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ABSTRACT

 

—Anterior pituitary cells produce growth factors plus cytokines and their receptors. Although
some of these pituitary growth factors and cytokines are known to be involved in the control of cell differ-
entiation, proliferation and hormone production in the pituitary gland, their physiological roles remain
unknown. Lots of evidence indicates that they are involved in the regulation of prolactin-secreting mam-
motroph cell proliferation. The regulation of mammotroph functions is a suitable system for understanding
the intrapituitary regulatory system operated by growth factors and cytokines, since mammotrophs are the
most actively proliferating cells in female pituitary glands. This review discusses the possible intrapituitary
regulation of mammotroph differentiation and proliferation in rat and mouse pituitaries.
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INTRODUCTION

 

Pituitary glands in mammals consist of neurohypophy-
sis and adenohypophysis, the latter of which can be further
divided into anterior and intermediate lobes. These glands
constitute a functional link between the nervous system and
endocrine system, regulating various functions including
growth, energy metabolism, osmoregulation, reproduction
and behavior. Organogenesis and initial cytodifferentiation
of pituitary glands are regulated by factors produced by two
opposing signaling gradients. One signal is generated by
the ventral floor cells of the diencephalons, while the other
is generated by oral ectodermal cells (Dasen 

 

et al.

 

, 1999;
Scully and Rosenfeld, 2002). After the initial differentiation
of different cell types, the cell populations of each secretory
cell type expand by proliferation. Thus, pituitary cells appear
to proliferate by self-duplication, however, other types of
growth cannot be ruled out.

The proportions of each hormone secretory cell type
vary with age or alterations in physiological status. Secre-
tory cell numbers are determined by the balance between
the proliferation and apoptosis of pituitary secretory cells,
which is partly regulated by growth factors and cytokines
produced in the pituitary gland as well as hypothalamic hor-

mones and hormones from the target organs (Schwartz and
Cherny, 1992; Denef, 1994; Takahashi, 1995; Renner 

 

et al.

 

,
1996; Ray and Melmed, 1997; Schwartz, 2000). This review
describes the actions of growth factors produced within the
pituitary gland and shows the intrapituitary regulatory sys-
tem involved in controlling pituitary functions. Of the several
types of pituitary cells, the proportion of mammotrophs dif-
fers between males and females (Takahashi and Kawashima,
1982), and changes during pregnancy and lactation (Haggi

 

et al.

 

, 1986). In addition, the regulation of mammotroph pro-
liferation has been well studied compared to other types of
anterior pituitary cells; therefore this study focuses on the
proliferation and differentiation of mammotrophs.

 

DEVELOPMENT OF PITUITARY GLANDS AND

MAMMOTROPH DIFFERENTIATION

 

Pituitary gland development is regulated by extrinsic
and intrinsic signals that control the expression of several
transcription factors. Two highly related paired-like home-
odomain factors, Hesx1/Rpx and an activator prophet of Pit-
1 (Prop-1), are thought to play essential roles in the morpho-
genesis of pituitary glands (review, Olson 

 

et al.

 

, 2003).
Hesx1/Rpx appears to be important for the initial progres-
sion of pituitary development, while its subsequent down-
regulation leads to the emergence of Prop-1-dependent
lineages (Gage 

 

et al.

 

, 1996; Sornson 

 

et al.

 

, 1996). Prop-1 is
required for the initial proliferation of Pit-1-dependent thy-
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rotrophs, somatotrophs, mammotrophs and gonadotrophs
(Gage 

 

et al.

 

, 1996; Sornson 

 

et al.

 

, 1996). Pit-1, the POU
domain protein, is expressed in thyrotrophs, somatotrophs
and mammotrophs, and is required for the differentiation of
these cell lineages (Li 

 

et al.

 

, 1990). The Pit-1-related cell lin-
eage is a clearly understood model system of cell differenti-
ation. The differentiation of thyrotrophs, somatotrophs and
mammotrophs is mediated via the reciprocal interactions of
two transcription factors, Pit-1 and GATA2 (Dasen 

 

et al.

 

,
1999). In thyrotrophs, both Pit-1 and GATA-2 are expressed,
and Pit-1 is required for the activation of growth hormone
(GH) and prolactin (PRL) genes.

Several reports suggest that mammotrophs are trans-
differentiated from somatotrophs under estrogen stimulation
and/or other factors (Boockfor 

 

et al.

 

, 1986; Behringer 

 

et al.

 

,
1988; Borrelli 

 

et al.

 

, 1989; Inoue and Sakai, 1991; Kineman

 

et al.

 

, 1992; Kakeya 

 

et al.

 

, 2000), and that the transdifferen-
tiation of pre-existing somatotrophs into mammotrophs is a
post-mitotic event (Goda 

 

et al.

 

, 1998; Kakeya 

 

et al.

 

, 2002).
This transdifferentiation seems to contradict the self-duplica-
tion of mammotrophs described above. However, several
reports suggest that transdifferentiation into mammotrophs
without mitosis occurs during the prenatal and early postna-
tal period as well as during late pregnancy and lactation in
rats allowing generation of a large number of mammotrophs
in a short period of time (Frawley and Boockfor, 1991; Taka-
hashi, 1992).

 

MAMMOTROPH PROLIFERATION

 

Mammotrophs are the most actively proliferating cells in
rat and mouse pituitaries (Shirasawa and Yoshimura, 1982;
Takahashi and Kawashima, 1982; Takahashi, 1992; Taka-
hashi, 1995). In adult female rats the mitotic activity of mam-
motrophs is higher during estrus than during any other stage
of the estrous cycle (Takahashi 

 

et al.

 

, 1984; Oishi 

 

et al.

 

,
1993). This high proliferation of mammotrophs depends
upon ovaries or ovarian estrogen, since ovariectomy
decreased the high mitotic activity observed during estrus,
while estrogen replacement increased mitotic activity. This
sexual difference in mitotic activity is thought to lead to the
sexual difference in mammotroph number (Takahashi and
Kawashima, 1982; Sasaki and Iwama, 1988).

A sex-difference in mammotroph development has
been observed in rats and mice. In mouse pituitaries, for
example, the total number of mammotrophs did not differ
between sexes at 14 and 21 days of age, but at 35 days of
age female pituitaries contained more mammotrophs than
male pituitaries by approximately three-fold. At 60 days of
age the number of mammotrophs in the female mice was
twice that of the male mice (Takahashi, 1995). This differ-
ence in the growth pattern of mammotroph populations is
thought to be due to a difference in the proliferation of mam-
motrophs between male and female mice. Maternal estro-
gens may be involved in the growth of mammotrophs during
the perinatal period. The factors that enhance mammotroph

proliferation during the neonatal period remain to be clari-
fied, although the involvement of a milk-borne factor of
maternal origin in mammotroph differentiation had been
already reported (Porter 

 

et al.

 

, 1993).
Pituitary gland growth is stimulated by estrogen, and an

increased number of mammotrophs can be observed in
estrogen-treated rats and mice. The proliferation of mam-
motrophs is regulated by estrogen (Lloyd 

 

et al.

 

, 1975; Taka-
hashi 

 

et al.

 

, 1984; Takahashi and Kawashima, 1987; Oomizu
and Takahashi, 1996). This estrogenic effect might be medi-
ated directly through changes in the expression of genes
essential to the cell cycle. Estrogen stimulates the expres-
sion of cell-cycle-regulatory proteins such as cyclins and
cyclin-dependent kinase inhibitors, which lead to the pro-
gression of the cell cycle (review: Pestell 

 

et al.

 

, 1999; Foster

 

et al.

 

, 2001). On the other hand, several studies on estro-
gen-responsive tissues have suggested that the effect of
estrogen on cell proliferation is mediated by growth factors
whose production is stimulated by estrogen in an autocrine
or paracrine manner (Sirbasku, 1978; Sutherland 

 

et al.

 

,
1988). The following sections discuss some of the growth
factors involved in mammotroph growth.

 

Transforming growth factor-αααα

 

 (TGF-αααα

 

)

 

TGF-

 

α

 

, an epidermal growth factor (EGF), binds to EGF
receptors (Massague, 1990) and stimulates DNA-replication
of mammotrophs in serum-free primary cultures of mouse
anterior pituitary cells (Oomizu 

 

et al.

 

, 2000). TGF-

 

α

 

 gene
expression is stimulated by estrogen in ovariectomized mice
(Sharma 

 

et al.

 

, 2003). Borgundvaag 

 

et al.

 

 (1992) showed a
concurrent increase in TGF-

 

α

 

 mRNA and pituitary weights in
chronic estrogen-treated rats. Treatment of mouse pituitary
cells with a combination of estradiol (E2) and anti-TGF-

 

α

 

antibodies did not increase the number of DNA-replicating
cells (Sharma 

 

et al.

 

, 2003). Thus, immunoneutralization with
anti-TGF-

 

α

 

 antibodies blocked the estrogen-induced prolif-
eration of mammotrophs. Moreover, the blockade of TGF-

 

α

 

message translation was attempted by TGF-

 

α

 

-antisense oli-
godeoxynucleotide treatment resulting in the inhibition of
estrogen-induced mammotroph proliferation (Oomizu 

 

et al.

 

,
2000). These findings suggest that TGF-

 

α

 

 acts as an estro-
gen-induced growth factor in the anterior pituitary glands,
stimulating DNA replication and mammotroph mitosis.

The overexpression of human TGF-

 

α

 

 in transgenic
mice accelerated the development of pituitary mammotro-
phic adenomas (McAndrew 

 

et al.

 

, 1995). Furthermore, in
pituitary tumor cells, TGF-

 

α

 

 affected cell proliferation in
either a stimulatory or inhibitory manner (Ramsdell, 1991;
Finley 

 

et al.

 

, 1994). TGF-

 

α

 

 is therefore also involved in the
growth of pituitary tumor cells.

TGF-

 

α

 

 is produced in the pituitary glands of several
species (Kudlow and Kobrin, 1984; Kobrin 

 

et al.

 

, 1987;
Lazar and Blum, 1992). In rat pituitary cells, TGF-

 

α

 

 mRNA
expression was detected in somatotrophs, gonadotrophs
and mammotrophs (Fan and Childs, 1995) while in mouse
pituitaries TGF-

 

α

 

 mRNA-expressing cells are evenly distrib-
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uted throughout the anterior pituitary gland, but not in the
intermediate or posterior lobes (Sharma 

 

et al.

 

, 2003). TGF-

 

α

 

 mRNA-expressing cells are medium-sized and either
round or oval. In adult male and female mouse pituitaries,
TGF-

 

α

 

 mRNA-expressing cells account for 65 and 55% of
all pituitary cells, respectively. To determine TGF-

 

α

 

 mRNA-
expressing cell types in mouse pituitaries, serial sections
were studied by non-radioisotopic 

 

in situ

 

 hybridization using
cDNA probes for TGF-

 

α

 

 mRNA, GH mRNA and PRL
mRNA. Most of the GH mRNA-expressing cells contained
TGF-

 

α

 

 mRNA (79–83%), whereas only a small population of
PRL mRNA-expressing cells contained TGF-

 

α

 

 mRNA (1–
3%) (Sharma 

 

et al.

 

, 2003). An immunocytochemical study
also showed that somatotrophs express TGF-

 

α

 

 mRNA
(Takahashi 

 

et al.

 

, 2002). This discrepancy between TGF-

 

α

 

-
mRNA expressing cell types might be partly based upon the
different animal species studied. These findings indicate that
the main source of TGF-

 

α

 

 is somatotroph populations, since
somatotrophs are the most abundant cells in anterior pitu-
itary glands. In rat and mouse pituitaries, for example,
somatotrophs and mammotrophs are distributed evenly
throughout the anterior lobes of the pituitary glands. Based
on the morphological analysis of TGF-

 

α

 

 expression in
mouse pituitaries, it is likely that TGF-

 

α

 

 produced in the
somatotrophs acts on mammotrophs in a paracrine manner.

Immunoreactive EGF receptors have been observed in
all subsets of rat pituitary secretory cells, but are only
present in a fraction of these cells (Fan and Childs, 1995;
Honda 

 

et al.

 

, 2000). EGF receptor expression changes with
various conditions such as stress and the estrous cycle (Fan
and Childs, 1995; Armstrong and Childs, 1997a, b). Simi-
larly, estrogen treatment with E2 increases EGF receptor
mRNA in mouse pituitaries (Oomizu 

 

et al.

 

, 2000). Estrogen
appears to stimulate pituitary growth at the level of EGF
receptor production as well as TGF-

 

α

 

 production. To study
whether TGF-

 

α

 

 mediates the estrogen-induced proliferation
of mammotrophs, a specific inhibitor of EGF receptors, 3,4-
dimethoxy-a- (3-pyridyl)-(Z)-cinnamonitrile (RG-13022) has
been used (Yoneda 

 

et al.

 

, 1991). RG-13022 (10

 

–7

 

 M) was
seen to significantly inhibit the EGF (10 ng/ml)-induced
increase in DNA-replicating cells. E2-induced pituitary cell
proliferation was also inhibited by RG-13022. Therefore,
EGF receptor signaling is thought to be involved in the pro-
liferation of pituitary cells, and to be required for pituitary cell
differentiation during early pituitary organogenesis (Roh 

 

et
al.

 

, 2001).

 

Epidermal growth factor (EGF)

 

EGF treatment increases PRL release (Aanestad 

 

et al.

 

,
1993), and stimulates the proliferation of mammotrophs and
corticotrophs (Honda 

 

et al.

 

, 2000; Oomizu 

 

et al.

 

, 2000). EGF
also stimulates the differentiation of mammotrophs in normal
pituitary cells (Felix 

 

et al.

 

, 1995) and pituitary tumor cell lines
(Inoue and Sakai, 1991; Kakeya 

 

et al.

 

, 2000). In rat pituitar-
ies, somatotrophs and gonadotrophs express EGF mRNA,
while cold stress induces EGF mRNA expression in corti-

cotrophs and thyrotrophs (Fan and Childs, 1995). In mouse
pituitaries, EGF mRNA expression was observed in soma-
totrophs and mammotrophs, but not detected in corticotro-
phs, thyrotrophs or gonadotrophs (Honda 

 

et al.

 

, 2000).
Estrogen has been shown to stimulate EGF release from rat
pituitary cells (Mouihate and Lestage, 1995). Therefore,
EGF might also be involved in estrogen-induced mam-
motroph proliferation.

 

Transforming growth factor ββββ

 

 (TGF-ββββ

 

)

 

TGF-

 

β

 

 is a member of the cytokine family that regulates
the differentiation and proliferation of various tissues. TGF-

 

β

 

1, -

 

β

 

2, and -

 

β

 

3 are synthesized in mammalian tissues.
TGF-

 

β

 

1 inhibits PRL gene expression (Abraham 

 

et al.

 

,
1998) and the proliferation of mammotrophs (Sarkar 

 

et al.

 

,
1992). At low concentrations, it slightly stimulates the DNA
replication of mammotrophs (Qian 

 

et al.

 

, 1996). TGF-

 

β

 

1 also
acts in G1 arrest during the cell cycle as a paracrine inhibitor
of mammotroph proliferation, while p15 and p27, which are
Cdk (cyclin dependent kinase) inhibitors, are functional
mediators of TGF-

 

β

 

-induced cell cycle arrest (Qian 

 

et al.

 

,
1996; Frost 

 

et al.

 

, 2001). In human pituitary tumor cell lines,
TGF-

 

β

 

1 induces apoptosis (Oka 

 

et al.

 

, 1999). Mammotrophs
synthesize TGF-

 

β

 

1, and TGF-

 

β

 

1 synthesis is inhibited by
estrogen (Burns and Sarkar, 1993; Qian 

 

et al.

 

, 1996). Estro-
gen-induced pituitary growth might therefore be associated
with the estrogen-induced inhibition of pituitary TGF-

 

β

 

1 pro-
duction, resulting in the reduced TGF-

 

β

 

1-induced inhibition
of mammotroph proliferation. The expression of TGF-

 

β

 

 type
II receptors in pituitary cells is also reduced by estrogen
treatment (De 

 

et al.

 

, 1996) while TGF-

 

α

 

 expression is inhib-
ited by TGF-

 

β

 

1 (Mueller and Kudlow, 1991), leading to a
reduced TGF-

 

α

 

 growth stimulatory signal.
TGF-

 

β

 

2 is produced in rat pituitary glands, but is not
localized in mammotrophs. It exerts no significant effect on
the proliferation of mammotrophs (Hentges 

 

et al.

 

, 2000).
TGF-

 

β

 

3, on the other hand, is produced in mammotrophs
and stimulates mammotroph proliferation (Hentges 

 

et al.

 

,
2000). Its synthesis is stimulated by estrogen. The immu-
noneutralization of TGF-β3 with anti-TGF-β3 antibodies nul-
lified the estrogen-induced proliferation of mammotrophs.
This mitogenic action of TGF-β3 on mammotrophs is indirect
and mediated by basic fibroblast growth factor (bFGF)
secreted from folliculostellate (FS) cells (Hentges et al.,
2000).

Basic fibroblast growth factor (bFGF)
bFGF belongs to the fibroblast growth factor (FGF) fam-

ily, and is the most abundant growth factor in normal pitu-
itary glands (Gospodarowicz and Ferrara, 1989; Amano et
al., 1993). bFGF is produced in FS cells (Ferrara et al.,
1987; Amano et al., 1993), gonadotrophs (Schechter and
Weiner, 1991; Schechter et al., 1995), and somatotrophs
(Marin and Boya, 1995), and is involved in the regulation of
PRL synthesis and secretion (Larson et al., 1990; Mallo et
al., 1995). A reverse hemolytic plaque assay also revealed
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that bFGF promotes the differentiation of mammotrophs in
neonatal rat pituitary glands (Porter et al., 1994). bFGF stim-
ulates mammotroph proliferation in the presence of estro-
gen, indicating that it is an estrogen-dependent mitogenic
factor for pituitary cells. Estrogen treatment stimulates TGF-
β3 production, and TGF-β3 increases the release of bFGF
from FS cells. The immunoneutralization of bFGF in a FS
cell-conditioned medium inhibited its growth stimulatory
action on mammotrophs (Hentges et al., 2000). It can be
concluded therefore that bFGF is located downstream of the
estrogen-TGF-β3 signaling cascade as described above,
acting as a mediator of TGF-β3-induced mammotroph pro-
liferation.

Estradiol and TGF-β3 stimulated bFGF production and
release in FS cells obtained from F344 rats, but not in FS
cells obtained from Sprague-Dawley (SD) rats (Oomizu et
al., 2004). It is thought that the higher responsiveness of
pituitary cells derived from Fisher 344 rats to estrogen in
terms of pituitary growth is related to the difference in FS
cell populations between Fisher 344 and SD rats.

Insulin-like growth factor (IGF)
IGF-I and -II are produced in a number of tissues

including the pituitary glands, and regulate the proliferation
and differentiation of various cells in an autocrine and/or
paracrine manner (Fagin et al., 1988; Bach and Bondy,
1992; Ren et al., 1994; Yokoyama et al., 1997; Gonzalez-
Parra et al., 2001). In human pituitary glands, IGF-I-express-
ing cells are not hormone-secreting cells (Ren et al., 1994)
while in rat pituitaries IGF-I mRNA-expressing cells were
detected, but their cell types were not determined (Bach and
Bondy, 1992). In situ hybridization and immunocytochemis-
try revealed that IGF-I is produced in the somatotrophs of
mouse pituitaries (Honda et al., 1998). In normal human and
rat pituitaries, IGF-II-expressing cells have not been deter-
mined (Haselbacher et al., 1985; Bach and Bondy, 1992).

Pituitary cells express type 1 IGF receptors (IGFR1)
and type 2 IGF-I receptors (IGFR2) (Bach and Bondy, 1992;
Ren et al., 1994; Gonzalez-Parra et al., 2001). In mouse
pituitaries, IGFR1 is expressed in somatotrophs and some
corticotrophs (Honda et al., 1998), while in rat pituitaries it is
found in the gonadotrophs (Unger and Lange, 1997). IGFR2
is localized in somatotrophs as well as other types of cells
in rat pituitaries (Ocrant et al., 1989). IGF-I was seen to
stimulate the proliferation of anterior pituitary cells, in partic-
ular mammotrophs and corticotrophs, indicating that anterior
pituitary cell proliferation is stimulated by IGF-I produced in
the anterior pituitary cells (Oomizu et al., 1998). The mito-
genic activity of IGF-I on mouse mammotrophs might be
indirect, since mammotrophs in mouse pituitaries do not
express IGFR1 (Honda et al., 1998). In rat pituitaries, IGF-I
also stimulated vasoactive intestinal peptide (VIP) gene
expression (Lara et al., 1994), which stimulates PRL release
(Hagen et al., 1986; Nagy et al., 1988). Therefore, it is pos-
sible that VIP might mediate the effects of IGF-I on the
mammotrophs. In addition, there are many reports showing

that IGF-I regulates GH expression and secretion at the pitu-
itary (Goodyer et al., 1984; Yamashita and Melmed, 1986)
and/or hypothalamic level (Abe et al., 1983; Tannenbaum et
al., 1983). IGF-I treatment was seen to decrease GH mRNA
levels in mouse pituitaries (Honda et al., 2003).

Somatotrophs are the main source of pituitary IGF-I,
while IGF-I gene expression was enhanced in GH-secreting
tumor-bearing rats compared to control animals (Fagin et
al., 1988). GH treatment also increased IGF-I mRNA levels
in pituitary tumor GH3 cells (Fagin et al., 1989) and mouse
pituitary cells (Honda et al., 2003). In addition, estrogen
treatment for 54 days stimulated IGF-I expression in rat pitu-
itaries (Michels et al., 1993), however, E2 treatments failed
to stimulate IGF-I expression in mouse pituitaries. These
discrepancies might be due to the different animal species
studied, their sex, and/or the experimental protocols. The
up-regulation of IGF-I transcription in the pituitary glands
probably requires chronic E2 treatment. It is possible there-
fore, that GH and estrogen augment IGF-I production in
somatotrophs, while enhanced IGF-I release stimulates the
proliferation of mammotrophs through VIP production, since
VIP receptors are expressed in mammotrophs (Wanke and
Rorstad, 1990).

Nerve growth factor (NGF)
Nerve growth factor (NGF) is localized in rat mam-

motrophs and, together with PRL, its secretion is stimulated
by VIP (Missale et al., 1996). The NGF receptor, gp140trk, is
expressed in mammosomatotrophs and mammotrophs
(Patterson and Childs, 1994a). NGF secretion is stimulated
by interleukin-1β (IL-1β), and inhibited by GH releasing hor-
mone, tumor necrosis factor-α (TNF-α) and bFGF (Patter-
son and Childs, 1994b). These results suggest that NGF is
involved in the neuroendocrine-immune system. NGF pro-
motes the differentiation and proliferation of mammotrophs,
and NGF treatment was seen to stimulate the appearance
of mammotrophs and increase the number of mammotrophs
in rat pituitary cells (Missale et al., 1995). NGF treatment
also stimulated the DNA replication of mammotrophs, corti-
cotrophs and non-hormone containing cells (Proesmans et
al., 1997). In pituitary tumor GH3 cells, NGF treatment
decreased cell proliferation and GH secretion, but stimu-
lated PRL secretion and dopamine receptor expression,
suggesting that NGF induces the transdifferentiation of
mammosomatotrophs into mammotrophs (Missale et al.,
1994). NGF might therefore be involved in the functioning of
mammotrophs in an autocrine manner.

Galanin
Galanin is synthesized in the central and peripheral

nervous system as well as other tissues including anterior
pituitary glands. Immunocytochemical studies of female rats
at the light microscope level have shown that mammotro-
phs, somatotrophs, and thyrotrophs contain galanin,
whereas male anterior pituitary gland mammotrophs do not
(Kaplan et al., 1988; Hyde et al., 1991). Estrogen treatment
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is known to increase galanin mRNA production (Kaplan et
al., 1988; Cai et al., 1998; Wynick et al., 1998), and galanin
receptor (galanin-2 receptors) expression has been
observed in rat anterior pituitary glands (Waters and Krause,
2000). Therefore, it is possible that galanin plays a paracrine
role within the pituitary gland. The targeted over-expression
of galanin in mouse pituitary cells increased the number of
somatotrophs and mammotrophs, and serum PRL levels
(Perumal and Vrontakis, 2003). These results suggest that
galanin regulates PRL secretion and the proliferation of
mammotrophs.

Vasoactive intestinal peptide (VIP)
VIP is synthesized in the jejunum and colon as a gas-

trointestinal hormone. It is also synthesized in the anterior
pituitary gland, and is localized in subpopulations of mam-
motrophs (Morel et al., 1982; Koves et al., 1990; Chew et
al., 1996) or other cell types (Lam et al., 1989; Carrillo and
Phelps, 1992). VIP controls PRL secretion possibly in an
autocrine manner (Nagy et al., 1988; Wanke and Rorstad,
1990; Escalada et al., 1996), and is probably involved in
estrogen-induced changes in pituitary glands such as PRL
secretion, the proliferation of mammotrophs and TGF-β1
synthesis, since estrogen stimulates VIP synthesis and
release (Gomez and Balsa, 2003).

Calcitonin
Calcitonin is synthesized in the anterior pituitary gland,

and localized in the gonadotrophs of rat pituitaries (Ren et
al., 2001). Calcitonin receptors can also be detected in rat
anterior pituitary glands (Sun et al., 2002). Calcitonin inhibits
PRL secretion (Shah et al., 1988, 1996), and the prolifera-
tion of mammotrophs (Shah et al., 1999). This inhibitory
action of calcitonin on mammotroph proliferation was atten-
uated by the immunoneutralization of TGF-β1 with anti-TGF-
β1 serum. Calcitonin stimulates TGF-β1 synthesis, and
increases the number of TGF-β1-expressing cells in female
rat pituitaries. This finding indicates that the antiproliferative
action of calcitonin on the mammotrophs is mediated by
TGF-β1 (Wang et al., 2003), since TGF-β1, which is pro-
duced in mammotrophs, inhibits the proliferation of mam-
motrophs as described above. In rats, calcitonin synthesis is
highest during the diestrus and lowest during the evening of
proestrus, indicating that calcitonin gene expression is con-
trolled by ovarian steroid hormones. Moreover, estrogen
inhibits calcitonin expression, while progesterone does not,
however, estrogen plus progesterone stimulates expression
(Sun et al., 2002). Thus, estrogen inhibits TGF-β1 expres-
sion as well as calcitonin expression, and both are involved
in the inhibition of mammotroph proliferation. On the other
hand, estrogen stimulates the production of stimulatory
factors for mammotroph proliferation such as TGF-α and
bFGF, leading to an increased number of mammotrophs.

Tumor necrosis factor-αααα (TNF-αααα)
TNF-α is synthesized in somatotrophs and intermediate

cells in rabbit pituitaries (Arras et al., 1996), and TNF-α
receptors have been detected in mouse pituitary cells
(Kobayashi et al., 1997). TNF-α induces apoptosis in somato-
trophs and, in an estrogen-dependent manner, mam-
motrophs (Candolfi et al., 2002). It also decreases PRL
release (Theas et al., 1998). TNF-α release from pituitary
glands was higher during proestrus (Theas et al., 2000),
thus TNF-α inhibits PRL secretion and mammotroph growth.
This apoptotic effect of TNF-α plays a role in the turnover of
mammotrophs during the estrous cycle in female rats and
mice. As mentioned earlier, mammotrophs are the most
actively proliferating cells in rat and mouse pituitaries (Taka-
hashi, 1992). In adult female rats, the high mitotic activity of
mammotrophs during estrus might lead to mammotroph
growth (Takahashi et al., 1984). To maintain the number of
pituitary cells, particularly mammotrophs, apoptotic regula-
tion is necessary to reduce an increasing number of mam-
motroph cells during the estrous cycle and lactating period.
Pituitary cell apoptosis might be regulated by TGF-β1 as
well as TNF-α, since TGF-β1 induces apoptosis in human
pituitary tumor cells (Kulig et al., 1999; Oka et al., 1999).

Proopiomelanocortin (POMC) peptides
POMC is synthesized and processed by proteolytic

enzymes to produce three melanocyte-stimulating hor-
mones (α, β-, and γ-MSH), adrenocorticotropic hormone
(ACTH) and three endorphins (α-, β-, and γ-endorphins) in
the anterior and intermediate lobes of pituitary glands. α-
MSH is mainly produced in the intermediate lobes, while a
light and electron microscopic study revealed that it is also
produced in the corticotrophs of adult female rat pituitaries
(Tanaka and Kurosumi, 1986). α-MSH stimulated PRL
secretion and the proliferation of mammotrophs through
melanocortin-3 receptor (MC3-R) (Morooka et al., 1998;
Matsumura et al., 2003). Estrogen-induced acute PRL
secretion is dependent on the neurointermediate lobe both
in vivo (Murai and Ben-Jonathan, 1990) and in vitro (Ellerk-
mann et al., 1991). It was revealed that the associated
active substances are acetylated forms of α-MSH and β-
endorphin (Ellerkmann et al., 1992a,b). Suckling-induced
acute PRL release is also mediated by α-MSH probably
secreted from the intermediate lobes (Hill et al., 1991).
These results indicate that α-MSH augments the release of
PRL, acting as a PRL-releasing factor. However, PRL-
releasing factors other than POMC peptides might be
involved in PRL secretion, since other PRL-releasing factors
have been found in the intermediate lobes of rats (Laudon
et al., 1990; Allen et al., 1995).

A radiolabeled α-MSH binding study of rat anterior pitu-
itaries showed that α-MSH binding is restricted to a subset
of pituitary cells (10.5%) and that all cells that bind α-MSH
are mammotrophs (Zheng et al., 1997). On the other hand,
in immature rat pituitaries, MC3-R mRNA-expressing cells
are found in cells expressing GH mRNA alone or with PRL
mRNA, TSHβ mRNA or POMC mRNA (Roudbaraki et al.,
1999). These results suggest that MC3-R-expressing cells
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vary with postnatal development of the pituitary glands. The
difference between these results regarding MC3-R mRNA-
expressing cell types and the proportional abundance of
each cell type might be due to differences in the ages of ani-
mals used. In mice, MC3-R mRNA is localized in most mam-
motrophs and some somatotrophs (Matsumura et al., 2003).
Blood from the rat intermediate lobe to the anterior lobe
flows through the portal link between the vascular network
of the intermediate lobe and the sinusoidal capillaries of the
anterior pituitary (Murakami et al., 1985). α-MSH released
from the intermediate lobe can therefore reach mammotro-
phs in the anterior pituitary and stimulate PRL release and
cell proliferation. In rat pituitaries, mammotrophs in the cen-
tral region of the anterior pituitary stimulate PRL secretion
and cell proliferation in response to α-MSH (Porter and
Frawley, 1992). During the postnatal ontogeny period, α-
MSH is clearly localized in the mouse anterior pituitary
(Marcinkiewicz et al., 1993), while corticotroph subpopula-
tions in adult female rat pituitaries produce α-MSH as
described above (Tanaka and Kurosumi, 1986). Therefore,
it is possible that α-MSH produced in the anterior pituitary
controls the functioning of mammotrophs in a paracrine
manner.

Tilemans et al. (1997) showed that γ3-MSH stimulated
the proliferation of mammotrophs in aggregate immature rat
pituitary cell cultures, and concluded that the mitogenic
action of γ3-MSH is mediated by MC3-R. On the other hand,
rat recombinant POMC (1-74) also stimulated the prolifera-
tion of mammotrophs, but was reportedly not mediated by
MC3-Rs (Bert et al., 1999). New γ3-MSH receptors are
known to be involved in the proliferation of mammotrophs
(Langouche et al., 2002; Denef et al., 2003).

CONCLUSIONS

With aging and under various physiological conditions,

pituitary secretory cells change in the number and propor-
tion of each cell type. Regulation of pituitary cell proliferation
and apoptosis is essential for the dynamic maintenance of
pituitary cell populations. Of the pituitary cells, mammotro-
phs are the most actively proliferating in rats and mice
(Takahashi, 1992). Estrogen controls the synthesis and
release of growth factors and the expression of cell cycle
associated genes, which in turn stimulate the proliferation of
mammotrophs. Growth factors whose synthesis are up-reg-
ulated by estrogen directly promote DNA replication and the
mitosis of mammotrophs, whereas growth factors whose
synthesis are down-regulated by estrogen inhibit the mam-
motroph proliferation. In rat and mouse pituitaries, somato-
trophs produce TGF-α, EGF, IGF-I and TNF-α, while mam-
motrophs produce TGF-β3, NGF, galanin and VIP.
Calcitonin is synthesized in the gonadotrophs. Receptors for
most of those growth factors can be detected in mammotro-
phs. These findings suggest that these growth factors regu-
late the function and proliferation of mammotrophs (Fig. 1).
In addition, TGF-α, EGF, TGF-β3, bFGF, IGF-I, and galanin
stimulate the DNA replication and proliferation of mam-
motrophs. The effect of TGF-β3 might be indirect, and medi-
ated through bFGF. TGF-β3, TNF-α and calcitonin inhibit
the DNA replication and proliferation of mammotrophs. TNF-
α is also an apoptotic factor for mammotrophs. The anti-pro-
liferative action of calcitonin on mammotrophs might be
mediated by TGF-β3.

The growth factors produced in pituitary glands act on
pituitary cells as local mediators of estrogenic actions, and
are involved in the regulation of pituitary cell turnover. It is
not clear which is the primary factor involved in the regula-
tion of mammotroph proliferation, however, these findings
suggest that intrapituitary cell-to-cell interactions as well as
hypothalamic and peripheral target tissue inputs play an
important role in the control of pituitary secretory cells (Fig.
2).

Fig. 1. Summary of stimulatory and inhibitory factors for mammotroph proliferation in rat and mouse pituitaries. Cell types of pituitary cells
expressing each factor are shown in parentheses. GH, somatotroph; PRL, mammotroph, FS, folliculostellate cell; GTH, gonadotroph. VIP stim-
ulates prolactin release, but its stimulatory role for mammotroph proliferation has not been clarified. References are cited and discussed in the
text.
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