A ZATRACHYDID TEMNOSPONDYL FROM THE LOWER PERMIAN OF THE BOSKOVICE FURROW IN MORAVIA (CZECH REPUBLIC)

ANDREW R. MILNER,1,2 JOZEF KLEMBARA,2 and ONDRÉJ DOSTÁL,3 1Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom, andrew.milner@nhm.ac.uk; 2Comenius University in Bratislava, Faculty of Natural Sciences, Department of Ecology, Mlynská dolina B-1, 842 15 Bratislava, Slovak Republic, klembara@fns.uniba.sk; 3Moravian Museum, Department of Geology and Palaeontology, Želný trh 6, 659 37 Brno, and Masaryk University, Institute of Geological Sciences, Kotlářská 2, 611 37 Brno, Czech Republic, o.do@post.cz

The Boskovice Furrow is a series of Late Carboniferous–Early Permian lake deposits extending in a north–south arc across southern Moravia. Many thousand specimens of tetrapods have been collected from numerous Lower Permian localities in the Boskovice Furrow, but almost all of them belong to a single family of seymouriamorph tetrapods—the Discosauriscidae. They were first reported by Makowsky (1876) and later studied by many workers, notably Fritsch (1879, 1880), Augusta (1936), Špinar (1952), Klembara (1997) and Klembara and Bartík (2000). The productive horizons have produced assemblages suggesting a near monoculture of discosauriscids and only a few non-discosauriscid tetrapods have ever been reported in the Boskovice localities, all from the basal Permian Padochov Formation (Fig. 1). Two of these—a specimen of 'Pelosaurus' reported by Augusta (1936) and the taxon Moraverpeton remesii described by Augusta (1947) as a branchiosaur—were probably further specimens of discosauriscid, the former having discosauriscid-type scales and the latter having several discosauriscid features. The only non-discosauriscid described to date, also from the Padochov Formation, is a branchiosaur assigned to 'Branchiosaurus' sp. reported by Augusta (1947:pl. 2, fig. 1) from Zbýšov. The photograph of this specimen suggests that it is a branchiosaurid temnospondyl amphibian, and until now this has been the only non-discosauriscid to be certainly recognised from the Boskovice Furrow. The specimen of the zatrachydid Dasyceps reported here was collected in 2003 from the Middle Letovice Formation, and is thus only the second non-discosauriscid to be collected from the Boskovice Furrow and the first from the Letovice Formation. It was first reported by one of us (O.D.) in an unpublished thesis in 2003 and later reported as an eryopoid by Zajíc and Štamberg (2004:12).

Institutional Abbreviation—MM. Moravian Museum, Brno, Czech Republic.

GEOLOGICAL SETTING

The Boskovice Furrow of southern Moravia is a valley-like sedimentary basin with an asymmetrical filling extending from Moravský Krumlov in the south to Trnávka in the north. On the east side it is bordered by a fault, in the west it gradually transitions into a massif of metamorphic and eruptive rocks. Sedimentation in this area commenced in the Upper Carboniferous and this phase of its development is represented by the sediments in the most southerly region of the Boskovice Furrow. The youngest sediments (Autunian) form part of the Letovice Formation in the vicinity of Boskovice and Letovice (Fig. 1). Assemblages rich in insects, fishes and discosauriscid tetrapods occur in the Middle Letovice Formation throughout the region (Zajíc and Štamberg, 2004). In different regions of the Boskovice Furrow, the rich Middle Letovice Formation horizons are referred to as the Kochov, Michov and Bačov horizons (Fig. 1) but they may all represent the same unit (Zajíc and Štamberg, 2004).

The locality that produced this specimen is situated about 5 km south-west from the town of Boskovice and less than 1 km north from the village of Obora. The productive horizons were found in excavations near the road between Obora and Jabloňany. All discoveries were made in a 30–35 cm thick layer of bituminous limestone in the upper beds at this locality. The specimen described here was found in a weather-worn block of this limestone. In the basal sediments at the locality, there is a layer of yellow claystones with numerous disarticulated parts of tetrapod skeletons. Above this, a 2 cm thick layer of massive limestone is followed by a 38–40 cm thick layer of bituminous claystones that gradually changes colour from black to yellow and then back to black. In the latter transition into brown-black layers, numerous skeletons of paramblypterids and fragments of discosauriscid skeletons are present. Above these layers is a bed that is formed by 7.5 cm massive limestone with a 2 cm layer of...