BioOne.org will be down briefly for maintenance on 12 February 2025 between 18:00-21:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Surveying cryptic, nocturnal animals is logistically challenging. Consequently, density estimates may be imprecise and uncertain. Survey innovations mitigate ecological and observational difficulties contributing to estimation variance. Thus, comparisons of survey techniques are critical to evaluate estimates of abundance. We simultaneously compared three methods for observing mountain hare Lepus timidus using Distance sampling to estimate abundance. Daylight visual surveys achieved 41 detections, estimating density at 14.3 hares km–2 (95%CI 6.3–32.5) resulting in the lowest estimate and widest confidence interval. Night-time thermal imaging achieved 206 detections, estimating density at 12.1 hares km–2 (95%CI 7.6–19.4). Thermal imaging captured more observations at furthest distances, and detected larger group sizes. Camera traps achieved 3705 night-time detections, estimating density at 22.6 hares km–2 (95%CI 17.1–29.9). Between the methods, detections were spatially correlated, although the estimates of density varied. Our results suggest that daylight visual surveys tended to underestimate density, failing to reflect nocturnal activity. Thermal imaging captured nocturnal activity, providing a higher detection rate, but required fine weather. Camera traps captured nocturnal activity, and operated 24/7 throughout harsh weather, but needed careful consideration of empirical assumptions. We discuss the merits and limitations of each method with respect to the estimation of population density in the field.
Flush-count surveys of game bird broods are a common method of deriving estimates of brood survival, but detection of chicks during surveys is < 1 due to factors such as vegetation obscurity, adult brooding behavior and variation by observer. Radio-telemetry is an alternative method for estimating survival that circumvents such factors and allow for higher detection. However, this practice is costly and labor-intensive and therefore not readily adopted. We sought to estimate detection probability of chicks during flush-counts as a function of vegetation height and adult brooding behavior. Secondly, we evaluated compromises in detection by comparing estimates of brood survival derived from flush-counts and radiotelemetry. Lastly, we compared counts between two observers to discern whether an additional observer could increase accuracy of counts.
We radiomarked 247 northern bobwhite Colinus virginianus chicks at 10–12 days of age and conducted 46 flush-counts at 21 days of age. Vegetation height substantially decreased detection (β = –1.18; 95 CrI: –1.68 to –0.73); mean detection probability was 0.30 (95 CrI: 0.22–0.40). Observers failed to detect radio-marked chicks when adults exhibited running behavior (n = 16 chicks, n = 6 surveys), orphaning occurred (n = 11 chicks, n = 5 surveys) or brooding adults died or had transmitter failures (n = 4 chicks, n = 3 surveys). An additional observer did not affect counts with a mean difference of –0.6 chicks (95 CrI: –4.0 to 2.7) counted between observers. Chicks were not detected during 47% of surveys when ≥ 1 radio-marked individuals were known to be alive. Brood survival was 0.83 (95 CrI: 0.70–0.92) and 0.48 (95 CrI: 0.34–0.62) for radiotelemetry and naïve flush-counts, respectively. Because of low detectability of chicks during flush-counts, alternative methods should be considered by future researchers.
White-tailed deer Odocoileus virginianus are the most popular big game animal in the United States. Recreational harvest of these animals is a critical tool in population management, as well as an important financial resource for state economies and wildlife agencies. Thus, herd health evaluations can provide information to wildlife managers tasked with developing sustainable harvest practices while monitoring for emergent problems. The purpose of our study was to document causes of illness and natural mortality in New York white-tailed deer submitted for post mortem evaluation. Animals were presented by members of the public and wildlife management personnel due to abnormal behavior or unexplained death. We describe demographic and seasonal associations among gross and histologic evaluation and diagnostic testing. Post mortem examinations were performed on 735 white-tailed deer submitted for necropsy in New York from January 2011 to November 2017. Causes of euthanasia or mortality were classified into nine categories. The most common findings were bacterial infections, trauma not evident at time of collection, and nutritional issues, primarily starvation. Using a multinomial logistic regression model, we looked for associations between the mortality categories and age, sex and season. Compared to the baseline of bacterial deaths, adults were less likely to have died from nutritional and parasitic causes, males were less likely to have died from other causes, and risk of death from nutritional reasons decreased from season to season, with lowest risk in winter. These methods can help wildlife biologists track changes in disease dynamics over time.
Nest survival is a key vital rate of game birds and frequently studied to guide population management. Common scientific protocols are invasive and often involve flushing females from their nests to assess nest contents and status. Biased inference of population dynamics, and thus improper management recommendations, may result if nest survival estimates are affected by researcher activities. We evaluated whether standard nest monitoring protocols for game birds biased estimates of nest survival for sharp-tailed grouse Tympanuchus phasianellus, a common ground-nesting bird in northern grassland ecosystems in the US. We hypothesized that flushing females from nests would negatively affect estimates of daily nest survival and result in biased inferences about population growth regardless of potentially mediating environmental conditions. Our results indicated that cumulative precipitation received during the nesting period had the largest effect on nest survival. Flushing sharp-tailed grouse from nests resulted in reduced nest survival during dry periods, although differences over the entire nesting period were not statistically significant. Downward-biased estimates of nest survival for females that were flushed did not significantly bias estimates of population growth rates. With minimal data loss, we successfully monitored nests of radio-marked females without flushing and recommend that researchers carefully consider potential biases related to research techniques when determining nest monitoring protocols.
Mapping habitat selection by threatened species provides critical information for conservation planning. For reintroduced populations, understanding habitat selection is also necessary to predict dispersal and inform selection of new reintroduction sites. Efforts to restore bison Bison bison to the boreal forest hinge on the persistence of geographically isolated populations that occupy diverse landscapes, and for many populations selected habitats are unknown. We used location data from GPS-collared bison to develop seasonal resource selection function (RSF) models and predictive maps for the reintroduced ‘Nahanni’ population. We accounted for variation in individual behaviour by calculating averaged population-level selection coefficients from individual RSFs, and we compared these results to a pooled RSF from all bison. Individual RSFs revealed variation in habitat selection that was not always captured by the pooled RSF, although there were some consistencies. Bison strongly selected forage-rich graminoid-dominated wetlands (fens) during winter, but less so in summer when there were potential tradeoffs with poor footing and biting flies. In summer, bison selected alternative sources of forage such as herbaceous, shrubby and fluvial habitats (i.e. riverine islands and gravel bars). The observed association with fluvial habitat may be an adaptation to low forage availability on this landscape. Bison also selected roads and anthropogenic clearings associated with resource development, demonstrating potential for human–wildlife conflict. Our predictive maps highlight areas of conservation interest, and should be considered in land use planning and environmental assessments. We demonstrate the value of foraging habitat for forest-dwelling bison, particularly in winter. Identifying forage-rich habitat patches, and connectivity between them, is important when considering sites for new reintroductions or expansion of existing populations. More broadly, our approach may be used to identify areas of high conservation interest, where resources do not allow extensive sample sizes of GPS-collared animals.
The European Birds Directive (EBD) prevents hunting during spring migration, primarily to facilitate birds' use of habitats before and during the prenuptial journey. In line with the EBD requirements, the hunting season for waterfowl in southern France was shortened by two months during February–March since the mid-1950s. However, consequences of such hunting bans for late winter habitat use have not been evaluated. We investigated a 55-years dataset from a major international wintering ground to assess whether the EBD-related changes in hunting legislation have led to increased regional teal Anas crecca numbers during late winter. Teal abundance in the Camargue during late winter increased over the last decades: the ban on hunting in February was the best predictor of teal numbers during that month, leading to a sudden 50% increase in relative abundance. In March a more gradual temporal increase since the mid-1960 was instead recorded. Whether the increase in teal during late winter resulted from locally wintering birds or those from elsewhere stopping in the Camargue cannot be discerned. Nonetheless, the increase in teal numbers supports the basis for the EBD, in that a ban on hunting during late winter is associated with a greater use of habitats during this crucial part of the annual cycle, especially in February.
Capture and handling of wildlife is an important component of wildlife studies, and hunting can be a central tool for wildlife management. However, human-caused disturbance of animals can cause various negative effects on individuals. Thus, an increased understanding of different disturbances on animals will allow improved mitigation of human stressors for wildlife, and provides the basis for data-censoring when using information obtained from captured individuals. Here, we investigated the effects of capture and handling, as well as experimental disturbance, on the movement behavior of GPS-collared European hares Lepus europaeus. Of 28 hares captured in box traps, three died during handling to fit GPS collars, likely due to acute stress. Apart from an 11% decrease in activity in both sexes the first four days after capture compared to later, capture events had no significant effects on subsequent movement behavior. Hares that were disturbed experimentally, i.e. flushed with or without a shotgun shot fired, moved on average (± SD) 422 ± 206 m directly subsequent to the disturbance, leading to a spatial displacement of their short-term home range and an increased daily home range size on the disturbance day. Home range sizes returned to their before disturbance size on the following days, but hares remained further from field edges and spent more time in short vegetation in the days after simulated hunting, though this effect was comparatively small. Overall, our findings indicate that hares only marginally changed their movement behavior in response to short-term disturbances. Therefore, capture and hunting disturbance should not have severe negative effects on the movement behavior of individuals, but future studies should aim to reduce acute capture-related stress to avoid mortalities. We recommend that researchers should censor the first four days after capture from their analyses to avoid using potentially biased data.
Common practices in current game management are wetland restoration and creation, as well as releases of quarry species. We studied the impact of releases of mallard ducklings on species richness of wild waterbirds and amphibians on three types of wetlands: natural, constructed and restored. Data on species richness, macrophyte cover and water characteristics (total phosphorous and pH) were collected at 32 sites in an agricultural landscape in southern Sweden. In total, 14 species of waterbirds were recorded, ranging from zero to seven per wetland and survey. Amphibians were present in 24 of the 32 wetlands; in total five species were found, ranging from zero to three per wetland. By using generalized linear modelling we found that wetland type best predicted waterbird species richness. Constructed wetlands had significantly more waterbird species, regardless of whether they were used for mallard releases or not. There were breeding amphibians in 62% of natural, 100% of restored and 77% of constructed wetlands. Breeding amphibians were present in 84% of wetlands without, and in 62% of wetlands with releases. However, included variables did not explain amphibian species richness in the wetlands. Releasing large numbers of mallards on a wetland and providing food ad libitum is likely to affect water quality, nutrient availability and predation pressure. Indeed, phosphorous levels were significantly higher in release wetlands, but no differences were found between wetland types.This means that mallard releases may increase nutrient loads in environments that are already eutrophied. However, in our study system releases did not influence species richness of waterbirds and amphibians locally. Constructing wetlands for mallard releases can thus have positive local effects on species richness.
For the ability to control an invasive species and to protect an ecologically similar native species it is essential to map the exact distributions of both species. This is difficult if the species are so morphologically similar that their identification in the field is almost impossible. In Finland, the invasive North American beaver Castor canadensis is spreading towards the range of the native Eurasian beaver Castor fiber and at present, these species are partly sympatric. Effective management of these morphologically similar species requires an efficient method for species identification, ideally one that is non-invasive. Non-invasive genetic methods are used in a wide variety of wildlife species, for example in the research of large carnivores. Feces are a good source of DNA for terrestrial animals, but for the semi-aquatic animals like beavers, feces are not the best option. However, environmental DNA (eDNA) has been successfully used to detect species non-invasively in aquatic and terrestrial environments.
We developed a non-invasive, eDNA-based method to map the distribution of the beaver species in Finland and to investigate within-species genetic diversity. The eDNA was obtained from the feed remains (wood chips) from beaver forage sites. With the help of Citizen science, wood chip samples were collected from different parts of Finland. We used our eDNA method to identify the ranges of both beaver species. Additionally, the presence of Eurasian beavers in south-east Finland was proven for the first time. Our non-invasive eDNA method is an effective way to accurately identify the ranges of both beaver species and will allow for the control of the invasive North American beaver and conservation of the native Eurasian beaver in Finland.
Outdoor recreation has the potential to impact the spatial and temporal distribution of animals. We explore interactions between red deer Cervus elaphus and hikers along a popular hiking path in the Scottish Highlands. We placed camera traps in transects at different distances (25, 75 and 150 m) from the path to study whether distance from hiker activity influences the number of deer detected. We compared this with the detection of red deer in an additional, spatially isolated area (one km away from any other transects and the hiking path). We collected count data on hikers at the start of the path and explored hourly (red deer detection during daytime), daily, diurnal (day versus night) and monthly spatial distributions of red deer. Using generalized linear mixed models with forward model selection, we found that the distribution of deer changed with the hiking activity. We found that fewer red deer were detected during busy hourly hiking periods. We found that during daytime, more red deer were detected at 150 m than at 25 m. Moreover, during the day, red deer were detected at a greater rate in the isolated area than around the transects close to the path and more likely to be found close to the path at night. This suggests that avoidance of hikers by red deer, in this study area, takes place over distances greater than 75 m and that red deer are displaced into less disturbed areas when the hiking path is busy. Our results suggest that the impact of hikers is short-term, as deer return to the disturbed areas during the night.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere