Bill Hamilton, one of the most prominent and original evolutionary biologists since Darwin, died March 7 in London, England, following a six-week-long struggle with complications from an intestinal ulcer and from malaria contracted in the Congo region of Africa. He was 63.

Educated at Cambridge, where he studied genetics, Bill moved to London for his Ph.D., which he obtained from University College and the London School of Economics. His annotations to his papers in the first volume of his collected works, *Narrow Roads of Gene Land*, suggest that although he was convinced at an early age that the genetics and evolution of altruism was a worthwhile line of study, few shared his enthusiasm. While slightly daunted by this lack of support from a scientific community still recovering from the eugenics movement of the earlier part of the twentieth century, Bill nevertheless went on to develop the idea he is best known for, inclusive fitness or kin selection theory. The idea is deceptively simple: self-sacrificial behavior can evolve if it benefits relatives of the altruist, because they share the altruist’s genes. This explanation forms much of the foundation of sociobiology and behavioral ecology, and it also helped establish the gene-centered approach that has proven so fruitful in modern evolutionary biology. The two papers explaining the genetic bookkeeping involved in such behavior are often cited, but regrettably rarely read. The reader who makes the effort finds not only an interesting theoretical journey but also an insight into Bill’s gift for natural history, a gift that infused his theory and set his work apart from many more mathematically talented but less biologically intuitive scientists.

After receiving his doctorate, Bill took a position as Lecturer at Imperial College, where he was based at Silwood Park. In 1978 he became a Professor in the Museum of Zoology at the University of Michigan, and in 1984 moved back to England as a Royal Society Research Professor at Oxford, where he remained until his death. In addition to his work on altruism, Bill wrote about the evolution of animal groups in his aptly titled paper, “Geometry for the Selfish Herd,” about sex ratios, about aging and senescence, and about the origins and function of cooperation and fighting. He became intrigued with one of the greatest problems of evolution, the existence of sexual reproduction, and this led to an interest in parasites and their effects on host ecology, behavior, and evolution that lasted for the rest of his career. When I first met him, Bill spoke of being disturbed by redwoods. The trees themselves did not bother him; it was their vegetative reproduction combined with such a long life. Anything so likely to be out-evolved by its parasites should by rights have to reproduce sexually, he thought.

Most of the accolades of the scientific world came Bill’s way; he received the Kyoto Prize; the Crafoord Prize, Sweden’s Nobel equivalent for nonmedical biology; the Distinguished Animal Behaviorist Award from the Animal Behavior Society; the Sewall Wright Award; and many others. Many fields—evolutionary biology, animal behavior, genetics, entomology—claimed him as one of their own, testimony to the broad application of his ideas. Although pleased to receive the recognition that he had been denied early in his career, he generally accepted these awards sheepishly and was relieved to be taken into the field after the ceremony where he could see some new bird or plant or insect.

Although Bill had many extraordinary ideas in his life, many people failed to understand that his genius lay not in the quality of his ideas, but in their sheer abundance. It was often amusing watching others try desperately to find a kernel of brilliance in every thought he expressed, even though this was often not possible. My own explanation is simple. Say, for example, that the general frequency of brilliant ideas is one in ten, and that frequency is unchanged among individuals. The difference between Bill and most other people was that he had a total of over one hundred ideas, with the result that at least ten of them were brilliant, whereas the rest of us have only four or five ideas as long as we live, with the result that none of them are. Bill was not afraid of saying outrageous things, perhaps especially unsubstantiated outrageous things. Most of them were wrong, and some were even ridiculous, but the ones that were right were gems.

Bill was a very visual thinker, and he often suggested three-dimensional analogies for complex mathematical concepts. I am much more verbal in my own thought processes, and although I appreciated his efforts to clarify theory, they were rarely helpful. Linkage disequilibrium, the nonrandom association of genes in a population, was, he said, “like water sloshing about in a bath,” an explanation that only made sense to me after I had worked through the math and understood the concept anyway. When we were working on models of antagonistic coevolution between hosts and parasites, Bill constructed a toy to demonstrate the genetic interactions. It was a lovely and ingenious device, consisting of a flat block of wood, four long screws, eight metal nuts in two colors (one for the host and one for the parasite), two extra-large rubber bands, and two bicycle spokes. The only problem was that I hadn’t the slightest idea of how to play with it, which somewhat defeated the intended purpose. Again, its illustrative role became clear well after I figured out the model.

Many of the anecdotes about him seem to turn into parables about what he tried to do in his life and why it was so important...