The use of space reflects individual access to resources that are critical to survival and reproduction. Consequently, space use should be sensitive to a range of factors that have the potential to profoundly influence populations (e.g., Whitaker et al. 2007). The territory is one measure that has been employed to assess avian space use in the context of access to resources. In her seminal paper entitled “The Role of Territory in Bird Life,” Margaret Morse Nice (1941) synthesized a then long-running discussion on patterns of space use by birds into a functional classification system for the types of territories used by various species. Among these was her “Type A” territory, which referred to a defended area used for mating, nesting, and as a feeding site for young; such territories are maintained by most breeding passerines and other non-colonial bird species that have socially monogamous breeding systems (Nice 1941). The territory has since been widely accepted as the fundamental unit of space use for most passerine species (e.g., Morse 1989, Barg et al. 2005, Fisher and Davis 2010), and the concept of the home range, which may include both defended and undefended areas, has been notably absent from many discussions of passerine spatial ecology (e.g., Cody 1981, Haila et al. 1996, Cornell and Donovan 2010a; see also many species accounts in Poole 2005). In large part, this is because technological limitations required, until recently, that most studies of space use employ passive methods, such as territory mapping, that focus on the visual observation of prominently displaying males (Bibby et al. 2000). However, this focus may have led to an incomplete understanding of space use if individuals make extensive movements beyond surveyed territorial areas into a broader home range, are nonterritorial (e.g., during the postbreeding period), or behave cryptically or are not equally detectable throughout the area they frequent.

Findings linked to recent technological progress and our growing knowledge of diverse aspects of avian ecology highlight the need to develop a more comprehensive understanding of passerine spatial ecology. Leading the way was the application of molecular genetics techniques to the study of avian breeding systems. This research revealed that extrapair mating was a regular occurrence in the vast majority of passerine species (Griffith et al. 2002), overturning assumptions that most socially monogamous birds were also sexually monogamous (Lack 1968). Because extrapair mates typically originate beyond territorial boundaries, this finding stimulated research into extraterritorial movements related to extrapair mating effort (e.g., Yezerinac and Weatherhead 1997, Stutchbury 1998, Woolfenden et al. 2005). During the same period, research in landscape ecology has revealed that individuals of many species are sensitive to habitat factors that occur beyond their territorial boundaries or at a scale larger than that of the territory (e.g., Hinsley et al. 1995; Betts et al. 2006, 2007). Similarly, ongoing research on other aspects of avian ecology, including dispersal, metapopulation dynamics, heterospecific attraction, and social information theory, has also led to greater understanding and recognition of the importance of extraterritorial movements by individuals, as well as interactions among birds distributed across a landscape (e.g., Hanski 1999, Walters 2000, Betts et al. 2008a). Field studies associated with these advances have been greatly facilitated by the development of miniaturized radiotransmitters, which allowed researchers to overcome many logistical hurdles that had hindered the collection of unbiased movement data. Use of radiotracking immediately demonstrated that individuals of some species make regular landscape-scale or extraterritorial movements (e.g., Hanski and Haila 1988, Williams 1990,