The classification of reproductive isolating barriers laid out by Dobzhansky and Mayr has motivated and structured decades of research on speciation. We argue, however, that this classification is incomplete and that the unique contributions of a major source of reproductive isolation have often been overlooked. Here, we describe reproductive barriers that derive from the reduced survival of immigrants upon reaching foreign habitats that are ecologically divergent from their native habitat. This selection against immigrants reduces encounters and thus mating opportunities between individuals from divergently adapted populations. It also reduces the likelihood that successfully mated immigrant females will survive long enough to produce their hybrid offspring. Thus, natural selection against immigrants results in distinctive elements of premating and postmating reproductive isolation that we hereby dub “immigrant inviability.” We quantify the contributions of immigrant inviability to total reproductive isolation by examining study systems where multiple components of reproductive isolation have been measured and demonstrate that these contributions are frequently greater than those of traditionally recognized reproductive barriers. The relevance of immigrant inviability is further illustrated by a consideration of population-genetic theory, a review of selection against immigrant alleles in hybrid zone studies, and an examination of its participation in feedback loops that influence the evolution of additional reproductive barriers. Because some degree of immigrant inviability will commonly exist between populations that exhibit adaptive ecological divergence, we emphasize that these barriers play critical roles in ecological modes of speciation. We hope that the formal recognition of immigrant inviability and our demonstration of its evolutionary importance will stimulate more explicit empirical studies of its contributions to speciation.