Selected Abstracts From the Literature

Necrotising ventriculitis due to combined infection with *Rhizopus microsporus var chinensis* and *Candida krusei* in an eclectus parrot (*Eclectus roratus*). Muir M, Raidal SR. *Aust Vet J.* 2012;90:277–280.

Acute necrosis of the ventriculus is a very uncommon lesion in birds. We describe a fatal case of acute necrotising ventriculitis caused by *Rhizopus microsporus var chinensis* in a mature female eclectus parrot (*Eclectus roratus*). The bird was presented acutely dull and lethargic, vomiting, and had bright green droppings, suggestive of acute heavy metal poisoning. It was treated with fluids and chelation therapy but died within 12 hours. Necropsy, cytology, histopathology, and culture results demonstrated fungal invasion of the ventriculus associated with transmural necrosis, hemorrhage, acute inflammation, and abundant *R. microsporus var chinensis* and lesser numbers of *Candida krusei*.


Improvements in the ability to hand-rear birds in captivity have aided zoological institutions in the sustainable management of these species and have provided opportunities to examine their physical growth in varying conditions. Monitoring the weight gain and development of chicks is an important aspect of developing a hand-rearing protocol. In this article, we provided the institutional history for a colonial species of passerine bird, the Taveta golden weaver, at Disney’s Animal Kingdom, to demonstrate the methods of establishing a successful breeding program, which largely incorporates hand-rearing in management of the population. We also tested if we could accurately predict the sex of chicks by using weights collected on day 14 during the hand-rearing process. By using this tool, we were able to correctly determine sex before fledging in more than 83% of chicks. Early sex determination is important in captive species for genetic management and husbandry purposes. Although genetic sexing can be expensive, we found that use of growth curves to determine sex can be a reliable and cost-effective tool for population management of a colonial passerine.


Objective—To investigate the disposition kinetics of flunixin meglumine when administered intravenously to budgerigars (*Melopsittacus undulatus*) and Patagonian conures (*Cyanoliseus patagonus*). Design—Prospective cohort study. Animals—Eight adult Patagonian conures and 24 adult budgerigars. Procedures—Injectable flunixin meglumine (50 mg/mL) was diluted to 10 and 1.0 mg/mL and administered IV at a dose of 5.0 mg/kg (2.3 mg/lb) to Patagonian conures and budgerigars, respectively. Results—In budgerigars, the elimination half-life was 0.72 hours, and the mean residence time was 0.73 hours. In Patagonian conures, the elimination half-life was 0.91 hours, and the mean residence time was 1.20 hours. The concentration of flunixin was below the assay’s limit of quantification (0.5 μg/mL) at 3 and 6 hours in budgerigars and Patagonian conures, respectively. A single budgerigar developed adverse effects (lethargy and signs of depression) for approximately 15 minutes after drug administration. Conclusions and Clinical Relevance—The half-life of flunixin in Patagonian conures and budgerigars was short after intravenous administration; however, results of this study suggested that intravenous administration of injectable flunixin meglumine at 5.0 mg/kg resulted in plasma concentrations that could potentially be anti-inflammatory and analgesic in budgerigars and Patagonian conures.