
Since 1995, the epidemic of mycoplasmal conjunctivitis in eastern house finches has affected the Auburn, AL, house finch population. To better characterize the current status of this host-parasite interaction, a captive flock of 38 seronegative, healthy finches was established in fall 1998. After a minimum quarantine period of 4 wk, 2 Mycoplasma gallisepticum (MG)-infected house finches were introduced into the flock. Over a 12-wk period, the flock was captured every 2 wk and each bird was observed for conjunctivitis. Blood and choanal swabs were collected from each bird for serologic analysis and for detection of MG by polymerase chain reaction. The infection spread rapidly through the flock just as it had in a similar study performed in 1996 at the height of the epidemic. Unlike the earlier study in which birds remained chronically infected, most of the birds in this study recovered rapidly, and only 3 birds died during the study. Two patterns of host response to infection with MG were observed. Twenty-seven birds (73%) experienced an acute conjunctivitis that resolved, and the birds appeared to clear the infection. Ten birds (27%) suffered prolonged clinical disease, and MG could be detected in these birds intermittently throughout the experiment. These results, in conjunction with surveys of MG in the wild population, suggest an evolving host-parasite interaction.


Free-living waterfowl residing in metropolitan parks in central Ohio were surveyed for the fecal shedding and antimicrobial susceptibility patterns of Campylobacter jejuni, Escherichia coli, Salmonella spp., and Pasteurella multocida. In addition, a survey for intestinal parasites was also conducted in these same waterfowl to determine parasite burdens in free-living waterfowl. Prevalences of 67%, 50%, and 0.2% of E. coli, C. jejuni, and Salmonella spp., respectively, were observed for all waterfowl species. Pasteurella multocida was not isolated from the sampled population. Salmonella java was isolated from one mallard duck. Statistically, there was a significantly higher E. coli isolation rate for mallard ducks than for Canada geese, but no difference was observed for C. jejuni isolation rates between waterfowl species. Antimicrobial susceptibility testing was conducted via the disk diffusion method and multidrug resistance was exhibited for penicillin G, lincomycin, vancomycin, erythromycin, and bacitracin. The prevalence of endoparasites in these sampled waterfowl ranged from 5–66%. Protozoan oocysts were most prevalent followed by nematode ova. No trematode or cestode ovum was recovered from this sampled population.


A ventricular septal defect was found in a juvenile captive-bred houbara bustard (Chlamydotis undulata) that died suddenly. The case history indicated that the bird had a retarded growth and maturation rate. Gross pathology demonstrated massive internal hemorrhage, an enlarged heart with an interventricular septal defect, one shrunken liver lobe, and hypoplastic kidneys. Histologically, the liver was characterized by fatty degeneration, and there was hydropic degeneration of the cardiac muscle fibers. It is suggested that the occurrence of the defect led to cardiac insufficiency, which resulted in sudden death caused by hemorrhage from the liver.


Avian paramyxovirus type 1 (Newcastle disease virus) and Salmonella typhimurium were isolated from the brain and lung tissues of double-crested cormorants (Phalacrocorax auritus) from Lac Canard, Alberta, Canada. More than 100 birds died during this outbreak in 1999. Affected birds presented signs of central nervous system disease characterized by unilateral wing and leg paralysis. Other geographic locations in the provinces of Alberta and Saskatchewan have reported cases of cormorants suffering from diseases with signs compatible with Newcastle disease. The virus isolated in the 1999 outbreak was characterized as mesogenic. These findings suggest that other pathogens like S. typhimurium may influence the clinical presentation of disease caused by mesogenic strains of Newcastle disease in cormorants.


The gross and histopathologic lesions observed in a case of spontaneous proximal aortic dissection (dissecting aortic aneurysm) in a mature ostrich are reported. At necropsy, a dissecting intramural hematoma was seen in the