OBITUARY

WILLIAM DANIEL SUDIA
1922–2010

Pioneer medical entomologist and virologist William Daniel Sudia died Christmas Day, 2010, in Decatur, GA, after a brief illness at 88 years of age. His passing was marked by snowfall and the first white Christmas in Atlanta since 1881. He was preceded in death by Polly, his wife of more than 50 years, who died in 2000, and is survived by 2 daughters and sons-in-law, 1 grandson, and many friends and former colleagues.

Dan spent almost his entire career working for the Centers for Disease Control and Prevention (CDC) and its predecessor organizations. Born in Ambridge, PA, he obtained his undergraduate degree at the University of Florida and his Master’s and Ph.D. degrees from Ohio State University, all in entomology. In 1947, fresh out of graduate school, he joined the Medical Entomology Unit, Laboratory Branch, Office of Malaria Control in War Areas, US Public Health Service, as a Medical Entomologist when the unit was located in Montgomery, AL. He joined the Virus Vector Laboratory of the Communicable Disease Center in Montgomery in 1954. This group moved to the Clifton Road campus in Atlanta, GA, in 1960, and after several name changes it is now known as the Centers for Disease Control and Prevention. Except for a few years with the CDC branch in Fort Collins, CO, Dan spent the remainder of his career in Atlanta.

Dan was always good at arriving at practical yet simple solutions to problems he and others identified. His first publication, in July of 1951, was entitled “A Device for Rearing Animals Requiring a Flowing Water Environment” (Sudia 1951). Dan, with Roy W. Chamberlain, is perhaps best known as a coinventor of the CDC miniature light trap (Sudia and Chamberlain 1962). This trap made the capture of large numbers of live mosquitoes from remote areas possible for the first time for virus isolation attempts and vector identification for arthropod-borne virus (arbovirus) studies. His trap replaced the New Jersey trap, which was cumbersome, heavy, and required a source of electricity, all of which greatly limited its application and usefulness. The new trap also replaced a prototype CDC trap that used heavy lead-acid car batteries, also a significant limitation. The trap was much more effective than predecessor traps, not only collecting mosquitoes in much greater numbers than was previously possible, but also collecting a greater variety of species as well. It was lightweight, easily portable, and easy to repair in the field, characteristics lacking in previous trap designs. Further refinements to the trap were the addition of dry ice as a source of carbon dioxide to attract blood-seeking mosquitoes (Newhouse et al. 1966) and the conversion to using flashlight batteries as a power source (Johnson et al. 1973). The trap was produced commercially and became the standard trap for the collection of mosquitoes and other medically important arthropods worldwide.

Dan also designed the CDC Entomological Chill Table (Sudia et al. 1965), which greatly improved the ability to isolate viruses from field-collected arthropods. These and other newly developed techniques and methods were synthesized into two classic manuals, “Collection and Processing of Medically Important Arthropods for Arbovirus Isolation” (Sudia and Chamberlain 1967) and “Collection and Processing of Vertebrate Specimens for Arbovirus Studies” (Sudia et al. 1970). Dan and his colleagues at the Arbovirus Ecology Laboratory, of which he was Chief, had