Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Genetic effects from radiation have been observed in a number of species to date. However, observations in humans are nearly nonexistent. In this review, possible reasons for the paucity of positive observations in humans are discussed. Briefly, it appears likely that radiation sensitivity for the induction of mutations varies among different genes, and that the specific genes that were used in the past with the specific locus test utilizing millions of mice may have simply been very responsive to radiation. In support of this notion, recent studies targeting the whole genome to detect copy number variations (deletions and duplications) in offspring derived from irradiated spermatogonia indicated that the mutation induction rate per genome is surprisingly lower than what would have been expected from previous results with specific locus tests, even in the mouse. This finding leads us to speculate that the lack of evidence for the induction of germline mutations in humans is not due to any kind of species differences between humans and mice, but rather to the lack of highly responsive genes in humans, which could be used for effective mutation screening purposes. Examples of such responsive genes are the mouse coat color genes, but in human studies many more genes with higher response rates are required because the number of offspring examined and the radiation doses received are smaller than in mouse studies. Unfortunately, such genes have not yet been found in humans. These results suggest that radiation probably induces germline mutations in humans but that the mutation induction rate is likely to be much lower than has been estimated from past specific locus studies in mice. Whole genome sequencing studies will likely shed light on this point in the near future.
Recently reported studies have associated radiation exposure from computed tomography (CT) scanning with small excess cancer risks. However, since existing medical records were used in these studies, they could not control for reasons for the CT scans and therefore, the results may have been confounded by indication. Here we conducted a study to estimate potential indication bias that could affect hazard ratios for colorectal, lung and female breast cancers by reasons for a CT scan. This involved a retrospective cohort study of electronic records from all patients aged 18–89 years without previous cancer diagnoses, who received at least one CT scan at Columbia University Medical Center in the period of 1994–2014. This investigation is not a study of CT-related cancer risks with adjustment for reasons, but an evaluation of the potential for confounding by indication in such studies. Among 75,968 patients, 212,487 CT scans were analyzed during a mean follow-up of 7.6 years. For colorectal and female breast cancers, no hazard ratio bias estimates for any of the CT reasons reached statistical significance. For lung cancer, significant biases occurred only in patients with unknown CT reasons and in patients with CTs for “abnormal findings” and in those with CTs for cancer- or nodule-related reasons. This retrospective cohort study among adults with ≥1 CT scan evaluates, for the first time, CT reason-specific indication biases of potential CT-related cancer risks. Overall, our data suggest that, in studies of adults who underwent CT scans, indication bias is likely to be of negligible importance for colorectal cancer and female breast cancer risk estimation; for lung cancer, indication bias is possible but would likely be associated with only a small modulation of the risk estimate. Radiat. Res.
NASA is planning future missions to Mars, which will result in astronauts being exposed to ∼13 cGy/year of galactic cosmic radiation (GCR). Previous ground-based experiments have demonstrated that low (15 cGy) doses of 1 GeV/n 56Fe ions impair hippocampus-dependent spatial memory in rats. However, some irradiated rats maintain a spatial memory performance comparable to that seen in the sham-irradiated rats, suggesting that some of these animals are able to ameliorate the deleterious effects of the GCR, while others are not. This rat model provides a unique opportunity to increase our understanding of how GCR affects neurophysiology, what adaptive responses can be invoked to prevent the emergence of GCR-induced spatial memory impairment, as well as the pathways that are altered when spatial memory impairment occurs. A label-free, unbiased proteomic profiling approach involving quantitative protein/peptide profiling followed by Cytoscape analysis has established the composition of the hippocampal proteome in male Wistar rats after exposure to 15 cGy of 1 GeV/n 56Fe, and identified proteins whose expression is altered with respect to: 1. radiation exposure and 2. impaired spatial memory performance. We identified 30 proteins that were classified as “GCR exposure marker” (GEM) proteins (expressed solely or at higher levels in the irradiated rats but not related to spatial memory performance), most notably CD98, Cadps and GMFB. Conversely, there were 252 proteins that were detected only in the sham-irradiated samples, i.e., they were not detected in either of the irradiated cohorts; of these 10% have well-documented roles in neurotransmission. The second aspect of our data mining was to identify proteins whose expression was associated with either impaired or functional spatial memory. While there are multiple changes in the hippocampal proteome in the irradiated rats that have impaired spatial memory performance, with 203 proteins being detected (or upregulated) only in these rats, it would appear that spatial memory impairment may also arise from an inability of these rats to express “good spatial memory” (GSM) proteins, many of which play an important role in neuronal homeostasis and function, axonogenesis, presynaptic membrane organization and G-protein coupled receptor (GCPR) signaling. It may be possible to use this knowledge to develop two alternative countermeasure strategies, one that preserves critical pathways prophylactically and one that invokes restorative pathways after GCR exposure.
Synchrotron microbeam radiation therapy is a promising preclinical radiotherapy modality that has been proposed as an alternative to conventional radiation therapy for diseases such as diffuse intrinsic pontine glioma (DIPG), a devastating pediatric tumor of the brainstem. The primary goal of this study was to characterize and compare the radiosensitivity of two DIPG cell lines (SF7761 and JHH-DIPG-1) to microbeam and conventional radiation. We hypothesized that these DIPG cell lines would exhibit differential responses to each radiation modality. Single cell suspensions were exposed to microbeam (112, 250, 560, 1,180 Gy peak dose) or conventional (2, 4, 6 and 8 Gy) radiation to produce clonogenic cell-survival curves. Apoptosis induction and the cell cycle were also analyzed five days postirradiation using flow cytometry. JHH-DIPG-1 cells displayed greater radioresistance than SF7761 to both microbeam and conventional radiation, with higher colony formation and increased accumulation of G2/M-phase cells. Apoptosis was significantly increased in SF7761 cells compared to JHH-DIPG-1 after microbeam irradiation, demonstrating cell-line specific differential radiosensitivity to microbeam radiation. Additionally, biologically equivalent doses to microbeam and conventional radiation were calculated based on clonogenic survival, furthering our understanding of the response of cancer cells to these two radiotherapy modalities.
p53 is a crucial tumor suppressor and plays an important role in cell cycle arrest, DNA damage repair, promotion of cell senescence and apoptosis, prevention of DNA damage and maintaining genomic stability and integrity. It has been reported that p53 might also be related to radiation sensitivity, for which the involved effects and processes could be further examined biochemically at the molecular level. In this study, we explored a new spectroscopic approach to probe the radiation-induced biological effects related to p53. Infrared microspectroscopy was used to detect the metabolic changes related to p53 under particle radiation. After alpha-particle irradiation of HCT116 cells (p53 / , p53–/–), cell cycle arrest, DNA damage and lipid peroxidation in the cancer cells were observed using Fourier-transform infrared (FTIR) spectroscopy and microspectroscopy imaging. A remarkable difference in radiosensitivity between the two genotypes of cells was observed as well. This work provides a biochemical analysis of the p53-related radiation effects in cells and demonstrates the potential usefulness of FTIR microspectroscopy in the field of radiation research.
It is still not fully understood whether and how factors such as time, age and smoking modify the relationship between lung cancer and radon at low exposures and exposure rates. Improved knowledge is necessary for the dose conversion of radon in working level month (WLM) into effective dose, as currently discussed by the International Commission on Radiological Protection (ICRP). An update of the German uranium miner cohort study (n = 58,974 men) with a 10-year extension of mortality follow-up (1946–2013) was used to further examine this issue. Internal Poisson regression was applied to estimate the excess relative risk (ERR) for lung cancer mortality per unit of cumulative radon exposure in WLM with exponential time-related effect modifiers. In the full cohort restricted to <100 WLM the estimated overall ERR/WLM was 0.006 [95% confidence interval (CI): 0.003; 0.010] based on 1,254 lung cancer deaths and 1,620,190 person-years at risk. Both age at and time since exposure turned out to be important modifiers of the ERR/WLM and were included in the final model. Here, the ERR/WLM centered on age at exposure of 30 years, and 20 years since exposure was 0.016 (95% CI: 0.008; 0.028). This value decreased statistically significantly by approximately 40% and 60% for each 10-year increase in age at exposure and time since exposure, respectively. The joint effect of smoking and radon exposure was investigated in the sub-cohort of miners hired in 1960 or later, which includes data on smoking status. The centered ERR/WLM was slightly higher for non/light smokers compared to moderate/heavy smokers (0.022 versus 0.013). The current findings provide evidence for an increased lung cancer risk at low radon exposures or exposure rates that is modified by age and time. The observed risk is lower, but statistically compatible to those of other miner studies at low exposures or exposure rates. These findings reject an additive- and support a sub- to (supra-) multiplicative interaction between smoking and radon.
Radiation-induced skin fibrosis is a detrimental and chronic disorder that occurs after radiation exposure. The molecular changes underlying the pathogenesis of radiation-induced fibrosis of human skin have not been extensively reported. Technical advances in proteomics have enabled exploration of the biomarkers and molecular pathogenesis of radiation-induced skin fibrosis, with the potential to broaden our understanding of this disease. In this study, we compared protein expression in radiation-induced fibrotic human skin and adjacent normal tissues using iTRAQ-based proteomics technology. We identified 186 preferentially expressed proteins (53 upregulated and 133 downregulated) between radiogenic fibrotic and normal skin tissues. The differentially expressed proteins included keratins (KRT5, KRT6A, KRT16 and KRT17), caspase-14, fatty acid-binding protein 5 (FABP5), SLC2A14 and resistin. Through bioinformatic analysis of the proximal promoters, common motifs and corresponding transcriptional factors were identified that associate with the dysregulated proteins, including PAX5, TBX1, CLOCK and AP2D. In particular, FABP5 (2.15-fold increase in fibrotic skin tissues), a transporter of hydrophobic fatty acids, was investigated in greater detail. Immunohistochemistry confirmed that the protein level of FABP5 was increased in fibrotic human skin tissues, especially in the epidermis. Overexpression of FABP5 resulted in nuclear translocation of SMAD2 and significant activation of the profibrotic TGF-β signaling pathway in human fibroblast WS1 cells. Moreover, exogenous FABP5 (FABP5-EGFP) could be incorporated by skin cells and intensify TGF-β signaling, indicating a communication between the microenvironment and skin fibrosis. Taken together, our findings illustrate the molecular changes during radiation-induced human skin fibrosis and the critical role of FABP5 in activating the TGF-β signaling pathway.
Populations living in radiation-contaminated territories, such as Chernobyl and Fukushima, are chronically exposed to external gamma radiation and internal radionuclide contamination due to the large amount of 137Cs released in the environment. The effect of chronic low-dose exposure on the development of cardiovascular diseases remains unclear. Previously reported studies have shown that low-dose radiation exposure could lead to discrepancies according to dose rate. In this study, we examined the effect of very low-dose and dose-rate chronic external exposure on atherosclerosis development. ApoE–/– mice were chronically irradiated with a gamma source for 8 months at two different dose rates, 12 and 28 μGy/h, equivalent to dose rates measured in contaminated territories, with a cumulative dose of 67 and 157 mGy, respectively. We evaluated plaque size and phenotype, inflammatory profile and oxidative stress status. The results of this study showed a decrease in plaque sizes and an increase in collagen content in ApoE–/– mice exposed to 28 μGy/h for 8 months compared to nonexposed animals. The plaque phenotype was associated with an increase in anti-inflammatory and anti-oxidative gene expression. These results suggest that chronic low-dose gamma irradiation induces an upregulation of organism defenses leading to a decrease in inflammation and plaque size. To our knowledge, this is the first study to describe the possible effect of chronic external very low-dose ionizing radiation exposure for 8 months. This work could help to identify the potential existence of a dose threshold, below that which harmful effects are not exhibited and beneficial effects are potentially observed. Furthermore, these findings permit consideration of the importance of dose rate in radiation protection.
In this work, Cherenkov-excited molecular sensing was used to assess the potential for simultaneous quantitative sensing of two NIR fluorophores within tissue-simulating phantoms through spectral separation of signals. Cherenkov emissions induced by external beam gamma photon radiation treatment to tissues/tissue-simulating phantoms were detectable over the 500–900-nm wavelength range. The presence of blood was demonstrated to reduce the integrated intensity of detected Cherenkov emissions by nearly 50%, predominantly at wavelengths below 620 nm. The molecular dyes, IRDye 680RD and IRDye 800CW, have excitation and emission spectra at longer wavelengths than the strongest blood absorption peaks, and also where the intensity of Cherenkov light is at its lowest, so that the emission signal relative to background signal is maximized. Tissue phantoms composed of 1% intralipid and 1% blood were used to simulate human breast tissue, and vials containing fluorophore were embedded in the media, and irradiated with gamma photons for Cherenkov excitation. We observed that fluorescence emissions excited by the Cherenkov signal produced within the phantom could be detected at 5-mm depth into the media within a 0.1–25 μM fluorophore concentration range. The detected fluorescence signals from these dyes showed linear relationships with radiation doses down to the cGy level. In vivo tests were successful only within the range near a μM, suggesting that these could be used for metabolic probes in vivo where the local concentrations are near this range.
In this study, we investigated microvascular perfusion status, changes to fat content and fatty acid composition in the bone marrow of rat femurs after total-body irradiation by quantitative permeability parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and ex vivo high-resolution magic angle spinning (HRMAS) 1H nuclear magnetic resonance spectroscopy (NMRS). Thirty-six Sprague-Dawley rats were randomly assigned to either an irradiated or nonirradiated control group. Permeability imaging using DCE-MRI and HRMAS 1H NMRS was performed before irradiation, as well as at days 4 and 7 postirradiation. The volume transfer constant (Ktrans) values increased to 2.219 ± 0.418/min (P < 0.01) at day 4 and to 2.760 ± 0.217/min at day 7 (P < 0.01) postirradiation. The plasma fraction (vp) values gradually decreased. The proportion of (n-6) polyunsaturated fatty acids (PUFA) gradually reached a peak at day 7, the proportion of (n-3) PUFA gradually decreased and the proportion of saturated fatty acids gradually increased. After irradiation, Ktrans at different times showed significant negative correlation with (n-3) PUFA (r = –0.6393, P < 0.01) and significant positive correlation with (n-6) PUFA (r = 0.6841, P < 0.05). These findings indicate that bone marrow microcirculation perfusion and vascular permeability correlated with fat content at an early time point after irradiation. A pathophysiological mechanism may exist based on fat-vascular permeability in the case of injury to bone marrow microcirculation.
The only curative treatment option for relapsed patients with acute myeloid leukemia (AML) is allogeneic stem cell transplantation. Depletion of hematopoietic stem cells and leukemic blast cells is achieved through the systemic administration of DNA damaging agents, including total-body irradiation (TBI) prior to transplantation. Since other tissues are radiosensitive, the identification of biomarkers could facilitate the management of additional toxicities. Buccal keratinocytes are readily accessible and could provide a source of cells for RNA analysis. In this study, we obtained miRNAs and mRNAs from daily buccal swabs collected from patients undergoing allogeneic stem cell transplantation. Unexpectedly, there was no prominent p53-induced mRNA or miRNA response in these samples, despite the fact that the p53 pathway is a well-characterized radiation-inducible response. Instead, the expression of mRNAs encoding p53 and cytokeratin 14 (TP53 and KRT14, respectively) decreased precipitously within hours of the first radiation treatment. These patients went on to develop oral mucositis, however, it is unclear whether TP53 and/or KRT14 expression are predictive of this adverse event. Larger scale analysis of buccal epithelial samples from patients undergoing allogeneic stem cell transplantation appears to be warranted.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere