Many spiders, and in particular those in the genus Argiope, spin highly visible web decorations whose function and significance are the subject of spirited debate. In this work, we present data to address two of the competing hypotheses that fuel this controversy. In particular, we examine the relationship between the presence of web decorations and spider survivorship (predator-protection hypothesis) and the relationship between the presence of prey and spider decorating behavior (the prey-attraction hypothesis). Our laboratory studies reveal that the decorating behavior of the spider A. argentata has a genetic component but that the expression of decorating behavior tends to be elicited only when a spider is well fed. Furthermore, our field studies show that in the presence of abundant stingless bees, spider decorating behavior is induced. Nevertheless, our field surveys also suggest that spiders that decorate their webs show reduced survivorship. We propose that the high correlation between web decorating in the presence of stingless bees supports the hypothesis that A. argentata engage in decorating behavior when attracting or targeting specific prey types. However, we also propose that web decorations attract the predators of A. argentata because high-frequency decorators suffer lower survivorship than spiders that decorate moderately or rarely. These findings suggest that spider web decorating behavior is affected by conflicting selection pressures: the positive effect of prey attraction versus the negative effect of predator attraction. Due to the heritable component of decorating behavior, web decorating among A. argentata is likely to be particularly sensitive to the spider's local ecology as well as local patterns of gene flow.
Corresponding Editor: L. Stevens