The Triassic marine reptiles from Guizhou Province, China, have attracted much attention during the past decade. The Triassic of Guizhou has traditionally yielded marine reptile fossils (Young 1958, 1960, 1965), including the Ladinian (Middle Triassic) locality in Dingxiao (Xingyi) that is famous for the pachypleurosaur *Keichousaurus*. However, the recent boom was fueled by the discovery of two new localities yielding well-articulated specimens of various marine reptile groups (Wang et al., 2001; Jiang, Motani, Li, et al., 2005). The first to be reported was the locality near Xinpu in Guanling County (Li, 1999; Liu, 1999), where the Wayao Member of the Falang Formation is exposed. The Wayao Member, which yields articulated marine reptile fossils, is now correlated to the early Carnian (Upper Triassic) based on conodonts, cephalopods, and ichthyoliths. However, some workers maintain that it corresponds to the late Anisian (Bithinian to Illyrian). They also indicated that reptile beds were found in their Cy 12 and 13, where the conodonts *Nicoraella kockeli* and *N. germanicus* co-existed. The horizon corresponds to the lower part of the Kockeli Zone, and therefore represents the early Pelsonian (Sun et al., 2006). Accordingly, the vertebrate assemblage(s) from the Yangjuan area is the oldest well preserved fauna from the Middle Triassic, including the Monte San Giorgio area where reptile-bearing strata span the late Anisian to the latest Ladinian (Sun et al., 2006).

The Yangjuan locality has yielded a remarkable assemblage of marine reptiles, including unique lineages such as the protorosaur *Dinocephalosaurus* (Li, 2003; Li et al., 2004), and the archosauroid *Qianosuchus* (Li et al., 2006). However, some important specimens were collected by amateurs, without a precise stratigraphic record beyond ‘Guanling Formation near Xinmin’. Therefore, it is unclear whether all of these marine reptiles were found in Cy 12 and 13, and if so, whether in a single or multiple horizons. This lack of provenance is problematic because what has so far been considered a single assemblage may indeed represent multiple assemblages depending on the stratigraphic horizon of each species. It is important to clarify the vertical distribution of all vertebrate remains, as well as their taphonomic state, to better understand the ecosystem(s) recorded in the Yangjuan area.

A joint excavation by the University of California, Davis, Peking University, and Università degli Studi di Milano was held during June–July, 2006 in the Yangjuan area. Many local amateur collectors participated in our excavation, which provided us with an invaluable opportunity to confirm and scrutinize the horizons of some published specimens through interviewing the original collectors. Some of the specimens occurred in sites other than our main excavation site. We therefore measured four stratigraphic sections located throughout the area where marine reptile fossils have been collected. The purpose of the present note is to report the detailed stratigraphy of published marine reptile fossils.