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ABSTRACT 
 
Rogers, J.N.; Parrish, C.E.; Ward, L.G., and Burdick, D.M., 2016. Assessment of elevation uncertainty in salt marsh 
environments using discrete-return and full-waveform lidar. In: Brock, J.C.; Gesch, D.B.; Parrish, C.E.; Rogers, J.N., 
and Wright, C.W. (eds.), Advances in Topobathymetric Mapping, Models, and Applications. Journal of Coastal 
Research, Special Issue, No. 76, pp. 107–122. Coconut Creek (Florida), ISSN 0749-0208. 
 
Lidar data can serve as an important source of elevation information for studying, monitoring and managing salt 
marshes. However, previous studies have shown that lidar data tend to have greater vertical uncertainty in salt 
marshes than in other environments, hindering the ability to resolve small elevation differences that can be 
ecologically significant in marshes. For coastal scientists and managers to effectively collect, evaluate, and/or use 
lidar data in salt marshes, factors affecting elevation uncertainty (e.g., plant species, season, and lidar processing 
methods) must be well understood. This study addresses this need using discrete-return (DRL) and full-waveform 
lidar, along with field-surveyed reference data, for four marshes on Cape Cod, Massachusetts (USA). The lidar bias 
and standard deviation were computed across all four marsh systems and four major taxa using varying interpolation 
and filtering methods. The effects of seasonality were also investigated using lidar data acquired in the summer and 
the following spring. Relative uncertainty surfaces (RUS) were computed from lidar waveform-derived metrics and 
examined for their utility and correlation with individual lidar errors. The results clearly illustrate the importance of 
seasonality, species, and lidar interpolation and filtering methods on elevation uncertainty in salt marshes. Results 
also demonstrate that RUS generated from lidar waveform features are useful in qualitative assessments of lidar 
elevation uncertainty and correlate well with vegetation height (r = 0.85; n = 268). Knowledge of where DRL 
uncertainty persists within salt marshes and the factors influencing the higher uncertainty should facilitate the 
development of better correction methods. 
 
ADDITIONAL INDEX WORDS: Salt marsh vegetation, uncertainty, Spartina alterniflora, interpolation, bare 
earth filtering, inverse distance weighting, DEM. 
 

 
      INTRODUCTION 

Salt marshes are tidally influenced, halophytic grasslands 
found in middle and high latitudes around the globe (Mitsch and 
Gosselink, 2000). They are among the most productive 
ecosystems on the planet and provide valuable services to both 
the natural and human built environments, such as fish nursery 
habitat, carbon storage, sediment traps, water filtration, and 
shoreline protection (Costanza et al., 1997; Mitsch and 
Gosselink, 2000). The response of salt marshes to rising sea 
levels can be determined by very small variations in elevation, 
which affects inundation, available nutrients, sedimentation, and 
salinity (Morris et al., 2002). To monitor their health and 

response to changes in sea level rise (SLR), detailed topographic 
information on the order of centimeters is necessary. However, 
acquiring accurate terrain elevation data can be difficult and is 
typically costly and time-consuming if traditional data collection 
methods are used (Green, Carswell, and Gutelius, 1996). Lidar 
has been identified as a valuable tool for rapid survey of storm 
impacts, monitoring shoreline change, restoration planning, and 
flood hazard assessment (Brock and Sallenger, 2001) and is 
often proposed as a substitute for field-based datasets collected 
via differential leveling, trigonometric leveling with total 
stations, or Global Navigation Satellite System (GNSS) surveys 
(Montane and Torres, 2006; Schmid, Hadley, and Wijekoon, 
2011). 

Lidar’s usefulness in salt marsh studies is a function of the 
uncertainty of lidar-derived elevation relative to the elevation 
range of ecological importance (Sadro, Gastil-Buhl, and Melack, 
2007). For example, lidar in a salt marsh environment is 
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ineffective where its elevation uncertainty (due to vegetative 
variation and other factors) is greater than the elevation range 
determining inundation, species dominance, and habitat. In 
addition to impacts from vegetation, factors known to degrade 
the laser coordinates of points by centimeters to decimeters 
include sensor position and orientation (i.e., the post-processed 
navigation solution from the GNSS-aided inertial navigation 
system (INS)), scan angle, calibration, and environmental 
parameters such as soil saturation (Hodgson and Bresnahan, 
2004; Hopkinson et al., 2004; Lefsky et al., 2002; Shrestha and 
Carter, 1998). Based on all of these factors, especially the 
vegetation and environmental parameters, uncorrected lidar 
datasets generally have relatively high vertical uncertainty in salt 
marsh environments. Therefore, the lidar elevation datasets may 
be inadequate to determine inundation extent and frequency 
(Hladik and Alber, 2012; Morris et al., 2005; Rosso, Ustin, and 
Hastings, 2006; Schmid, Hadley, and Wijekoon, 2011), key 
factors influencing salt marsh health. 

Research to determine the extent to which lidar achieves salt 
marsh canopy penetration has started to shed light on vegetation 
effects (Gopfert and Heipke, 2006; Hladik and Alber, 2012; 
Hladik, Schalles, and Alber, 2013; Populus et al., 2001; Rogers 
et al., 2015; Rosso, Ustin, and Hastings, 2006; Schmid, Hadley, 
and Wijekoon, 2011). Species stem density, vertical density, 
height, and seasonality likely influence lidar signal penetration 
properties in salt marsh environments. In addition to the physical 
attributes of vegetation height, leaf morphology and growth 
habit may also be factors influencing lidar signal returns (Hladik 
and Alber, 2012; Rogers et al., 2015). Leaf structures and 
growth habit vary greatly from species to species. For example, 
Spartina alterniflora has long flat tapering leaves and grows to a 
height of up to 2.0 m, while Spartina patens has narrow linear 
leaves that are rolled within a low growing ~0.1–0.3-m thatch in 
a “cow lick” pattern (Tiner, 1987). All of these vegetation 
attributes are likely to contribute to lidar error, while leading to 
point clouds that are difficult to distinguish visually from bare 
earth surfaces.  

Notwithstanding the contributions of previous research, there 
is a need to better understand the factors affecting the vertical 
uncertainty of lidar data in salt marshes, such that coastal 
scientists and managers can make informed decisions related to 
a) assessment of when and how to use lidar data in salt marsh 
research, b) restoration planning, and c) sea level rise studies. 
This study addresses this need, using lidar data and RTK GNSS 
ground truth, for four salt marshes on Cape Cod, Massachusetts. 
Variables investigated include season (specifically, temporal 
differences between peak growth and senescent conditions), 
vegetation species, and lidar processing (interpolation and 
filtering) method.  

Another important aspect of this study is the use of full-
waveform lidar, which records a time series of backscattered 
signal strength for each laser pulse. Discrete-return lidar systems 
tend not to work well for mapping salt marshes for two reasons. 
First, discrete-return systems typically have a significant “dead 
zone” following each detected return (Nayegandhi et al., 2006). 
Due to this dead zone, a consecutive return typically cannot be 
detected for a surface 1.2–3.0 m below the first detected surface. 
Second, marsh vegetation is typically dense enough that the first 
return will almost always be from the top or somewhere near the 

top of the canopy, rather than the ground. The combination of 
these two factors makes it extremely challenging to perform 
bare earth elevation mapping of salt marshes with discrete-return 
lidar. By providing a time series of digitized return signal 
amplitude (rather than just discrete, detected returns), full-
waveform systems can potentially provide greatly enhaced 
information in this challenging environment. 

Techniques for working with full-waveform that are discussed 
in the literature typically involve sophisticated, computationally 
complex signal processing approaches such as deconvolution or 
decomposition into linear combinations of Gaussians (Jutzi and 
Stilla, 2006; Mallet and Bretar, 2009). Only a few studies have 
been conducted on the use of simple shape-based waveform 
metrics, such as width, numerical integral, slopes, skewness, and 
kurtosis (Adams, Beets, and Parrish, 2012; Collin et al., 2011; 
Muss et al., 2013; Parrish, Rogers, and Calder, 2014; Rogers et 
al., 2015). For purposes of this study, simple, shape-based 
waveform metrics are defined as features that contain 
information about the shape of the return waveform and that are 
computationally efficient to generate, with computation times 
typically being on the order of a few microseconds or less per 
laser pulse (Parrish, Rogers, and Calder, 2014). In this study, 
these features are used to create relative uncertainty surfaces 
(RUS) and assess spatial variation in elevation uncertainty 
throughout the marsh. These spatial assessments of uncertainty 
assist in answering the following types of questions: 1) where 
within the marsh are the elevations most reliable or suspect; 2) 
do the areas of high (or low) uncertainty overlap areas of 
particular concern, such as species transitions or critical habitat; 
and 3) if resources were available to support acquisition of 
 

 

 
 
Figure 1: Lidar flight over a salt marsh. The black dotted line is ground 
measured with a RTK GNSS. The black dashed line is discrete lidar data 
returns of “ground.” Also shown is the transmitted lidar pulse, T0, and 
the single pulse full-waveform returns based on the intercepted terrain 
and cover for three selected locations (arrows). Note: although the scene 
depicted in the figure is a cartoon representation of a marsh, the 
waveforms shown are real and were selected as representative of low 
marsh, high marsh, and bare earth. In all waveform plots, the y-axis is 
amplitude in arbitrary DNs, and the x-axis is discrete time index.
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GNSS reference data within only a portion of the marsh, where 
should these efforts best be concentrated to achieve the greatest 
improvement in the marsh elevation data? Combined with the 
quantitative analysis of the DRL data, this information can assist 
coastal managers and scientists in more effectively utilizing lidar 
data of salt marshes. 
 

METHODS 
Four separate mesotidal salt marshes on protected coasts of 

Cape Cod, Massachusetts, USA, were investigated. The marsh 
sites chosen contained representative stands of the dominant 
plant species for the area (Spartina alterniflora Loisel, Spartina 
patens, Distichlis spicata, and Salicornia spp.) and were in close 
proximity of the marshes to each other, allowing field data to be 
collected within a specified time window around a lidar 
overflight. The sites from north to south are Hatches Harbor 
marsh (1.2 km2), Moors marsh (2.0 km2), Pamet marsh (2.0 
km2), and Great Island – Middle marsh (0.3 km2) (Figure 2). The 
area has a semidiurnal tide with a mean range of ~2.83 m 
(NOAA, 2013). All the marshes surveyed in this study are low 
marsh environments with a sandy substrate and dominated by 
Spartina alterniflora (smooth cordgrass). Typically, there is a 
small border of high marsh located at the upland border 
dominated by Spartina patens (salt marsh hay), Distichlis 
spicata, and Salicornia spp. (glasswort) (Portnoy et al., 2003) 
(Figure 3). At two of the sites, Pamet River and Great Island, a 
large segment of the marsh appears to be in collapse, exhibiting 
extensive areas of bare ground due to a form of marsh wasting 
(Smith, 2009).  
 

 

 
 
Figure 2: Site locus map and RTK GNSS points. Insets are 1) Hatches 
Harbor, 2) Moors marsh, 3) Pamet marsh, and 4) Great Island – Middle 
marsh. 

 
 

The salt marsh vegetation in the study sites was characterized 
by homogeneous, near monoculture stands for three major 
species and one genus (Spartina alterniflora, Spartina patens, 
Distichlis spicata, and Salicornia spp.). The vegetation 
demonstrated zonation patterns which are driven by small-scale 

elevation changes and edaphic conditions (Bertness and Ellison, 
1987). Within an individual vegetative community, variability in 
growth habit and height was also common. Spartina alterniflora 
had three distinct variations or ecophenes observed at these sites 
and other marshes caused by edaphic factors: 0–50 cm (short-
form [SF]); 50–100 cm (medium-form [MF]); and >100 cm 
(tall-form [TF]) (Anderson and Treshow, 1980; Hladik and 
Alber, 2012; Ornes and Kaplan, 1989; Pennings and Bertness, 
2001; Reimold, Gallagher, and Thompson, 1973; Wiegert and 
Freeman, 1990). Tall-form typically grew along estuarine creeks 
with semidiurnal flooding and exceeded 2 m in height in some 
locations. In contrast, short-form was typically found in high 
marsh areas with higher salinity, sulfide concentrations, and/or 
lower redox potential (Mitsch and Gosselink, 2000).  

 

 

 
 
Figure 3: Hatches Harbor – Spartina alterniflora and Salicornia spp. 
zonation along a man-made dike. 

 
 

Lidar Data Collection 
The National Center for Airborne Laser Mapping (NCALM) 

collected 37 km2 of lidar data for this study on July 20, 2010, 
during peak biomass at the daily predicted low tide (± 90 
minutes). The instrument used was an Optech Gemini Airborne 
Laser Terrain Mapper (ALTM) and an Optech 12-bit IWD-2 
intelligent waveform digitizer mounted in a twin-engine Cessna 
337 Skymaster (see flight parameters in Table 1). The DRL 
points were collected via the Optech hardware-based ranging 
system comprised of a constant fraction discriminator and time 
interval meter. Return waveforms were simultaneously digitized 
with a 1-ns sampling period and provided in Optech’s NDF 
binary format with an IDX index file. The sites investigated in 
this research contained low growing marsh vegetation, “bare 
earth,” and water and did not include trees, buildings, or other 
structures. Therefore, the data were almost entirely composed of 
single returns (Rogers et al., 2015). Elevations were initially 
transformed to NAVD88 using GEOID03 and later updated 
using GEOID09 with NOAA’s Vertical Datum Transformation 
(VDatum) version 3.2. (NOAA NGS’s latest geoid model, 
GEOID 12a, did not become available until after the majority of 
the data processing for this study was completed.) 
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Additionally, data were used from the lidar for the North East 
Project funded primarily by the American Recovery and 
Reinvestment Act (ARRA) of 2009 and led by the U.S. 
Geological Survey (USGS). These data were collected for all of 
Cape Cod on May 5, 2011, under senescent conditions and 9 
months after the NCALM flight. The lidar data were acquired 
with an Optech Gemini ALTM (the same make and model of 
system as used by NCALM) during predicted spring low tides (± 
90 minutes) at an altitude of 1,370 m AGL and a pulse rate of 
145 kHz with an average point density of 3.93 pts/m2 (Table 1). 
The data were collected and processed by the provider to meet a 
vertical accuracy of 9.25 cm (RMSEz) in the “open terrain” land 
cover class, and elevations were referenced to NAVD88 using 
GEOID09. 
 
Table 1. Flight parameters of NCALM Jul 20, 2010, and ARRA May 5, 
2011. 
 

Flight Parameter NCALM ARRA 

Flying Speed (m/sec) 60 54

Altitude (m) 600 1,370 

Swath Overlap (%) 50 30 

Laser Beam Divergence (mrad) 0.25 0.25 

Pulse Rate Frequency (kHz) 70 145 

Transmit Pulse Width (ns) 12 12 

Scan Rate (kHz) 40 54 

Scan Angle (degrees) ± 21 ± 28 

Point Density (pts/m2) 5.00 3.93 

Laser Footprint Diameter (m) 0.15 0.28 

 
Field Data Collection 

A detailed set of 3,446 ground-control points (GCPs) was 
established in various zones that included tidal sandflats, low 
marshes, and high marshes. Additionally, hard surfaces such as 
roads and parking lots in close proximity to the marshes were 
surveyed to analyze overall lidar dataset accuracy. The reference 
data were collected with a Trimble R8 Model 3 Real Time 
Kinematic (RTK) GNSS rover and a Trimble NetR5 base station 
network with cellular-based correction. Special care was needed 
to ensure vertical accuracy when using the rover unit in marsh 
environments (Torres and Styles, 2007). A survey rod was 
modified with a 12-cm diameter flat base to prevent the rod 
from sinking into the unconsolidated mud and peat. Ground 
elevations were recorded in arbitrary transects through the marsh 
with an average point spacing of 5–7 m. The equipment 
manufacturer specifies the RTK GNSS enables RMSEs of < 1  
 

cm in the horizontal and ~2 cm in the vertical (assuming 
ellipsoid elevations). All collected elevations were referenced to 
NAVD88 using GEOID09, the latest National Geodetic Survey 
(NGS) geoid model available at the time the airborne lidar data 
were provided. At most of the locations, dominant vegetation 
species and vegetation heights were logged for later 
comparisons with the lidar dataset. The field data collected with 
the RTK GNSS were checked to verify that accuracy standards 
were maintained. Comparisons were made against published 
benchmark elevations, as well as project control established by 
static GNSS using the same Trimble receiver with occupation 
times > 4 hours and processed with respect to Continuously 
Operating Reference Stations (CORS) using NGS’s Online 
Positioning User Service (OPUS). Also, temporary benchmarks 
were established by occupying the same hard surface locations 
several times throughout the field day and computing the mean 
and standard deviation of the repeatedly measured elevations. 
Each elevation error, ΔZ, was calculated as 
 

∆ܼ௜ ൌ ܼ௟௜ௗ௔௥ െ ܼீ௉ௌ   (1) 
 
The sample standard deviation (indicating the spread of the 
elevations about the mean) for the repeatedly surveyed 
temporary benchmarks was determined to be 0.006 m. The 
computed RMSEz was 0.006 m, calculated as follows: 
 

௭ܧܵܯܴ ൌ ට∑ ሺ∆௓೔ሻమ
ಿ
೔సభ

ே
   (2) 

 
Discrete-Return Lidar Processing 

NCALM provided as part of its data deliverable a LAS file of 
last return lidar points and a “bare earth” grid, with point 
classification performed in TerraSolid TerraScan software. 
Upon visual inspection of the “bare earth" grid, the filtering 
method for ground appeared aggressive with large sections of a 
14-m wide by 1.6-km long stone dike completely eliminated by 
the filtering. This issue may have any number of causes and is 
likely a result of specific parameter settings. However, because 
several different gridding and filtering methods were to be 
examined, this data deliverable was not chosen as the sole 
source for analysis. Discrete lidar return data from both temporal 
datasets were preprocessed using QPS Fledermaus 7.43 from the 
original LAS point cloud data. Data evaluation and cleaning 
were performed using the Fledermaus PFM 3D point cloud 
editor to remove artifacts and erroneous or non-natural points 
that could influence the ΔZ or gridding results. After cleaning, 
the point clouds were converted to raster with a grid resolution 
of 1 m using several different algorithms (inverse distance 
weighted [IDW] 1x, IDW 3x, minimum bin, maximum bin). 
IDW 1x used an inverse distance weighted average of only the 
points that fell within the 1- by 1-m cell, while the IDW 3x used 
a weighting of all lidar returns within a 3- by 3-m grid area 
surrounding the target cell. The IDW 1x method provides a 
better estimate of the value of each pixel based on the available 
lidar returns without any influence of the surrounding points, 
while IDW 3x method smooths the data slightly and suppresses 
high-frequency noise. The minimum bin and maximum bin  
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filtering methods use the lowest or highest value of all the lidar 
returns found in the grid cell and ignore all other values in the 
cell. Data were then imported into ESRI ArcGIS 10 for point 
feature and grid-based analysis using Spatial Analyst.  

Lidar fundamental vertical accuracy was evaluated using hard 
surface control data collected with the RTK GNSS on flat 
surfaces such as roads and parking lots (n = 101), and the mean 
was then used to obtain estimates of lidar bias (Brovelli, 
Cannata, and Longoni, 2004; Latypov, 2002; Rosso, Ustin, and 
Hastings, 2006) (Figure 4). Lidar bias is defined as the mean 
elevation error (Rosso, Ustin, and Hastings, 2006; Sadro, Gastil-
Buhl, and Melack, 2007). These surfaces should provide the best 
lidar return, produce minimal scatter, and will not be influenced 
by variable conditions such as overlying vegetation or soil 
moisture content. Elevation errors (ΔZ) were calculated for all 
hard surface points (n = 101), and the mean was then used to 
obtain estimates of lidar bias (Brovelli, Cannata, and Longoni, 
2004; Latypov, 2002; Rosso, Ustin, and Hastings, 2006) (Figure 
4). Lidar bias is defined as the mean elevation error: 
 

μ௟ ൌ
∑ ∆௓೔
ಿ
೔సభ

ே
  (3) 

 
Due to how elevation error is defined (Equation 2), a positive 

bias indicates that the lidar elevations are generally above (i.e., 
higher than) the reference elevations. In this study, it was found 
that the lidar underestimated the RTK GNSS elevations of hard 
surfaces with a bias of –0.087 m and –0.044 m for the NCALM 
and ARRA datasets, respectively (Table 2). Accuracies between 
flights were calculated from the same hard target data points to 
determine any global bias that may prevent an accurate 
assessment. The non-vegetation-induced bias was then removed 
to allow for unbiased comparisons between flights (Rosso, 
Ustin, and Hastings, 2006) and the field-collected elevations. 
After non-vegetation-induced bias removal, the salt marsh 
vegetation was analyzed in a similar manner looking at 
differences between lidar-derived elevation grids, surveyed 
ground elevations (n = 2,898), and field-collected information 
such as vegetation species or plant height. In this analysis, r2, 
goodness-of-fit, except where noted as r, and Pearson 
correlation were used. All regressions and Pearson correlations 
reported in this paper are statistically significant with a p < 0.05, 
unless otherwise noted. 

 
Table 2. Hard target difference (m) between lidar measurement on 
pavement and RTK GNSS (n = 101) for each lidar flight. 
 

  NCALM ARRA 

Mean –0.087 –0.044 

Min –0.250 –0.243 

Max 0.128 0.200 

StDev 0.072 0.102 

RMSEz 0.113 0.110 

 
 
 

 

 
Figure 4: Scatterplot of RTK GNSS elevation against NCALM lidar 
elevation NAVD88 (n = 101) on hard targets (pavement). Solid line is a 
1:1 correlation where the dashed best fit line has the same slope but is 
offset by a mean difference of –0.087 m.

 
 
Relative Uncertainty Surfaces 

Lidar waveforms were extracted by developing a custom 
workflow using ArcGIS, QCoherent LP360, and MATLAB to 
compute waveform shape-related metrics. Extending previous 
work (Parrish, Rogers, and Calder, 2014; Rogers et al., 2015), 
the ability to create relative uncertainty surfaces (RUS) from 
features computed from lidar waveforms was evaluated. This 
process entailed first computing lidar return width for each lidar 
point within each marsh. The regression equations obtained 
from the best-fitting regressions of lidar errors (ΔZ) on 
waveform features developed in Parrish, Rogers, and Calder 
(2014) were then applied to every lidar waveform return within 
a subset of the project sites. The equation used was as follows 
with w representing waveform width (full width half maximum 
[FWHM]) and µw representing waveform mean (a measure of 
the center of the return pulse): 
 

∆෢ܼ ൌ f · x               (4) 
 
where x ൌ ሾ1 ݓ ௪ߤ ݓ · ௪ሿ்ߤ  and 
f ൌ ሾ9.0696 െ0.6419 െ0.3055 0.0207ሿ்  for Moors 
Marsh and f ൌ ሾ2.3250 െ0.1726 0.0334 െ0.0029ሿ்  for 
Pamet Marsh. The output was scaled to an arbitrary range of 0–1 
(with 1 representing the highest relative uncertainty), 
interpolated to a regular grid (1-m grid spacing) using an inverse 
distance weighting (IDW) interpolation, and imported into an 
ArcGIS project containing imagery and other data layers for 
visual analysis. The reason for scaling to the arbitrary range [0 
to 1] is to emphasize that the intended use of these RUS is to 
visually analyze spatial variation in relative uncertainty across a 
marsh, rather than to determine an exact value of ΔZ (with 
physically meaningful units, such as meters) at a particular  
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geographic location. The RUS grid was then lowpass filtered 
(using a 3x3 lowpass filter in the spatial domain) to remove high 
frequency noise and produce a smoother grid. This process 
workflow is illustrated graphically in Figure 5. 
 

 

 
 

Figure 5. Workflow diagram for generation of relative uncertainty 
surfaces (RUS). 

 
 

RESULTS 
Vegetation-induced bias was investigated across all four 

marsh sites using a comparison of 2,648 field RTK GNSS 
measurements with lidar-derived elevations from the July 20, 
2010, NCALM dataset. The reason for focusing primarily on 
bias, rather than on standard deviation and/or RMSEz, is that 
previous studies (Hladik and Alber, 2012; Morris et al., 2005; 
Populus et al., 2001; Schmid, Hadley, and Wijekoon, 2011; 
Torres and Styles, 2007) have shown that salt marsh vegetation 
introduces errors in lidar data that are generally systematic (i.e., 
a high bias), rather than random. However, an important 
component of the analysis included also computing the standard 
deviation and RMSEz for each site and verifying that the 
following relationship is satisfied for large sample sizes: 
 

RMSEz
2 ≈2 + σ2  (5) 

 

where  is the bias and  is the standard deviation.  
 

Discrete-Return Lidar Uncertainty Analysis 
Several different gridding interpolation and filtering methods 

were assessed on the NCALM dataset for their effectiveness in 
producing accurate ground estimates. However, all methods 
evaluated in this study produced DEMs that still had significant 
positive bias. Using one of the most common interpolation 
methods, IDW, with a weight of 1 cell, it was found that the 
lidar measurements exhibited a positive bias of 0.14 m (σ = 0.17 
m), where σ is the standard deviation, over the ground control 
data (Figure 6). When separated by species type, most of the 
overall vegetation bias could be attributed to Spartina 
alterniflora with an observed bias of 0.23 m (σ = 0.20 m) (Table 
3). Using an IDW 3x (interpolation with a weight of 3x3 cells) 
did not produce significant differences from the IDW 1x results. 
The Terrascan filtered grid exhibited a modest improvement 
over the IDW method with a positive bias of 0.11 m (σ = 0.14 
m) (Figure 7). This method also produced several points with 
high negative errors. A species-based review of the Terrascan  

 
Table 3. Difference (m) of Lidar and RTK GNSS by gridding method 
across all sites (all measuremetns in meters). 
 

 
 
 

Grid Method Species N Mean Min Max Stdev RMS

All Vegetation 2648 0.14 -0.34 1.12 0.17 0.22

S. alterniflora 1390 0.23 -0.34 1.12 0.20 0.30

S. patens 709 0.05 -0.24 0.21 0.06 0.07

Distichlis spicata 136 0.06 -0.06 0.15 0.04 0.07

Salicornia spp. 413 0.05 -0.13 0.33 0.06 0.08

All Vegetation 2648 0.14 -0.22 1.13 0.17 0.22

S. alterniflora 1390 0.22 -0.22 1.13 0.19 0.29

S. patens 709 0.05 -0.22 0.20 0.05 0.07

Distichlis spicata 136 0.06 -0.06 0.14 0.04 0.07

Salicornia spp. 413 0.05 -0.13 0.30 0.06 0.08

All Vegetation 2648 0.09 -0.57 1.03 0.15 0.18

S. alterniflora 1390 0.16 -0.57 1.03 0.18 0.24

S. patens 709 0.01 -0.28 0.19 0.06 0.06

Distichlis spicata 136 0.02 -0.10 0.10 0.04 0.05

Salicornia spp. 413 0.01 -0.23 0.26 0.06 0.06

All Vegetation 2648 0.11 -0.60 0.91 0.14 0.18

S. alterniflora 1390 0.18 -0.60 0.91 0.17 0.25

S. patens 709 0.04 -0.11 0.20 0.04 0.06

Distichlis spicata 136 0.05 -0.07 0.12 0.04 0.06

Salicornia spp. 413 0.04 -0.13 0.28 0.05 0.07

All Vegetation 2648 0.04 -0.50 0.29 0.06 0.08

S. alterniflora 1390 0.04 -0.50 0.29 0.06 0.07

S. patens 709 0.06 -0.27 0.23 0.07 0.09

Distichlis spicata 136 0.09 -0.03 0.17 0.04 0.10

Salicornia spp. 413 0.01 -0.20 0.23 0.05 0.05

All Vegetation 2648 0.02 -1.40 0.23 0.10 0.10

S. alterniflora 1390 0.02 -1.12 0.23 0.08 0.08

S. patens 709 0.02 -1.40 0.23 0.12 0.12

Distichlis spicata 136 0.06 -1.33 0.18 0.13 0.14

Salicornia spp. 413 -0.01 -1.07 0.21 0.10 0.10

ARRA 5/5/11 

Minimum Bin

NCALM 

7/20/10   

IDW1x

NCALM 

7/20/10   

IDW3x

NCALM 

7/20/10   

Minimum Bin

NCALM 

7/20/10 

Terrascan 

Ground

ARRA 5/5/11 

IDW1x
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grid was similar in its results with a majority of the overall bias 
attributed to Spartina alterniflora, which always appears to have 
the highest bias regardless of the processing method used.  

The final methods evaluated were minimum and maximum 
bin filtering of the LAS data where the lowest or highest 
elevation reading in a defined grid cell, in this case 1 m2, is used 
and all other values that occur in that grid cell are ignored. As in 
Schmid, Hadley and Wijekoon (2011), the minimum bin method 
generally improved results over the IDW method, reducing 
some positive data drift above the 1:1 correlation line to lower 
the overall bias to 0.09 m (σ = 0.15 m) (Figure 8). However, it 
increased the number of negative errors but decreased the 
standard deviation. It was initially anticipated that a) maximum 
bin would provide a determination of vegetation height, and b) 
the difference of maximum bin and minimum bin would have a 
correlation with bias. However, no strong relationships were 
found to support these assumptions.  
 

 

 
Figure 6. Scatterplot of RTK GNSS to NCALM July lidar elevations 
NAVD88 across all four marsh sites using the IDW 1x grid (n = 2,805). 
Spartina alterniflora is represented by an open circle and all other 
species are represented by a closed circle. The solid line represents 1:1 
correlation.

 
 

The ARRA May 5, 2011, dataset was also evaluated with the 
same gridding and filtering methods, except for Terrascan, 
which was unavailable. This dataset represented leaf-off 
conditions with the marsh in its least vegetated state. As 
expected, this dataset was much improved over leaf-on 
conditions, with an overall bias of 0.04 m (σ = 0.06 m) (Figure 
9). Spartina patens and Distichlis spicata were now the two 
species with the largest bias. Using the minimum bin approach 
on this dataset further reduced the overall bias but increased the 
standard deviation.  

The results of the NCALM dataset at individual marsh sites 
are generally consistent with the overall lidar bias described 
above and are presented in Table 4. Using the IDW 1x 
interpolation method, the NCALM dataset had a range of bias in 
vegetated areas of 0.10 to 0.22 m across all sites. Spartina 
patens, Distichlis spicata, and Salicornia spp. had biases very 

consistent with the overall bias (i.e., the mean across species). 
However, Spartina alterniflora demonstrated the most variation 
with a site specific range from 0.16 m to 0.35 m. Results from 
the ARRA early season flight appear to be more varied and 
inconsistent at the marsh level than the peak season dataset 
(Table 5). There appeared to be fewer patterns of bias for 
individual species. At this early season flight date, Spartina 
patens, Distichlis spicata, and Salicornia spp. appear to produce 
larger bias than Spartina alterniflora. 
 
Table 4. Difference (m) of lidar and RTK GNSS by marsh for NCALM 
Flight. 
 

 
 
 
Table 5. Difference (m) of lidar and RTK GNSS by marsh for NCALM 
Flight. 
 

 
 

Overall bias and standard deviation are summary statistics 
frequently reported to quantify the error of lidar datasets, but 
observing frequency of errors reveals a distribution of lidar error 
unique to each species surveyed (Figure 10). Three of the four 
target species had unimodal distributions, while one, S. 
alterniflora, was clearly multimodal. Due to its three distinct 

N Mean Min Max Stdev RMS Mean Min Max Stdev RMS

Vegetation 532 0.11 -0.14 0.90 0.14 0.18 0.08 -0.23 0.90 0.14 0.16

Spartina alterniflora 271 0.16 -0.06 0.90 0.18 0.24 0.13 -0.08 0.90 0.17 0.22

Spartina patens 183 0.05 -0.06 0.17 0.04 0.07 0.02 -0.16 0.13 0.04 0.05

Distichlis spicata 57 0.07 -0.02 0.15 0.03 0.08 0.04 -0.05 0.10 0.03 0.05

Salicornia spp. 19 0.06 -0.05 0.21 0.06 0.09 0.03 -0.08 0.14 0.05 0.06

Vegetation 775 0.10 -0.24 0.55 0.11 0.15 0.05 -0.51 0.52 0.10 0.12

Spartina alterniflora 406 0.16 -0.14 0.55 0.11 0.20 0.10 -0.51 0.52 0.11 0.15

Spartina patens 121 0.02 -0.24 0.19 0.06 0.07 -0.02 -0.27 0.19 0.07 0.07

Distichlis spicata 57 0.07 -0.14 0.15 0.04 0.08 0.03 -0.23 0.10 0.05 0.06

Salicornia spp. 237 0.05 -0.13 0.18 0.05 0.07 0.01 -0.23 0.16 0.06 0.06

Vegetation 819 0.22 -0.34 0.96 0.20 0.30 0.15 -0.55 0.83 0.18 0.23

Spartina alterniflora 449 0.35 -0.34 0.96 0.18 0.39 0.26 -0.55 0.83 0.17 0.31

Spartina patens 294 0.05 -0.17 0.21 0.06 0.08 0.01 -0.28 0.19 0.06 0.06

Distichlis spicata 3 0.01 -0.02 0.03 0.03 0.02 -0.01 -0.03 0.01 0.02 0.02

Salicornia spp. 56 0.05 -0.20 0.30 0.06 0.08 0.01 -0.28 0.16 0.06 0.06

Vegetation 679 0.13 -0.23 1.12 0.19 0.23 0.06 -0.57 1.03 0.16 0.18

Spartina alterniflora 347 0.20 -0.23 1.12 0.24 0.31 0.12 -0.57 1.03 0.21 0.24

Spartina patens 159 0.06 -0.09 0.21 0.05 0.08 0.01 -0.25 0.18 0.07 0.07

Distichlis spicata 65 0.05 -0.06 0.13 0.04 0.07 0.01 -0.10 0.09 0.04 0.04

Salicornia spp. 103 0.06 -0.09 0.33 0.07 0.09 0.01 -0.13 0.26 0.07 0.07

IDW - 7/20/10 Minimum Bin - 7/20/10

Pammet Marsh

Moors Marsh

Hatches Harbor

Great Island

Marsh Species

N Mean Min Max Stdev RMS Mean Min Max Stdev RMS

Vegetation 532 0.09 -0.20 0.23 0.05 0.10 0.06 -1.40 0.23 0.12 0.13

Spartina alterniflora 271 0.07 -0.06 0.23 0.05 0.09 0.05 -1.12 0.23 0.09 0.10

Spartina patens 183 0.11 -0.16 0.21 0.04 0.12 0.08 -1.40 0.23 0.12 0.15

Distichlis spicata 57 0.12 0.03 0.17 0.03 0.12 0.08 -1.33 0.18 0.19 0.21

Salicornia spp. 19 0.05 -0.20 0.23 0.09 0.10 0.04 -0.33 0.21 0.11 0.12

Vegetation 775 0.01 -0.28 0.20 0.04 0.04 -0.02 -1.25 0.21 0.11 0.11

Spartina alterniflora 406 0.02 -0.28 0.20 0.04 0.05 -0.01 -0.87 0.21 0.09 0.09

Spartina patens 121 -0.01 -0.23 0.11 0.05 0.05 -0.04 -1.25 0.11 0.16 0.16

Distichlis spicata 57 0.11 -0.03 0.17 0.04 0.12 0.07 -1.33 0.18 0.20 0.21

Salicornia spp. 237 -0.01 -0.11 0.09 0.03 0.03 -0.03 -1.07 0.07 0.11 0.12

Vegetation 819 0.02 -0.50 0.17 0.05 0.06 0.00 -1.29 0.19 0.08 0.08

Spartina alterniflora 449 0.02 -0.50 0.17 0.05 0.06 0.00 -0.47 0.19 0.06 0.06

Spartina patens 311 0.03 -0.27 0.14 0.06 0.06 -0.01 -1.29 0.11 0.09 0.09

Distichlis spicata 3 0.05 0.01 0.11 0.05 0.07 0.00 -0.05 0.06 0.05 0.04

Salicornia spp. 56 -0.01 -0.14 0.17 0.04 0.04 -0.01 -0.24 0.16 0.07 0.07

Vegetation 679 0.08 -0.20 0.29 0.05 0.09 0.04 -0.38 0.22 0.06 0.07

Spartina alterniflora 347 0.08 -0.18 0.29 0.05 0.09 0.04 -0.38 0.22 0.06 0.07

Spartina patens 164 0.09 -0.20 0.23 0.05 0.10 0.05 -0.27 0.17 0.05 0.07

Distichlis spicata 65 0.09 0.01 0.16 0.03 0.09 0.05 -0.05 0.15 0.04 0.06

Salicornia spp. 103 0.06 -0.10 0.19 0.04 0.08 0.03 -0.21 0.12 0.04 0.05

IDW - 5/5/11 Minimum Bin - 5/5/11
Marsh Species

Great Island

Hatches Harbor

Moors Marsh

Pamet Marsh
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Figure 7. Scatterplot of RTK GNSS to NCALM July, Terrascan ground-
filtered lidar elevations NAVD88 across all four marsh sites using the 
IDW 1x grid (n = 2,805). Spartina alterniflora is represented by an open 
circle and all other species are represented by a closed circle. The solid 
line represents 1:1 correlation.

 
 

 

 
Figure 8. Scatterplot of RTK GNSS to NCALM July lidar elevations 
NAVD88 across all four marsh sites using the Minimum Bin grid (n = 
2,805). Spartina alterniflora is represented by an open circle and all 
other species are represented by a closed circle. The solid line represents 
1:1 correlation.  

 
 
ecophenes, each distribution was also plotted. The short-form S. 
alterniflora error distribution had a bias of 0.12 m (σ = 0.12 m) 
(n = 509). It has a similar peak as the other shorter species but 
with a slightly longer tail. The medium-form S. alterniflora 
exhibited a bias of 0.23 m (σ = 0.17 m) and also had an extended 
tail toward higher errors (n = 530). Last, the tall-form S. 
alterniflora showed a broad distribution with a bias of 0.41 m (σ 
= 0.21 m) (n = 349). 
 

 

 
Figure 9. Scatterplot of RTK GNSS to ARRA May lidar elevations 
NAVD88 across all four marsh sites using the IDW 1x grid (n = 2,805). 
Spartina alterniflora is represented by an open circle and all other 
species are represented by a closed circle. The solid line represents 1:1 
correlation. 

 
 

 

 
Figure 10. Frequency of occurrence for lidar errors by vegetation species 
using the IDW 1x grid (n = 2,805) across all four marsh sites. The thick 
solid line represents the combined total of all S. alterniflora ecophene 
errors [SF – Short-Form (<0.5 m), MF – Medium-Form (0.5–1 m), TF – 
Tall-Form (>1 m)]. 

 
 

The role of vegetation height as a source of lidar bias was 
likewise examined. The mean height for all vegetation at 2,648 
RTK GNSS locations was 0.46 m (σ = 0.38 m), with a minimum 
height of 0.02 m and a maximum recorded height of 1.95 m. 
Spartina alterniflora was significantly taller than the three other 
major species present in these marshes (Table 6). The mean 
height for Spartina alterniflora (short-, medium-, and tall-forms 
combined) was 0.68 m (σ = 0.38 m), with a minimum height of 
0.03 m and a maximum height of 1.95 m. Lidar errors (the  
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difference between the NCALM IDW 1x grid and RTK GNSS 
elevation) plotted with the recorded vegetation heights at the 
same locations exhibited an r2 = 0.49 (n = 2,648) (Figure 11). A 
regression of only the S. alterniflora locations exhibited an r2 of 
0.36 (n = 1,473). The bias to height ratio (the mean of the ratio 
of lidar errors to vegetation heights) was calculated for each 
species and represents the amount of lidar bias as a function of 
the vegetation height. The overall bias to height ratio was 34% 
for all vegetation species at the four field sites. Three of the 
individual species surveyed, Spartina alterniflora, Spartina 
patens, and Distichlis spicata, had a bias to height ratio of 35%, 
while Salicornia spp. was observed to have a lower ratio of 
25%. 

 

 
 

 
Figure 11. Scatterplot of lidar errors across all four marsh sites using the 
IDW 1x grid (n = 2,805) and field-measured vegetation height. Spartina 
alterniflora is represented by an open circle and all other species are 
represented by a closed circle. A regression of only the Spartina 
alterniflora exhibits an r2 of 0.36 (n = 1,473). 

 
 
 

Table 6. Vegetation heights (cm) across all four marsh sites collected 
during the NCALM July 20, 2010, lidar flight. The bias to height ratio 
(BHR) is the mean of the ratio of lidar errors to vegetation heights. 

 

 Analysis N Mean Min Max SD BHR 

All Vegetation 2,648 0.46 0.02 1.95 0.383 34% 

Spartina 
alterniflora 

1,473 0.68 0.03 1.95 0.385 35% 

Spartina 
patens 

781 0.18 0.02 0.41 0.078 35% 

Distichlis 
spicata 

136 0.22 0.08 0.42 0.085 34% 

Salicornia 
spp. 

258 0.19 0.05 0.27 0.051 25% 

 
 
 

Temporal Analysis 
To look at the effects of seasonal vegetation growth on the 

lidar accuracy, a comparison of the May 2011 lidar data with the 
July 2010 dataset was conducted at the same 2,810 ground 
control points. It was assumed prior to data collection that the 
July dataset, acquired at peak vegetation conditions, would 
display increased elevation bias over the near-senescent early 
May flight. The results support this assumption, with the July 
dataset displaying an overall increase in bias of 0.1 m (Table 7). 
A graph of this comparison exhibits a strong positive bias above 
the 1:1 correlation line (Figure 12). When evaluated by species, 
GCP locations where Spartina alterniflora was dominant 
exhibited the most significant increase in elevation bias of 0.18 
m. However, very little change or slight negative change was 
observed for the other high marsh species surveyed. 

 
Table 7. Difference in meters between the ARRA May 5, 2011, and the 
NCALM July 20, 2010, lidar flights across all four marsh sites (n = 
2,648). 
 

 Analysis N Mean Min Max SD RMS 

All Vegetation 2,648 0.10 –0.14 1.06 0.17 0.20 

Spartina 
alterniflora 

1,390 0.18 –0.12 1.06 0.19 0.26 

Spartina 
patens 

709 –0.01 –0.11 0.20 0.05 0.05 

Distichlis 
spicata 

136 –0.03 –0.10 0.06 0.03 0.05 

Salicornia 
spp. 

413 0.04 –0.14 0.40 0.06 0.07 

 

 

 
Figure 12. Plot of lidar elevation NAVD88 from the ARRA May 5, 
2011, flight and the NCALM July 20, 2010, flight across all four marsh 
sites. The solid line represents 1:1 correlation. Spartina alterniflora is 
represented by an open circle (n = 1,473) while all other survey 
vegetation species are represented by a closed circle (n = 1,337). 
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To qualitatively and quantitatively evaluate change due to 
growth/seasonal variation, a difference map was created by 
subtracting the grid of the May flight from the July flight 
(Figure 13), producing a visual representation of the changes 
occurring across the marsh. Overall, there was a net positive 
increase in marsh elevations as recorded by the DRL system. 
Clear patterns of tall vegetation near the tidal channels and in 
the lowest reaches of the marsh are evident and correspond with 
the distribution of Spartina alterniflora observed during 
fieldwork and with aerial photography. These areas of intense 
change ranged up to 1 m in height in tight concentrations. Based 
on an analysis of 381,654 pixels of marsh surface in a subset of 
Moors marsh, the mean difference was 0.27 m (σ = 0.19 m) with 
a minimum of –0.34 m and a maximum of 1 m (Figure 14). 
There were very few pixels that indicated a negative change  
 

 

 
Figure 13. Difference map of increased marsh surface elevations from 
the ARRA May 5, 2011, and the NCALM July 20, 2010, lidar flights for 
Moors marsh. 

 
 

 

 
Figure 14. Histogram of marsh surface elevation differences from grids 
of the ARRA May 5, 2011, and the NCALM July 20, 2010, lidar flights 
(n = 381,654) for Moors marsh. 

 

between leaf-on and leaf-off conditions within the marsh subset 
analyzed. The presumed underlying cause of the temporal 
change is the growth of the vegetation. Evaluating the grid 
difference with the field-measured vegetation heights exhibited 
a correlation with an r2 = 0.59 (n = 789) (Figure 15). However, a 
comparison between observed discrete lidar errors (ΔZ = IDW 
1x – RTK GNSS) of the NCALM 2010 flight with the 
difference between the ARRA May 5, 2011, and the NCALM 
July 20, 2010, lidar flights for the Moors marsh site had an r2 = 
0.91 (n = 785) (Figure 16), indicating that the errors are indeed 
associated with areas of taller vegetation. 

 

 

 
Figure 15. Relationship of the elevation difference between the ARRA 
May 5, 2011, and the NCALM July 20, 2010, lidar flights with field-
recorded vegetation height (n = 788) across all four marsh sites. Spartina 
alterniflora is represented by an open circle (n = 436), while all other 
vegetation species surveyed are represented by a closed circle (n = 352). 

 
 

 

 
Figure 16. Relationship of discrete lidar elevation bias (ΔZ = IDW 1x – 
RTK GNSS) of the NCALM dataset with the difference between the 
ARRA May 5, 2011, and the NCALM July 20, 2010, lidar flights (n = 
785) for the Moors marsh site.  
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Relative Uncertainty Surfaces 
The next step in this study was to build upon previous work 

using lidar waveform feature-based metrics, waveform width 
and waveform mean, as they relate to both vertical uncertainty 
and vegetation height (Parrish, Rogers, and Calder, 2014; 
Rogers et al., 2015). Using the regression equation above 
(Equation 4) from Parrish, Rogers, and Calder (2014), each 
individual waveform was mapped to an uncertainty value and 
then normalized to a relative value between 0–1 before gridding. 
The RUS were obtained in this manner for Moors marsh and 
Pamet marsh (Figure 17). Qualitatively, these maps display  
 

 

 

 
 

Figure 17. (a) Relative uncertainty surface (RUS) for Moors marsh 
developed from lidar waveform shape metrics. (b) RUS for Pamet 
marsh. Relative uncertainty surfaces contain unitless values scaled to the 
range [0–1]. This product is intended to provide a depiction of the 
general variation in elevation uncertainty across the marsh. Field 
locations are color coded by vegetation height and plotted over the RUS 
for general comparison. 

 
 
 

intricate detail as to the spatial variability in vertical error. 
Visual inspection of the RUS indicated that the areas of greatest 
uncertainty correspond with distributions of MF and TF 
Spartina alterniflora.  

Several quantitative analyses were conducted on these 
uncertainty surfaces to determine how well they represent 
ground conditions. The results of the RUS analysis are presented 
in terms of Pearson’s correlation coefficient (r) since the goal 
was to merely determine whether there were any relationships 
between the variables. The first was a comparison between the 
waveform relative uncertainty value and the discrete-return lidar 
errors (ΔZ) at Pamet marsh, which exhibited a correlation of r = 
0.86 (n = 271) (Figure 18). As lidar errors and vegetation height 
are assumed to be correlated, a comparison of the waveform 
uncertainty value and vegetation height was also conducted 
(Figure 19), which produced an r = 0.85 (n = 268). Last, the 
temporal analysis conducted between the July 2010 and May 
2011 flights produced a detailed difference map attributable to 
seasonal vegetation growth. A subset of this grid sharing the 
same spatial extent as the waveform RUS grid was produced and 
the values of waveform uncertainty and temporal difference for 
each grid cell were compared. This procedure created a database 
of 380,024 values, which when plotted was extremely difficult 
to interpret visually due to tens of thousands of points plotting 
on top of one another. To refine the results to an interpretable 
graph, a random subset of 2,000 points was extracted (Figure 
20). The overall r was 0.82 (n = 380,024), and four individual 
subsets of 2,000 randomized points had r values of 0.81, 0.89, 
0.82, and 0.86.  
 

DISCUSSION 
Discrete Lidar Uncertainty 

Comparison of DRL with RTK GNSS ground-truth elevations 
yielded interesting, if not unexpected, results. Overall, ground 
elevations were not well mapped in either the spring or fall 
flights by the lidar sensor within vegetated portions of the 
marsh. However, the spring dataset resulted in measurements 
closer to ground (bias of 0.04 m, σ = 0.06 m) because senescent 
vegetation was flattened or removed over the winter. A positive 
lidar bias of 0.14 m (σ = 0.17 m) was observed in the vegetated 
salt marsh surfaces of the July flight (Table 3). When individual 
vegetation species were separated, a majority of the bias can be 
attributed to just one species during the July flight. Spartina 
alterniflora produced a bias of 0.23 m (σ = 0.20 m), while the 
three other species in this study had a combined bias of 
approximately 0.05 m (σ = 0.06 m). The vertical growth habit of 
Spartina alterniflora is very different from the other species 
surveyed, which are low growing matt-like plants with mean 
heights less than 0.22 m (Table 6). Spartina alterniflora was 
observed to grow vertically with stalks 4–5 cm apart and 0.2–2.0 
m in height with narrow, interlocking leaves near the top of the 
canopy. This growth form appears to greatly impact lidar pulse 
returns (Rogers et al., 2015). A regression of lidar errors and 
recorded vegetation heights at GCPs exhibited a significant but 
moderate coefficient of determination, r2 = 0.49. The association 
is similar to that found by Schmid, Hadley, and Wijekoon 
(2011) and displayed significant scatter, suggesting high  
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Figure 18. Relationship of the waveform relative uncertainty value with 
lidar bias (ΔZ) for all vegetation types (n = 271) at Pamet marsh from 
the NCALM July 20, 2010, dataset. The Pearson correlation coefficient 
(r) is presented. 

 
 

variability within the vegetation and the possibility of other 
factors influencing the increased lidar errors such as stem 
density, biomass density, or proportion vegetative area (PVA), a 
measure of the cross-sectional area and the light obscuring 
properties of the vegetation (Rogers et al., 2015). 

Using various gridding and filtering methods, it may be 
possible to improve the overall DEM quality and lower lidar 
bias. For instance, using a minimum bin approach produced an 
improvement to overall lidar bias from 0.14 m (σ = 0.17 m) 
down to 0.09 m (σ = 0.17 m) when compared with the inverse 
distance weighting method for the July flight (Table 3). This is 
also consistent with findings by Schmid, Hadley, and Wijekoon 
(2011), but minimum bin can have certain disadvangates. For 
example, in the ARRA data in this study, minimum bin reduced 
the bias but increased the standard deviation. Additionally, in 
non-vegetated, open terrain areas, minimum bin often favors 
lowest points that are erroneous (these would normally have 
been ignored, filtered out, or averaged into a series of points 
within a grid cell). Thus, minimum bin can produce poor results 
in areas such as mud/sand flats or steeper slopes of tidal streams 
(Schmid, Hadley, and Wijekoon, 2011). There is a large 
difference of effectiveness of minimum bin between the shorter 
species and the taller S. alterniflora (Table 4). Maximum bin 
filtering did not perform as well as was initially expected. A 
strong correlation between the difference of maximum and 
minimum bin with either the field-collected vegetation height or 
the observed lidar errors would have been a strong case 
supporting the use of these methods as part of a DEM 
improvement strategy. Bare earth filtering algorithms such as 
provided in Terrascan can reduce some of the vegetation-
induced elevation bias, but they are not a panacea for the 
challenges of lidar mapping of salt marshes and can introduce 
other issues/artifacts. 

Intuitively, it appears that without an effective correction 
technique to remove lidar bias from DRL datasets, minimizing  

 

 
Figure 19. Relationship of the waveform relative uncertainty value with 
vegetation height for all vegetation types (n = 268) at Pamet marsh from 
the NCALM July 20, 2010, dataset. The Pearson correlation coefficient 
(r) is presented. 

 
 

 

 
Figure 20. Relationship of the waveform relative uncertainty value with 
randomly selected subset of difference measurements (n = 2,000) at 
Moors marsh from grids of the ARRA May 5, 2011, and the NCALM 
July 20, 2010, lidar flights. The Pearson correlation coefficient (r) is 
presented. 

 
 
bias in salt marsh environments requires that lidar flights should 
be coordinated during leaf-off, senescent conditions. However, 
senesced vegetation from the previous growing season also 
appears to impact the DRL pulse returns (Table 3) (Hladik and 
Alber, 2012; Schmid, Hadley, and Wijekoon, 2011). 
Winter/early spring flights during senescent conditions are not 
always logistically feasible, and in the case of storm 
assessments, coastal areas must be surveyed immediately. 
Furthermore, in some locations such as in the southeastern 
United States, the vegetation does not fully senesce. The May 
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dataset, as a result of the season, had an overall lidar bias of 0.04 
m, which was a 0.10-m reduction over the July dataset. This 
reduction in bias is the direct result of the vegetation being dead 
and/or removed from the marsh. These findings are consistent 
with those of other researchers (Montane and Torres, 2006; 
Morris et al., 2005; Schmid, Hadley, and Wijekoon, 2011). 
Montane and Torres (2006) found senescent vegetation in South 
Carolina to have an overall bias of approximately 0.07 m. 
Another consideration when surveying colder northern climates 
is the impact of heavy winter snow/ice, which can be present on 
the marsh surface. The weight of the snow/ice sometimes 
compresses or strips the vegetation (i.e., Spartina alterniflora 
stalks) to the ground line (Ewanchuk and Bertness, 2004). In 
addition, ice can even temporarily depress the marsh surface 
(Argow and Fitzgerald, 2006) or permanently alter marsh 
surface elevations by rafting vegetation/sediment (Redfield, 
1972; Van Proosdij, Ollerhead, and Davidson-Arnott, 2006).    

This research shows changes in DEM surfaces derived from 
DRL between senescent and peak-growth conditions, leading to 
detailed maps of growth-induced bias (Figure 13). This finding 
further supports DRL flight planning during senescent marsh 
conditions. The Moors marsh difference surface exhibited 
significant correlation to vegetation height and lidar errors 
during the July flight. It seems natural that seasonal variations in 
elevation detected by DRL would be related to observed lidar 
errors and vegetation heights. Yet even more interesting was the 
difference surface’s strong relationship with the observed lidar 
errors (r2 = 0.91) compared to the difference surface plotted vs. 
vegetation height (r2 = 0.59). A correlation of lidar errors 
directly with vegetation height across all four marsh sites only 
yielded an r2 of 0.49. Previous research has suggested that lidar 
bias may correspond to roughly half the canopy height of a 
given vegetation class (Populus et al., 2001) or that vegetation 
height alone was not enough to explain positive bias and that 
vegetation density also plays a role (Gopfert and Heipke, 2006). 
Schmid, Hadley, and Wijekoon (2011) suggested that the 
product of percent coverage (amount of the ground covered by 
vegetation) with vegetation height was a better correlation with 
lidar bias than strictly height. As demonstrated in this study by 
an overall bias to height ratio of 34%, the lidar bias appears to 
be less than the half of the canopy height estimate provided by 
other researchers, despite the data being collected during peak-
growth conditions where previous researchers were working 
with senescent vegetation datasets. Even with a high PRF (pulse 
repetition frequency) of 125 kHz (Hladik and Alber, 2012) and a 
small footprint lidar, poor lidar penetration is achieved with 
potentially less than 3% of lidar returns from the ground surface 
likely to be recorded (Wang et al., 2009). The lower r2 value 
found for seasonal difference to vegetation height compared 
with temporal difference surface’s strong relationship with the 
observed lidar errors suggests that some other parameters such 
as planimetric obscuration (percent coverage) or biomass 
density must also influence lidar penetration and pulse return 
(Rogers et al., 2015; Schmid, Hadley, and Wijekoon, 2011).  
 
Relative Uncertainty Surfaces 

In previous studies, simple, shape-related lidar waveform 
metrics were found to be predictive in estimating uncertainty 
and salt marsh biophysical parameters (Parrish, Rogers, and 

Calder, 2014; Rogers et al., 2015). Waveform features such as 
width and amplitude had significant correlations with lidar 
uncertainty, vegetation height, planimetric obscuration, and 
Proportion Vegetation Area (a ratio of the vertical obscuration 
[%] to the cross-sectional area of the measurement) (Rogers et 
al., 2015). In fact, waveform amplitude and waveform standard 
deviation accounted for nearly 75% of the variability in 
vegetation height (Rogers et al., 2015). The insights from those 
studies led to the creation of the RUS. As noted earlier, the 
motivation for describing these surfaces as “relative” and 
recording grid values using an arbitrary, unitless scale of 0–1, as 
opposed to reporting either estimated errors or standard 
uncertainty values in units of meters, is to avoid overstating the 
ability to predict elevation uncertainty from the waveform 
features. Research showed that the waveform features used to 
generate these surfaces were successful, on average, in 
predicting close to 60% of the total variation in DRL errors 
across marshes (Parrish, Rogers, and Calder, 2014). That 
analysis indicated that the strength of error prediction is 
sufficient for creating the RUS qualitative product shown in 
Figure 17, which provides a visual representation of the general 
variation of lidar uncertainty across the marsh. However, if the 
term “relative” were to be dropped and individual pixel values 
were assigned physically meaningful error units (e.g., meters), 
there may be a tendency to misuse these data layers by placing 
too much faith in the exact value recorded at an individual pixel. 
Further research needs to be conducted using waveform feature 
metrics before more confidence can be given to these grids for 
project planning requiring highly accurate error estimates. 

Attempts were made at analyzing and interpreting the RUS by 
comparing them to independently collected field data. The 
waveform uncertainty value correlated well with the discrete-
return lidar bias and vegetation height. Also, the RUS displayed 
strong correlation with the temporal difference (∆ܼ௧) between 
the July and May flights. The RUS surface is a strong indicator 
of lidar bias and can be used for qualitative analysis. Tall-form 
and medium-form ecophenes of Spartina alterniflora with 
vegetation height ranges of 0.5–2.0 m corresponded well to the 
higher values in the RUS. It appears likely that the waveform 
characteristics implemented in the RUS could be used to detect 
and map the boundary between high and low marsh 
environments with some degree of accuracy, since that boundary 
represents not only a change in vegetation species but also 
height. A qualitative product such as RUS can help plan projects 
even if exact uncertainty is not known or surface correction is 
not possible. For instance, identifying areas within the marsh 
where the elevations are the most reliable or potentially suspect 
could guide attention and resources to only the areas that require 
it. RUS might target field data collection and GNSS acquisition 
efforts, estimate vegetation height, or correlate with critical 
wildlife habitat and specific vegetation species of interest. RUS 
may also be used to quickly identify and monitor locations of 
change within the marsh since areas of higher uncertainty should 
be related to vegetation height, which in most cases will imply 
changes in inundation frequency. Increased inundation could be 
a result of SLR or represent areas that are subsiding due to other 
factors. MF and TF S. alterniflora have been shown to correlate 
well with RUS and grow at optimal elevations for that species 
(Morris et al., 2005). If areas on the high marsh platform, which 
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normally is populated by S. patens, suddenly begin to exhibit 
high RUS values, then further investigation would be necessary 
to determine the potential cause. 

In previous studies, various attempts have been made to 
understand salt marsh lidar bias and improve the lidar-produced 
DEM through interpolation method, point cloud filtering, or 
classification (Morris et al., 2005; Rosso, Ustin, and Hastings, 
2006; Schmid, Hadley, and Wijekoon, 2011; Torres and Styles, 
2007; Wang et al., 2009). In addition, there have been several 
innovative approaches to DEM correction using vegetation 
mapping, both field and hyperspectral, and the determination 
and removal of constant, species-based mean correction values 
(Hladik and Alber, 2012; Hladik, Schalles, and Alber, 2013). 
However, this method, although an improvement on previous 
correction attempts, is ultimately limited because it assumes 1) a 
priori knowledge of species location, which is usually 
unavailable, woefully inaccurate, or requires additional sensors, 
processing, and interpretation that add to cost, time, and 
introduced errors; and 2) that each vegetation species requiring a 
DEM correction has a constant correction factor across its entire 
extent. As evidenced in this paper and visually presented in 
Figure 10, different marsh species, in particular the often 
spatially dominant S. alterniflora, have different ranges of bias 
that fall in a continuous distribution rather than a constant. This 
range of bias is presumably influenced by vegetation height, 
stem density, planimetric obscuration, biomass density, and 
growth habit (Hladik and Alber, 2012; Rogers et al., 2015; 
Schmid, Hadley, and Wijekoon, 2011). Using full-waveform 
lidar datasets, such as those used to create the RUS products, 
allows an interpretation of the uncertainty based on a spectrum 
of results rather than a constant. Future work will attempt to 
exploit the full-waveform’s enhanced information and 
capabilities to develop new correction methods. 

 
CONCLUSIONS 

Vegetation-induced lidar uncertainty continues to be a 
challenge to researchers and coastal managers wanting to use 
lidar for fine topographic analysis in salt marshes. As in other 
environments, lidar uncertainty varies as a function of the terrain 
and vegetation cover type. The following conclusions can be 
drawn from this investigation:  

 
(1) DRL returns in salt marsh environments include positive 

bias regardless of flight capture season. Positive lidar bias 
of 0.14 m (σ = 0.17 m) was observed across all survey 
locations in the peak vegetation dataset. A majority of the 
bias can be attributed to just one species, Spartina 
alterniflora. 

(2) Custom interpolation and filtering techniques such as 
minimum bin may improve overall accuracy but can 
introduce additional errors, potentially creating negative 
bias considerations while not addressing a majority of the 
species-specific bias. 

(3) Different marsh species have diverse ranges of bias that 
fall in a continuous distribution of errors rather than a 
constant value. While most species observed in this study 
have unimodal distributions, S. alterniflora has a 
multimodal distribution as a result of its three distinct 
ecophenes. This multimodal distribution complicates 

currently developed correction techniques. 
(4) Temporal measurements of change in vegetation-induced-

bias between peak and senescent growth conditions are 
possible from lidar datasets. This finding further supports 
DRL flight planning during senescent marsh conditions 
and the ability of the sensor to discriminate small 
vegetation-induced elevation changes. 

(5) Waveform feature metrics can be used to create RUS that 
are useful to predict regions of variable uncertainty that 
can be confidently used for targeted ground truth or other 
field work activities. 

 
The results of this study suggest that it may be possible to 

achieve at least a coarse understanding of lidar bias across an 
entire marsh from analysis of the lidar data alone without the a 
priori knowledge of vegetation species location. RUS maps can 
be used to minimize the amount of expensive, time-consuming 
field work, target specific habitats, or possibly monitor marsh 
change over time as it may relate to SLR and restoration 
initiative. Achieving this goal will require further research to 
extend analyses to marshes in different regions of the country 
with differing vegetation species and further develop a 
correction technique using full-waveform feature-based 
uncertainty surfaces to improve lidar accuracy in salt marsh 
environments. 
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