According to Mound & Monteiro (1997), the genus *Heliothrips* contains three species: *H. haemorrhoidalis* (Bouché) and *H. zucchi* Mound & Monteiro which are native to Brazil, and *H. sylvanus* Faure which is native to southern Africa. The revised checklist of Thysanoptera of southern Africa (zur Strassen 2006) listed the South African provincial distribution of *H. sylvanus* as Limpopo, KwaZulu-Natal, Eastern Cape and Western Cape.

Annecke & Moran (1982) list *H. sylvanus* as a pest on guavas, hence the common name of guava thrips. According to these authors, injury to guavas is mostly limited to scarring of leaves, although occasional scarring of fruit has been reported. Other plants on which *H. sylvanus* has been collected, are avocado, rose, *Brachylaena discolor* (bosvaalbos), *Heteropyxis natalensis* (wild lavender), *Maesa rufescens*, *Barringtonia racemosa*, *Parthenocissus* sp. and *Allophylus decipiens* (Jacot-Guillarmod 1971; Annecke & Moran 1982).

The occurrence of *H. sylvanus* on table grapes in the Western Cape was investigated by Schwartz (1987, 1989), who found that *H. sylvanus* preferred older, mature vine leaves and caused extensive feeding damage to these leaves. However, no damage to grape berries was reported. Since *H. sylvanus* numbers and feeding damage to grapevine leaves peaked in March or April when grapes have already been harvested or are very close to harvest, it was not considered to cause economic damage. Currently, table grape producers do not consider *H. sylvanus* to be a pest of economic importance.

In May 2007 severe insect damage to astringent persimmons (var. Triumph, also known as Sharon fruit) was reported from the farm, Medoc, at the southern end of the Hex River Valley in the Western Cape. According to the farmer, 60% of the fruit in this particular orchard was deemed unmarketable due to scarring. Although the primary crop in the Hex River Valley is table grape, plantings of citrus and persimmon have increased substantially over the last ten years as farmers seek to diversify their crops. Thrips collected during a field visit from the above-mentioned persimmon orchard and adjacent table grape vines were identified as *H. sylvanus*. The specimens all exhibited the dark brown head, body and legs with extensive reticulate sculpture characteristic of this species (Mound & Monteiro 1997). Feeding damage to persimmon leaves was extensive (Figs 1, 2), with the brown droplets of excrement typical of feeding by *H. sylvanus* clearly visible. Feeding damage on the fruit could, however, not be conclusively ascribed to *H. sylvanus*.

During March 2008 groups of 10 *H. sylvanus* larvae or adults originating from persimmon leaves from Medoc farm were transferred to either green or ripening undamaged fruit of both astringent and sweet persimmon (var. Fuyugaki) in individual cages in an insectary. After five days, feeding damage was clearly visible with the naked eye under the sepals (Figs 3, 4) and also around the end of the fruits where they rested on the cage floor (Figs 5, 6). Larvae and adult thrips caused feeding damage to green and ripening fruit of both astringent and sweet persimmons. Larvae were also able to complete their development to the adult stage on both types of persimmon fruit.

From October 2007 until April 2008 thrips occurrence was monitored in the persimmon orchard and adjacent table grape vineyard (cv. Ralli Seedless) on Medoc farm as part of a larger project to investigate thrips damage to deciduous fruit. Monitoring was primarily targeted at western flower thrips, *Frankliniella occidentalis* (Pergande), hence the use of blue sticky traps (Vernon & Gillespie 1995). This was augmented by periodic inspections of leaves, flowers, young and mature fruit. The presence of *H. sylvanus* in the vineyard and orchard was first recorded on sticky traps during the second half of February 2008. The numbers of *H. sylvanus* collected on sticky traps were very low, particularly compared with the large numbers present on leaves, indicating that blue sticky traps are not ideal for monitoring *H. sylvanus*. Feeding damage under the sepals was first recorded from five out of 25 persimmon fruit