Cryptic Association of Microdeuterus megacephalus (Hemiptera: Heteroptera: Acanthosomatidae) Nymphs with Ficus benjamina Fruits

Hao-Yuan Hu, Zhong-Zheng Chen, Guang-Chang Ma, Li-Ming Niu, Yue-Guan Fu, and Da-Wei Huang

Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China

J. Entomol. Sci. 46(4): 335-338 (October 2011)

Keywords adaptation, camouflage, crypsis, figs

Camouflage occurs when animals merge optically with their surroundings, in both color and form, often to facilitate escape or aggression (Cott 1940, In Adaptive Coloration in Animals, Meuthen, London; Ruxton 2009, Phil. Trans. R. Soc. B. 364: 549 - 557). Camouflage is ubiquitous (Purser 2003, In Jungle Bugs: Masters of Camouflage and Mimicry, Firefly Books, Toronto), and an effective camouflage benefits animals with protection. Animals may change their body color during ontogenetic stages. Ontogenetic color change (OCC) in many species may mean a crypsis with the background providing an effective camouflage that may be induced by background features, such as color and form of host plants (Futahashi and Fujiwara 2008, Science 319: 1061).

Ficus spp. (Moraceae), represented by approx. 750 species, are important plants in tropical forests with generally a pan-tropical distribution (Janzen 1979, Biotropica 11: 127 - 129). Figs and their pollinators (Hymenoptera: Chalcidoidea, Agaonidae) are a classic example of coevolved mutualisms (Herre et al. 2008, Annu. Rev. Ecol. Evol. Syst. 39: 439 - 458). Figs, whose year-round production of fruits (inflorescences, syconia), are keystone resources to maintain the tropical biodiversity (Basset et al. 1997, Pg. 342 - 361 In Forest and Insects, Chapman & Hall, London). The long-term stability of mutualisms poses a considerable challenge to interaction of species. Pollinators, non-pollinating fig wasps, and some other insects (such as fig flies, moths, and beetles) living internally in fig fruits have been proven to adapt to figs in life cycle, morphology, behavior, etc. (Hamilton 1979, Pg. 167 - 220 In Reproductive Competition, Mate

1Received 03 January 2011; accepted for publication 10 April 2011.
2Address all correspondence (email: haoyuanhu@126.com).
3Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
4Plant Protection College, Shandong Agricultural University, Tai’an, Shandong, 271018, China
5Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China