC AAG GAG CCT GTC AGA AGA CGC CCA TAC 228
S I C G G H (o] L T K E P v R R R P Y 72
ATG CCT GTG TCC CAG CAT GTG TGC ACG TAC AAA GAC ATG CAC TAC CAG ACA GTC 282
M P v S [o] H v (o] T Y K D M H Y Q T v 90

CGC CTG CCG GAC TGC CCC CCC AAT GTG GAC CCC TTT GTC TCC TTC CCC GTA GCA 336
R L P D C P P N v D P F v S F P v A 108
CTG AGC TGT GAA TGC AAC ATG TGC ACC ATG GAC ACC TCG GAC TGC ACC ATC CAG 390
L S C E C N M Cc T M D T S D C T I Q 126
AGT CTG AAC CCA GAC TTC TGC ATG ACC CAG ACA GAT TTT GAG CCT GCC TAC TAC 444
S L N P D F C M T Q T D F E P A Y Y 144
taa tcatctggagatgcgaggatcttaaattatgacaatgaaaactttatttgggaatctcattgattga

*

tgaatacaattccaatacaatactttattgtgtaagtgttcaatctcttatatc aataaatgttctcaaat

ttc poly A 588
C acagcacaaaagaaggttatctctgcgaccatg 33
ATG TGC TCA TTG AAA TCA ACT GGA GTG TCT CTT CTC ATA CTG ACA GCA CTA CTT 87
M C S L K S T G v S L L I L T A L L 18
TAC ATT GCA GAT TCC TAC CCT AAC GGT GAC ATG GCA AAC ATT GGC TGT GAG GCA 141
Y I A D S Y P N G D M A N I G o] E A 36
TGC AAA TTA AAG AAG AAC CAT GCC TTT TCA CAT GGT GGT CCC CCC ATC TTT CAG 195
(o] K L K K N H A F ) H G G P P I F Q 54
TGT GTG GGC TGT TGC TTC TCC AGA GCT TAC CCA ACA CCC CTC AGG TCC AAG AAG 249
C v G (o] (o] F ) R A Y P T P L R S K K 72
ACC ATG CTG GTC CCC AAG AAC ATC ACA TCT GAA GCC ACA TGC TGC GTC GCA AAA 303
T M L v P K N I T ) E A T C C v A K 90

GAG GAA ATG TTG GTG ATC AAA GGA AAT ATC AGA CTG AGG AAC CAC ACC GAG TGT 357
E E M L v I K G N I R L R N H T E Cc 108
TAC TGC AAC ACT TGT TAT CAT CAC AAG TCA CCA taa gtatgaggggaacatcggggatg 416
Y C N T C Y H H K S P * 119
tcctcaaagtggtttggagacatcagttgtccttatgacacaaagacaaaaatgatggtgtcctgaaaata

taaaaaatgctctaatgtgtagcctagttcttgtgataaaaaagcgattgcttgagactgataaattgect

tgagttgataaaatgagtgtagactgtgctatgtgac attaaaacataatccaactcaaactc Poly A 621

Fig. 2. Nucleotide sequence of the cDNAs encoding the FSH 3 (A), LH 3 (B) and GPH a (C) subunits of ayu (upper line) and the deduced amino
acid sequences (lower line). The nucleotide and deduced amino acid residue number are shown on the right. The underlined region indicates the
putative signal peptide. The doubly underlined region indicates the putative poly-A signal sequence.
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A
FSH-Beta
ayu

masu salmon (46%)
Japanese eel (41%)
goldfish (43%)
striped bass (46%)
(36%)

Homology

mummichog

ayu
masu salmon
Japanese eel
goldfish
striped bass
mummichog

B
LH-Beta

ayu

masu salmon (69%)
Japanese eel (66%)
goldfish (68%)
striped bass (63%)
(48%)

Homology

mummichog

ayu
masu salmon
Japanese eel
goldfish
striped bass
mummichog

Cc
GPH-Alpha Homology

ayu
masu salmon 1(73%)
masu salmon 2(67%)

Japanese eel (67%)
goldfish 1 (64%)
goldfish 2 (61%)
striped bass (58%)
mummichog (54%)
ayu

masu salmon 1
masu salmon 2
Japanese eel
goldfish 1
goldfish 2
striped bass
mummichog
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Fig. 3. Alignment of the amino acid sequence of the putative mature FSH 3 (A), LH B (B) and GPH a (C) subunits of ayu, Plecoglossus altivelis,
with those of the masu salmon, Oncorhynchus masou, (Gen et al., 1993; Kato et al., 1993), Japanese eel, Anguilla japonica, (Nagae et al., 1996;
Yoshiura et al., 1999), goldfish, Carassius auratus, (Kobayashi et al., 1997; Yoshiura et al., 1997), striped bass, Morone saxatilis, (Hassin et al.,
1995), mummichog, Fundulus heteroclitus (GenBank accession No. U12923; Lin et al., 1992). The percentage shows homology with deduced
amino acid sequence of ayu GtH mature subunits. Cysteine residues are indicated by an asterisk (*). Putative N-linked glycosylation sites are
indicated by plus (+) signs. Dashes indicate amino acid residues that are identical to those of the ayu amino acid sequence. Gaps are marked by

periods.

genes changed during gonadal development, the obtained
images were standardized by the intensity of the ethidium bro-
mide stained gel images of 18S rRNA using image-analysis
software (NIH-image 1.61) (Fig. 5).

In the present study, the expression of FSH 3 mRNA in
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the pituitaries of females was not detected at an early imma-
ture stage (stage |: the early perinucleous oocyte) (Fig. 5-B),
but then became detectable at a late immature stage (stage
II). The intensity of the detected FSH B mRNA bands was
highest during early vitellogenesis (stage 1ll), and decreased
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Fig. 4. Northern blot analysis of FSH 3, LH  and GPH a mRNAs with ethidium bromide stained gel images of 18S rRNA from the pituitaries of
ayu at the five different stages (I to V) of gonadal development shown in Table 1. Each lane contains approximately 5 pg of total RNA. Ayu total
RNA was hybridized with DIG-labeled probes of each subunit. The size of each subunit mRNA is indicated between the two images.

during subsequent ovarian developmental stages (stages IV
and V). Gomez et al. (1999) observed that FSH 3 mRNA lev-
els as well as the circulating levels of FSH (GtH I) rose during
early vitellogenesis and then declined with oocyte develop-
ment in rainbow trout. Moreover, Prat et al. (1996) reported
that FSH was associated with the early growth of gonads.
These results agree with our finding of increased expression
of FSH (8 subunit during early vitellogenesis. However, it is
difficult to understand the function of FSH during early vitello-
genesis of ayu from this FSH 3 gene expression data. Never-
theless, early rise of FSH 3 strongly suggest that the primary
function of FSH in ayu is to initiate vitellogenesis and early
growth of vitellogenic oocytes.

In male ayu, FSH 3 mRNA could be detected at the late
immature stage (stage II: spermatogonia) just prior to meio-
sis. The relative levels of FSH B mRNA peaked at stage Il
(including spermatocyte) at which the gonadosomatic index
(GSI) started to increase. Thereafter, the levels of FSH
mRNA decreased and remained low throughout late spermato-
genesis (stages V). This pattern of gene expression of FSH
mRNA in male ayu is similar to that of the female. In contrast,
the relative content of FSH 3 mRNA increased from the sper-
matogonia stage to the spermiation stage in rainbow trout
(Gomez et al., 1999). Moreover, FSH 3 mRNA levels in male
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red sea bream increased in association with an increase in
GSiI levels and gonadal development during sexual matura-
tion (Gen et al., 2000). These results suggest that FSH has
an important role in spermatogenesis in fishes with different
styles of testicular development. However, assessing the func-
tion of FSH in males is more difficult, because the relative
levels of FSH B mRNA and circulating levels of FSH protein
were much lower than in females. Our results strongly indi-
cate that FSH has a role in the initiation of testicular growth.

Changes in the relative levels of LH  mRNA is shown in
Fig. 5-C. A similar pattern of gene expression was observed
regardless of sex. Expression of LH 3 mRNA was not detect-
able at an immature stage (stages | and Il). The intensity of
the detected mRNA rose dramatically at the vitellogeneic and
spermatogenic stage (stage IV) and then decreased rapidly
during late vitellogenesis and spermatogenesis just prior to
final maturation, ovulation and spermiation (stage V). This
pattern of changes in the expression of LH 3 was different
from that found for other species. The increase of LH 3 sub-
unit mRNA during gonadal development could be linked to
development of the gametes (rainbow trout: Naito et al., 1991;
Gomez et al., 1999; Japanese eel: Nagae et al., 1996). In
these fishes, the relative content of LH 3 mRNA always
increased until late vitellogenesis and reached maximum lev-
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Fig. 5. Changes in gonadosomatic indexes (A), relative levels of
FSH B (B), LH B (C) and GPH a (D) mRNA expression during
gonadal development in both sexes of ayu. The sampling day and
gonadal condition are shown in Table 1.

els in mature fish. In addition, Sohn et al., (1999) reported
that LH B mRNA levels in goldfish was highest in spawning
season, corresponding to ovarian development. In contrast,
LH B mRNA relative content decreased during late vitellogen-
esis in the ayu. In salmonids, serum concentrations and pitu-
itary content of LH (GtH II) proteins were elevated at the time
of ovulation (Suzuki et al., 1988; Prat et al., 1996; Gomez et
al., 1999). LH is highly potent in stimulating the production of
17a, 20B-dihydroxy-4-pregnen-3-one (17a, 203-DHP) which
is known to be the maturation-inducing hormone (Suzuki et
al., 1988). 17a, 20B-DHP is the main maturation-inducing hor-
mone also in ayu (Hirose et al., 1985). Therefore, it is con-
ceivable that LH B mRNA is expressed at the time of final
maturation and ovulation in ayu. Unfortunately, samples from
this stage are lacking in our present study.

The relative levels of LH B mRNA reached a peak at the
optimum time for vitellogenesis and spermatogenesis, while
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the GSI rapidly increased in both sexes of ayu. Suzuki et al.
(1988) investigated the effects of FSH and LH on estradiol-17
3 production using mid-vitellogenic follicles of amago salmon.
They demonstrated the high potential of LH for inducing
estradiol-17 B production. Moreover, LH is more potent than
FSH in stimulating estradiol-17 3 production by vitellogenic
oocytes in red sea bream (Tanaka et al., 1995). These data
suggest that LH has various effects on steroid synthesis in
vitellogenesis. Thus, LH may play an important role in oocyte
growth and vitellogenesis in ayu. LH may also be related to
androgen synthesis and spermatogenesis, although the bio-
logical function of LH in males is not known. It is therefore
necessary to investigate the biological function of LH in
gametogenesis.

Changes in mRNA levels of GPH a in both sexes are
shown in Fig. 5-D. A similar pattern of gene expression was
observed regardless of sex. The relative content of mRNA
tended to increase at stage Il in both sexes, when FSH (3
mRNA increased sharply. In rainbow trout pituitary glands,
GPH a mRNA was expressed in both GtH cells (Naito et al.,
1991). The expression pattern of GPH a on FSH cells is dif-
ferent from that on LH cells in the pituitary. Messenger RNA
levels of GPH a may be correlated with the synthesis of FSH
or LH in GtH cells. The relationship between the expression
of GPH a and FSH 3 or LH 3, however, does not explain the
pattern of both mRNAs, because FSH, LH and TSH consist of
a common GPH a-subunit and a hormone specific 3-subunit.

In the present study, the cDNAs of FSH 3, LH  and GPH
o subunits were cloned from ayu pituitary. We examined the
changes in the gene expression of these subunits during go-
nadal development and maturation in both sexes has been
clarified by Northern blot analysis. However, the GtHs mMRNA
expression in the development of maturational competence
and the initiation of final maturation induced by the transfer to
a suitable environment for spawning is not clear. To obtain
more detailed data on the initiation of final maturation, it is
necessary to investigate the gene expression of FSH 3, LH 3
and GPH a subunits during the transfer to a suitable spawn-
ing environment by Northern blot analysis and in situ hybrid-
ization of ayu pituitaries. We are now investigating the gene
expression of these GtH subunits during the final maturational
stages using these cDNAs as tools.
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