Scientific Note

Pre-imaginal development of *Aedes aegypti* in brackish and fresh water urban domestic wells in Sri Lanka

Sinnathamby N. Surendran¹, Pavulpillai J. Jude¹, Velupillai Thabothy¹, Selvarajah Raveendran², and Ranjan Ramasamy³

¹Department of Zoology, Faculty of Science, University of Jaffna, Jaffna 40000, Sri Lanka, surendransn@gmail.com
²Department of Geography, Faculty of Arts, University of Jaffna, Jaffna 40000, Sri Lanka, ranjanramasamy@yahoo.co.uk
³Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

There is a long and widely held view that *Aedes aegypti* (Linnaeus) and *Ae. albopictus* Skuse (Diptera: Culicidae), the principal mosquito vectors of arboviruses causing yellow fever, dengue, and chikungunya, oviposit and undergo pre-imaginal development only in freshwater collections near human habitations (Barraud 1934, Weaver and Reisen 2010, Walter Reed Biosystematics Unit 2012, World Health Organization 2009). Larval source reduction efforts worldwide, therefore, focus on freshwater habitats of the two vectors. However, *Ae. aegypti* and the closely related arboviral vector *Ae. albopictus* were recently shown to also undergo pre-imaginal development in brackish water of up to 15 ppt salt (water with <0.5 ppt or parts per thousand salt is fresh, 0.5–30 ppt salt brackish, and >30 ppt salt saline) in discarded food and beverage containers, as well as abandoned wells and boats, along the coast of the Batticaloa and Jaffna districts in tropical Sri Lanka (Ramasamy et al. 2011). Dengue is endemic to Sri Lanka with 28,473 cases and 185 deaths in 2011. There were 400 dengue cases with four deaths and 1,693 cases with 11 deaths, respectively, in 2011 in the Jaffna and Batticaloa districts of the country. The Jaffna district also experienced an epidemic of chikungunya in 2006-2007 (Surendran et al. 2007). Dengue is of global health concern because of its increasing incidence and spread, associated mortality and morbidity, and the lack of a specific drug or vaccine (World Health Organization 2009). Furthermore, *Ae. albopictus* has adapted to temperate zones to transmit chikungunya and dengue in Europe (Cavrini et al. 2009, Rezza et al. 2007, La Ruche et al. 2010). Climate change can increase the future global incidence and spread of dengue and other arboviral diseases transmitted by *Ae. aegypti* and *Ae. albopictus* (Hales et al. 2002, Ramasamy and Surendran 2011, 2012, Reiter 2001, Weaver and Reisen 2010).

In many tropical developing countries, wells are an important source of water for drinking, washing, and other household uses. Wells near the Jaffna coast, Sri Lanka, tend to be brackish and therefore nearly all coastal areas of Jaffna city receive piped fresh water drawn from artesian wells located in Thirunelvely in the center of the Jaffna Peninsula (Figure 1a). The piped fresh water is used for drinking and cooking. Brackish water drawn from wells along the Jaffna coast is used for bathing, washing, watering gardens, and household cleaning. Domestic wells are not targeted by the vector control program in Sri Lanka, and therefore constitute potentially unappreciated habitats for pre-imaginal development of *Ae. aegypti* and *Ae. albopictus*. We tested a hypothesis that the two *Aedes* vectors also develop in frequently used brackish and fresh water domestic wells in dengue-prevalent urban coastal areas of Sri Lanka.

Larval surveys were conducted between September, 2011 and January, 2012 in Kurunagar, a municipal division in the southern coast of Jaffna city, Sri Lanka (Figure 1a), which had an estimated dengue incidence of eight cases per 1,000 inhabitants per year in the period October, 2010 to April, 2011 (Ramasamy et al. 2011). Randomly selected households in Kurunagar were inspected for the presence of *Aedes* larvae in frequently used domestic wells. The objectives of the study were explained to the heads of households and their informed consent obtained to inspect wells. Larvae were collected using a 350 ml capacity dipper with an average of five dips per well. Larvae in collected well water were brought to the laboratory, and salinity determined with a refractor-salinometer (Atago, Japan), and larvae identified with standard morphological keys (Rueda 2004). The wells were also visually inspected for the presence of fish during the study. A similar survey was conducted in January, 2012 in Kattankudy, a densely populated coastal town in the Batticaloa district of mainland Sri Lanka ~350 km from Jaffna city (Figure 1b).

Larvae were subsequently collected from five brackish water wells (salinity range of 2 to 4 ppt) in Kurunagar in May 2012 and reared in the corresponding well water in the laboratory until they became adults that were then identified morphologically (Rueda 2004). Larvae were fed three times a day with locally available fish meal pellet powder.

Statistical associations between the presence of fish and *Aedes* larvae in wells were determined by Fisher’s exact test using pooled data from Kurunagar and Kattankudy. The larval and water sampling data were used to create maps with ArcMap 9.1 software.

Of the 110 wells surveyed in Kurunagar, 28 contained *Ae. aegypti* larvae (Figure 1a). Larval density (mean number/350 ml) varied from 2-20. *Aedes albopictus* was not detected in the wells. The salinity in wells that contained *Ae. aegypti* larvae varied from 2 to 9 ppt and in wells that did not have larvae from 2 to 7 ppt. Thirty-seven of the 110 wells were found to contain fish but none of the wells with fish had *Ae. aegypti* larvae. Three fish specimens collected in Kurunagar were identified as *Oreochromis mossambicus* (Tilapia).