As the book review editor I generally receive a book, spend a few days looking through it, assign a reviewer(s), and wait. Occasionally I purchase a copy, quickly peruse the chapter(s) of interest, and place it on my shelf but after reading Freshwater and Estuarine Wetlands; I ordered 24 more for my graduate wetland ecology course.

In the preface, the editors, Batzer and Sharitz, correctly identify the proliferation of wetland ecology courses and programs (both undergraduate and graduate), the paucity of wetland “ecology” textbooks, and the need to relate ecological principles across freshwater and estuarine wetland systems. While recognizing this need, the editors fail to report that there is currently no single resource available that simultaneously addresses both freshwater and estuarine wetlands making their contribution immediately applicable regardless of content, style, or veracity. Fortunately, Batzer and Sharitz do not disappoint and provide 17 “A-list” scientists, 691 well written and edited pages, distributed across 12 integrated and intuitive chapters.

While predictably organized Ecology of Freshwater and Estuarine Wetlands provides a comprehensive introduction to the great ecological breadth and complexity that wetlands exhibit ranging from microbial process to biogeography and global climate. Early chapters address primary abiotic (e.g., geomorphology, soils, and hydrology) and biotic (e.g., adaptations of wetland plants and animals) properties of wetlands providing an excellent foundation for the substantial ecology that follows. This is not meant to suggest that these chapters are generic or elementary; rather they provide a much needed explanation of how and why wetlands are fundamentally different from terrestrial and aquatic systems allowing the reader to continue logically forward. Of these foundation chapters, wetland hydrology (Chapter 3), stands out as being sorely needed, timely, and summative addressing the basics of hydrology, applying these principles to wetlands of differing geomorphic conditions, and clearly articulating the role of hydropattern in shaping wetland biological communities.

Having received a primer on the physical and abiotic constraints on wetland plants and animals, we launch into the second section of the book, which addresses general ecology and many ecological topics typically relegated to discipline specific text. Biogeochemistry and bacterial ecology of hydrologically dynamic wetlands (Chapter 5) is both intriguing and informative but probably too advanced for undergraduates. Chapter 6, Development of wetland plant communities, provides a lucid and objective introduction to the distribution of wetland plants in time and space addressing historic and current models with succinct detail. The same can be said