aboratory components of introductory biology college-level courses are becoming increasingly rare (Watanabe, 2002). Simultaneously, new research in human cognition demonstrates that deep learning occurs primarily via active engagement (Bransford et al., 1999), and national educational policy recommendations reflect this research (National Research Council; 1996, 2000). In particular, the National Science Education Standards focus on inquiry as an especially effective learning strategy (National Research Council, 2000) and our in-class observations support this position. Inquiry projects are now prevalent in the literature (Collins & Bell, 2004; Eason & Sherman, 2003; Grant & Vatnick, 1998) yet the vast majority of these papers focus on laboratory experiences, in line with the National Science Education Standard that students should be able to “design and conduct scientific experiments” (National Research Council, 1996). However, in the absence of laboratory funding and time, instructors at all levels are faced with the problem of having inquiry-based projects available but lack facilities, monetary resources, and time to implement such projects. In addition, there is a

S. Luke Flory, Ella L. Ingram, Britt J. Heidinger, and Tammy Tintjer are graduate students in the Department of Biology at Indiana University, Bloomington, IN 47405. They are members of the Inquiry-Based Curriculum Enhancement (ICE) team (http://hhmi.bio.indiana.edu/ice/index.html).