
The Shuar of eastern Ecuador are the second largest indigenous Amazonian group. Numbering approximately 40,000, the Shuar were unconquered by the Inca and Spanish. Today, the Shuar, like other indigenous groups in Amazonia, are now fighting to save their cultural heritage and environmental integrity in the face of acculturation. Easily one of the most extensive ethnobotanical surveys of any Amazonian group, this book documents 579 plant species utilized by the Shuar for food, medicine, construction, textiles, fiber, and fishing, to name a few. The arrival of this book is a watershed for Shuar ethnombotany.

The book begins by covering previous ethnobotanical studies in Ecuador, Shuar ethnology and history, and climatic data of the study area. This is followed by a description of methodology, classification of useful plants, the format of the data, and Shuar orthography. The authors go on to discuss their results in the context of Shuar resource management, plant terms and classification, and plant use. This first section comprises 90 pages and is then followed by the bulk of the book, an inventory of taxa utilized by the Shuar. This section is divided into Magnoliophyta, Pteridophyta, Lycophyta, Sphenophyta, Bryophyta, and Lichens, with alphabetical listings of families, genera, and species with their Shuar names and uses.

As a result of their efforts, the authors collected some 9000 plant specimens, many of which are new records for Ecuador and not cited in other florulas of the region. The authors have also devised a family use index (FUI) that considers both the number and proportion of species used. Not surprisingly, the families Fabaceae, Arecaceae, Rubiaceae, Moraceae, and Solanaceae have high FUI values. This family use index notes families with many useful plant species, but not necessarily the most culturally significant plants. Interestingly, nearly one half of the plants cited have two or more uses, and eighteen species are employed in five use categories. Several plants cited are used by other indigenous groups of western Amazonia (e.g., Manihot esculenta, Strychnos tomentosa, Banisteriopsis caapi), yet some are especially associated with the Shuar (e.g., Ilex guayusa, Cyperus articulatus). Of the 579 species listed here, the authors note that this is only about 50% of the plants utilized by the Shuar.

The only thing this text lacks is an index of scientific and Shuar plant names. An index would make this book easier for those working in the field who need to quickly reference a specific plant. Regardless, Ethnobotany of the Shuar of Eastern Ecuador will serve as the basis for future ethnobiological studies in Ecuador for years to come. This compilation of plants used by the Shuar will be invaluable to scientists investigating the ecological impact of Shuar plant use, resource management, and conservation. I highly recommend this book to anyone interested in the ethnombotany of the Amazon basin.

Kevin D. Janni
Department of Botany
University of Hawaii at Manoa
Honolulu, HI 96822
Janni@hawaii.edu


This fascinating little volume on the co-evolution of our species with our crops earned amply deserved praise in the popular press, and will certainly stir the interest and imagination of high school and college evolution and biology students, not to mention their professors. The basis of evolutionary success is reproductive success and co-evolution requires that both members of the relationship benefit. This simple Darwinian definition of evolutionary success is used to affirm the co-evolutionary status of our relationship with our crops, since both our species and our crop species are enormously more successful than were our ancestral populations—measured simply in number of individuals. This co-evolutionary relationship with our crops has seldom been emphasized enough by students of human evolution and crop domestication since Rindos (1984), whose path-breaking study is, curiously, absent from an otherwise good bibliography.

After defining the guiding scientific philosophy of the book, four human desires and a crop that co-evolved (or was domesticated, as the anthropocentric view would have it) to meet these desires are examined. The human desire for sweetness is exemplified by the apple, the desire for beauty by the tulip, for intoxication by marijuana, and for control by the potato. Each chapter is an ethnobotanical and historical study of the modern era, complete with social commentary!