Many readers are probably familiar with stapeliads, the Old World succulent-stemmed members of the Apocynaceae. As part of the so-called milkweed subfamily (the Asclepiadoideae), they share the elaborate floral appendages and modifications that are characteristic of this group. However, the stapeliads lack the milky sap that gives the group its common name. Stapeliad flowers (among the largest in the plant kingdom) are typically pollinated by flies and hence have odors reminiscent of road kill or excrement. Nonetheless, stapeliads are popular among succulent enthusiasts. Until now, the only reference for this distinctive group of plants has been the classic monograph *The Stapelieae* by White and Sloane (1937). Peter V. Bruyns’ recent update synthesizes the research, taxonomy, and exploration of the intervening decades into a highly informative treatment of the rich diversity of stapeliads in southern Africa and Madagascar.

Bruyns is a mathematics lecturer and honorary research associate in the Department of Botany at the University of Cape Town, South Africa. He is an expert on African milkweeds and the foremost authority on stapeliads in particular. In addition to publishing numerous papers on asclepiad systematics, he is also an accomplished botanical illustrator and draws the illustrations for his publications. On top of that, he is a very proficient macro-photographer. All of these talents are put to excellent use in *Stapeliads of Southern Africa and Madagascar*. (The publisher’s website indicates there are over 1000 color photographs, 200 line drawings, and 200 distribution maps—I didn’t try to count them!)

*Stapeliads of Southern Africa and Madagascar* is not a monograph in the strict sense, as it is limited geographically. However, this is the most detailed treatment of the stapeliads undertaken since White and Sloane’s work, which is now quite out-of-date. *Stapeliads* consolidates many of White and Sloane’s species and genera and helps bring stapeliad taxonomy up-to-date. Bruyns treats all of the species currently known in Africa, south of latitude 17°S, and in all of Madagascar. While this may seem like an arbitrary delineation at first, Bruyns points out that southern Africa is one of the two major centers of stapeliad diversity and contains almost 55% of the total known species of stapeliads. This amounts to 182 species in 20 genera, of which 92% are endemic to southern Africa. The two volume set is divided into 9 chapters: a one page introduction plus eight introductory sections covering the botanical history, classification, morphology, pollination biology, biogeography, cultivation, uses, and finally the systematic account (which comprises the bulk of the two volumes).