
There has been a sprinkling of new genera: *Avonia* (*B*12), *Lodia* (*B*18), *Phiambolia* (*B*21), *Rimacactus* (*B*19) and *Ruschiella* (*B*23). They have fared differently in the battle to survive. Many of the taxonomic papers have been necessary preliminaries for a major work, a monograph or flora: P. V. Bruyns’s stapeliads, for example, and Heidi Hartmann’s Aizoaceae for The Illustrated Handbook of Succulent Plants. Three major checklists of names have been serialised, for *Mammillaria* (*B*1−5), *Opuntia* (*B*13−23) and *Conophytum* (*B*6−9).

“Taxonomy by Consensus” was the initiative of David Hunt, Nigel Taylor and a group of IOS members charged with revising Cactaceae. Its emergence can be traced through preparatory schemes in *B*4, 5, 8, 9 & 10 especially, although the outcome as seen in *The New Cactus Lexicon* inevitably reflects one person’s overall private opinion when drawing all the threads together. Taxonomy by consensus remains an interesting pipe-dream: one wonders if it will start a cult?

Taxonomy in the twentieth century advanced—or at least progressed—in a series of leaps rather than a smooth flow. New techniques were each hailed as the salvation of problems of defining species and tracing the course of evolution. Cytology was one such: “Count the chromosomes and unravel the secrets of life!” By the time that *Bradleya* was founded the scanning electron microscope (SEM) had revealed a whole new world of three-dimensional features in pollen and seeds, which in turn posed new problems to describe and classify. Seed surveys of *Echinopsis* and *Ferocactus* (*B*1) and *Parodia* (*Notocactus*) (*B*4) are examples covered, and cactus pollen is mapped and classified in *B*15.

Computers were coming into their own as a means of handling banks of data too large for manual processing, and numerical taxonomy was born. New terminology came in here, too: phenetics, for the study of overall similarities, and phylogenetics for the representation of evolutionary lines. Cladistics was born; the old-fashioned “rootless trees” were felled to be replaced by phenograms and cladograms. Nigel Taylor and Daniela Zappi admirably introduced the new thinking into their exposition of Tribe Cereeae of Cactaceae in *B*7.

From chromosomes to genes, and genes to component deoxyribonucleic acid (DNA): the quest for the origin of life had its great breakthrough in 1953 with the revelation of the structure and replication of DNA. Genome analysis was born, and its practical application to classifying succulents revealed to the public in 1995 in the classic and influential paper by Rob Wallace in *B*13. He also lectured to the IOS Working Party with memorable acclaim, and went on to direct an ongoing series of research projects bearing on some of the most controversial and neglected genera of succulents. Long-favoured