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a b s t r a c t 

Expanding distributions of native juniper species have had significant ecological and economic impacts on 

prairie ecosystems of the Great Plains. Juniper encroachment reduces rangeland production by decreasing 

herbaceous biomass and affecting natural ecosystem functions as it alters other native plant communi- 

ties, microclimates, and soils. Juniper distribution maps are needed to support proactive management, but 

they often underestimate the extent of low-density juniper stands. Our objectives were to extend a pre- 

vious juniper mapping study by 1) fitting a predictive ecological model for low-density ( < 15% fractional 

cover) juniper stands and assessing the classification accuracy, 2) determining the habitat variables that 

had the strongest associations with low-density juniper, and 3) applying the model to map low-density 

juniper stands, where proactive management has the greatest potential for stopping further juniper en- 

croachment. The study area included counties bordering the Missouri River in southeastern South Dakota 

and northeastern Nebraska covering approximately 23 0 0 0 km 

2 . Environmental predictors included seed 

source distance and density, as well as topography, climate, soils, and land use variables. Areas of low- 

density juniper were identified by visual interpretation of sample plots from digital aerial photography. 

We used a machine-learning approach to classify low-density juniper with the random forests algorithm. 

Model accuracy was high with an area under the receiver operating characteristic curve of 0.884. Vari- 

ables related to seed sources were the most important predictors, and precipitation, slope angle, and the 

local intensity of human land use also had substantial influences. A previous map based on Landsat im- 

agery identified 209 968 acres (84 971 ha) as juniper with in the study area, and this study found an 

additional 430 648 acres (174 277 ha) classified as low-density juniper stands. These results can provide 

agencies and land managers with more accurate information about the distribution of juniper, and the 

underlying techniques can be extended to map woody plant encroachment in other areas. 

© 2022 The Author(s). Published by Elsevier Inc. on behalf of The Society for Range Management. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ntroduction 

In many parts of the North American Great Plains, expan-

ion of woody plants threatens the natural functions of grassland

cosystems ( Knapp et al., 2008 ; Van Auken 2009 ; Ratajczak et al.,

012 ). Notably, eastern redcedar (Juniperus virginiana) and Rocky

ountain juniper (Juniperus scopulorum) have affected carbon stor-

ge, soil characteristics, and plant communities within the prairie

cosystems of the Great Plains ( Norris et al., 2001 ; McKinley and

lair 2008 ; Pierce and Reich 2010 ). In the central United States,

he encroachment of these species (hereafter referred to collec-

ively as “juniper”) resulted in the conversion of 205 0 0 0 acres (82
∗ Correspondence: Michael C. Wimberly, Dept of Geography and Environmental 

ustainability, University of Oklahoma, Norman, OK 73019, USA 
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60 ha) of non-forested land to forests between 2007 and 2012

 Meneguzzo and Liknes 2015 ). The shift from grassland to juniper

over affects ecosystem function and hydrology through increased

oil infiltration and reduced streamflow ( Zou et al., 2014 ; Zou et al.,

016 ). Carbon dynamics also change as carbon storage is shifted

rom belowground to aboveground ( McKinley and Blair 2008 ). As

uniper establishment increases, the microenvironments created by 

ncreasing tree cover affect the composition of understory plant

ommunities and facilitate the encroachment of non-native species

 Pierce and Reich 2010 ). These impacts of juniper encroachment

ave undesired consequences for grassland agriculture. Herbaceous 

roductivity can be reduced up to 75%, which is comparable with

orage levels at a heavily grazed site ( Fuhlendorf et al., 2008 ). The

conomic and ecological consequences of juniper encroachment 

ill continue to increase without effort s toward grassland conser-
ation and restoration. 

ange Management. This is an open access article under the CC BY license 
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Management of encroaching woody plants is crucial, especially 

hen attempting to control a quickly expanding juniper footprint. 

roactive and reactive management are two approaches for con- 

rolling juniper ( Simonsen et al., 2015 ). Proactive management

easures are implemented before juniper has established or is in 

ulnerable seedling and sapling stages and can include grazing, 

aying, and low-intensity prescribed burning ( Wilson and Schmidt 

990 ; Smith 2011 ; Simonsen et al., 2015 ). In contrast, reactive man-

gement practices are implemented where juniper is already well 

stablished. Mechanical removal by timber cutting, herbicides, and 

igh-intensity prescribed burning are commonly used methods for 

educing juniper on established sites ( Wilson and Schmidt 1990 ;

mith 2011 ; Simonsen et al., 2015 ). Reactive management of ju-

iper is costly and time consuming, and it becomes less effec-

ive as stand density and tree size increase ( Buehring et al., 1971 ;

rtmann et al., 1998 ; Bidwell et al., 2002 ). Therefore, proper plan-

ing is essential so that proactive management methods can be 

sed in a timely manner. 

Juniper maps can aid in targeting areas for proactive man- 

gement, particularly if they can identify low-density sites be- 

ore juniper is fully established. Newly established juniper can 

ature and begin producing seeds within 6 yr ( Twidwell et al.,

021 ) and can reach 15% canopy cover within 10 −15 yr ( Fogarty

t al., 2021 ). Remote sensing is a common way of obtaining

patial information about forest distribution and conditions that 

an be applied for management purposes ( Franklin 2001 ; Giri

012 ). Juniper distributions have been mapped with various re- 

otely sensed data sources including very high spatial resolu- 

ion (VHSR) aerial imagery ( Anderson and Cobb 2004 ; Poznanovic

t al., 2014 ), multispectral imagery ( Sankey and Germino 2008 ;

askie et al., 2019 ), hyperspectral imagery ( Wylie et al., 20 0 0 ),

nd multisource fusion of data from active and passive sensors 

 Sankey et al., 2010 ; Wang et al., 2017 ). Although these studies

ave successfully mapped mature juniper stands, mapping areas 

ith sparse coverage during the establishment phase has been 

ore challenging. Wang et al., (2017) found that < 30% of ju-

iper sites in Oklahoma with 10 −20% tree cover was correctly

lassified using multitemporal synthetic aperture radar (SAR) and 

andsat imagery. Kaskie et al., (2019) mapped junipers in South 

akota and Nebraska and similarly found that < 50% of juniper

ites with 10 −20% tree cover and < 15% with 1 −10% cover were

orrectly classified using snow-covered winter Landsat imagery. 

ecause of these challenges, tree cover estimates in rangelands 

ave been largely absent from operational, continental-scale prod- 

ct such as the National Land Cover Dataset ( Kaskie et al., 2019 ).

ore work is needed to improve the detection of areas in the

arly stage of juniper establishment where proactive manage- 

ent aimed at preventing juniper encroachment is most effective 

 Simberloff 2003 ; Yokomizo et al., 2009 ). 

Several approaches have been used to map low-density tree 

over in rangeland ecosystems. Techniques that use very-high- 

esolution imagery from digital aerial photographs ( ≤ 1-m pixel 

ize) combined with object-based feature detection methods such 

s spatial wavelet analysis can detect individual trees ( Strand et al.,

006 ; Falkowski et al., 2017 ). However, high data volumes and re-

uirements for specialized software can make these methods chal- 

enging to apply. When used with machine learning techniques and 

arge training datasets, Landsat can be used to predict fractional

ree cover as a continuous variable ( Allred et al., 2021 ). Landsat

ata are widely used for vegetation mapping because of their free

vailability, global coverage, and large historical archive. However, 

etecting low-density juniper stands with Landsat is difficult 

ecause the pixel size of Landsat (30 m) typically encompasses a

ixture of juniper and other background materials. Alternatively, 

redictive vegetation mapping ( Franklin 1995 ) can be used to

upplement remotely sensed maps by identifying areas suitable 
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 25 Ap
f Use: https://bioone.org/terms-of-use
or juniper establishment based on environmental variables. Pre- 

ictive modeling of juniper encroachment in riparian habitats has 

ound that juniper establishment is influenced by soils, floods, and 

he historical effects of flow regulation ( Greene and Knox 2014 ;

lleperuma and Dixon 2021 ). However, riparian areas are only one

f the many habitats where juniper occurs ( Lawson 1990 ; Noble

990 ), and larger-scale predictive models are needed for broader 

pplications. 

The goal of this study was to predict the probability of low-

ensity juniper ( < 15% cover) in areas of southeastern South

akota and northeastern Nebraska that were not identified as con- 

aining juniper in a previous Landsat-based classification ( Kaskie et 

l., 2019 ). This product reliably classified juniper pixels with frac-

ional cover > 15% (89 −95% overall accuracy) but had very low de-

ection probabilities for sparser juniper cover. Thus, an additional 

odeling study focused on low-density juniper was undertaken to 

etter characterize the extent of juniper encroachment across the 

tudy area. Specific objectives were to 1) fit a predictive ecolog-

cal model for the probability of low-density juniper occurrence 

nd assess the resulting classification accuracy, 2) determine habi- 

at variables that have the strongest associations with low-density 

uniper stands, and 3) extrapolate predictions across the study area 

o identify areas where low-density juniper is most abundant. 

ethods 

tudy area 

Our study area covered 14 contiguous counties (nine coun- 

ies in southeastern South Dakota and five counties in north- 

astern Nebraska [ Fig. 1 ] all bordering the Missouri River. This

rea has a Köppen climate classification of Dfa; humid continen- 

al climate consisting of warm to hot summers and cold win-

ers ( Kottek et al., 2006 ), with an annual temperature range of

 −11 °C and an annual average precipitation of 498 −796 mm. Na-

ive vegetation consists of mixed-grass prairie species such as lit- 

le bluestem (Schizachyrium scoparium), big bluestem (Andropogon 

erardii), western wheatgrass (Pascopyrum smithii), sideoats grama 

Bouteloua curtipendula), and green needlegrass (Nassella viridula). 

oodlands are primarily found near drainages and riparian low- 

ands with the exception of small groves scattered across the 

rairie uplands. The most common deciduous species includes the 

lains cottonwood (Populus deltoids) with the occasional green ash 

Fraxinus pennsylvanica) and American elm (Ulmus americana). Ju- 

iper species such as Rocky Mountain juniper (Juniperus scopulo- 

um) and eastern redcedar (Juniperus virginiana) are also common 

 Barker and Whitman 1988 ). Steeply sloped drainages disrupt a flat

o rolling topography composed largely of agriculture (48%) and 

erbaceous grasslands (39%), producing a fragmented landscape 

 Wimberly et al., 2018 ). Primary land uses include the agricultural

roduction of corn, soybeans, and wheat, as well as cattle ranching

 Wimberly et al., 2017 ). 

uniper training and validation data 

We used a stratified random sampling design to collect data 

rom photo-interpreted juniper plots over a range of juniper densi- 

ies. We allocated four strata, which included closed canopy wood- 

ands, buffered closed canopy woodlands, planted shelterbelts (nar- 

ow rows of trees planted for wind protection), and nonwoodland 

reas. We digitized the closed canopy woodlands and planted shel- 

erbelts in ArcGIS 10.5 following the guidelines outlined in Bauman 

t al., (2016) using 60-cm very high spatial resolution (VHSR) data

rom the National Agricultural Imagery Program collected in 2014 

nd 2016. To obtain samples of intermediate juniper densities, we 
r 2024
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Fig. 1. Study area composed of nine counties in southeastern South Dakota and five counties in northeastern Nebraska. Landsat world reference system 2 path/rows: a, 

30/30 and b, 29/30 cover the 14 contiguous counties. 
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laced a 90-m buffer around the digitized closed canopy stratum.

he remaining nonwoodland areas had relatively few junipers. 

We generated 4 308 random points including 1 282 points in

losed-canopy woodlands, 671 points in shelterbelts, 1 210 points

n buffered closed-canopy woodlands, and 1 145 points in non-

oodland areas. Each random point was referenced to a Land-

at pixel by converting it to a 30 × 30 m polygon and snapping

o the Landsat 8 pixel grid. We visually estimated juniper cover

n each polygon using a combination of VHSR imagery, which

ncluded National Agricultural Imagery Program 2016 and other

ources of winter imagery accessed through Google Earth from

013 to 2017. All estimates were made by the same interpreter for

onsistency. These data were originally used for accuracy assess-

ent of the remotely sensed juniper map developed by Kaskie et

l., (2019) . To increase the size of the dataset for training the ju-

iper encroachment model, we sampled an additional 500 points

n closed canopy woodlands and 500 points in buffered closed

anopy woodlands. The final training dataset included all points

ith juniper cover ≤ 15% or no juniper cover. There were 865 low-

ensity juniper points (1 −15% cover) and 2 468 juniper absence

oints ( Fig. 2 ). 

cological predictor variables 

We examined 15 predictor variables ( Table 1 ) that were hy-

othesized to be associated with juniper encroachment. These

ariables measured topography (slope and aspect); climate (mean

nnual temperature and total annual precipitation); soils (per-
d From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 25 Apr 20
se: https://bioone.org/terms-of-use
ent sand, percent silt, percent clay, soil available water stor-

ge, depth to restricted layer, root zone depth, and soil drainage

lass); land use in the surrounding landscape (percent agri-

ulture); seed sources (distance to juniper and percent ju-

iper in the surrounding landscape); and flooding potential (dis-

ance to surface water). We processed these variables in Ar-

GIS 10.5 and resampled them all to a 30-m spatial resolution

aster. 

We used the National Elevation Dataset with 30-m spatial

esolution to derive topographic indices. The National Elevation

ataset, created by the US Geological Survey, was accessed through

he US Department of Agriculture Geospatial Data Gateway. Per-

ent slope represented the physical gradient of the landscape and

spect indicated the direction the slope faced. We reclassified as-

ect into nine categories including flat (0% slope); cardinal direc-

ions (N, E, S, W); and ordinal directions (NE, SE, SW, NW). 

We used the PRISM (Parameter-elevation Relationships on 

ndependent Slopes Model) dataset to extract 30-yr normals

1981 −2010) of climate variables, including average annual mini-

um temperature, average annual maximum temperature, and av-

rage annual precipitation. We used the minimum and maximum

emperatures of each pixel to derive the mean annual temperature.

We used the gridded Soil Survey Geographic (gSSURGO)

atabase obtained through the Geospatial Data Gateway to extract

ultiple soil characteristics. Gridded SSURGO contains the same

ata provided in the US Department of Agriculture Natural Re-

ources Conservation Service SSURGO database in a 10-m spatial

esolution raster format. Soil texture is represented as three sepa-
24
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Fig. 2. Model training samples for random forests low-density juniper model. 

Table 1 

Predictor variables included in the random forests model of low-density juniper. 

Variables Source Description 

Aspect DEM Direction a slope faces (1: Level; 2: North to 9: Northwest) 

percSlope DEM Percent slope (rise divided by run multiplied by 100) 

Precipann PRISM Total annual precipitation (in) 

MAT PRISM Mean annual temperature ( °F) 

AWS0_150 gSSURGO Available water storage estimate from 0- to 150-cm depth; (cm) 

Rootznemc gSSURGO Depth to which roots can extract soil water and nutrients 

DRAINCLASS gSSURGO Drainage class based on frequency and duration of wet periods. 

SAND gSSURGO Percent sand 

SILT gSSURGO Percent silt 

CLAY gSSURGO Percent clay 

DEP2RESALYR gSSURGO Depth to restricted layer in soil profile 

CDL_1_5 × 5 CDL Percent cultivated, alfalfa, or other hayfield pixels within a 5 × 5 window 

DistJUNIP Juniper Map Euclidean distance to nearest juniper pixel (m) 

JUNIP_5 × 5 Juniper Map Percent juniper pixels within a 5 × 5 window 

DistWATER NHD Euclidean distance to nearest water body (m) 

CDL, Cropland Data Layer; DEM, Digital Elevation Model; gSSURGO; Gridded Soil Survey Geographic Dataset; NHD, National Hydrography Dataset; PRISM, Parameter-elevation 

Relationships on Independent Slopes Model. 
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Terms o
ate factors including percent sand, percent silt, and percent clay 

 Wang et al., 2018 ). A combination of these three factors can be

sed to define the soil classification within the soil profile. We

sed the available water storage estimate, which represented the 

olume (mm) of plant available water the soil can store within a 0-

o 150-cm soil profile. We used depth to restricted layer as a mea-

ure of the distance (cm) within the soil profile showing any re-

tricting features that may constrain root growth or the movement 

f water and air. We used the root zone depth as a measure to the

epth at which plants, root systems can effectively obtain nutrients 

nd water. We also used soil drainage class, which is characterized

nto seven classes (excessively drained to very poorly drained) and 

eflects the natural frequency and duration of wet periods for the

oil. 

We obtained land cover data at a 30-m spatial resolution from

he 2016 Cropland Data Layer (CDL). The CDL is produced annually

nd contains a remote-sensing based classification of different crop 

ypes. We used the 2016 CDL dataset to extract the percent agricul-
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 25 Ap
f Use: https://bioone.org/terms-of-use
ure within a 5 × 5-pixel window surrounding an individual 30-m 

ixel. We denoted agriculture as any human use of the landscape

or cultivated crops, alfalfa, or other hay fields. 

We used a 30-m classified juniper distribution map from a 

revious study ( Kaskie et al., 2019 ) to estimate distance to seed

ources. This map was based on two snow-covered Landsat 8 im-

ges that encompassed the study area. Juniper pixels were classi- 

ed using a matched filtering approach in ENVI version 5.4 soft-

are (Exelis Visual Information Solutions, Boulder, CO). Matched 

ltering produces continuous values that indicate the similarity of 

ach pixel to the spectral signature of pure juniper, and these val-

es were thresholded to produce a classification of juniper pres- 

nce/absence. The resulting map was validated using canopy cover 

ata obtained from visual interpretation of very high resolution 

magery. When juniper cover was above 50%, the detection prob- 

bility was ≥ 90%. However, when juniper cover was lower than 

0%, the true positive rate was < 50%. We used this juniper

resence-absence map to compute Euclidian distance to the near- 
r 2024
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Fig. 3. Effects of number of trees (Ntree) on error rate for low-density juniper 

model (out-of-bag [OOB; black line ]; juniper absence [red line] ; and juniper pres- 

ence [green line] ). 
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st juniper pixel and the percent juniper within a 5 × 5-pixel win-

ow surrounding an individual 30-m pixel. 

Distance to surface water was measured using the 1:24 0 0 0

cale US Geological Survey National Hydrography Dataset. We used

he National Hydrography Dataset to map all surface water features

ithin the study area. The Euclidean distance from each pixel to

he closest surface water feature was then calculated. 

uniper encroachment model 

The random forests model is an ensemble-learning algorithm

 Breiman 2001 ). This approach has been used in developing sus-

eptibility models ( Ismail et al., 2010 ; Wang et al., 2015 ; Youssef

t al., 2016 ; Chen et al., 2017 ) and has been applied in numerous

redictive mapping applications and across multiple disciplines

 Prasad et al., 2006 ; Belgiu and Dr ̆agu ̧t 2016 ; Biau and Scornet

016 ). We used random forests to predict the probability of low-

ensity juniper presence given the set of observed environmental

ariables. 

During each iteration of the random forests algorithm, the data

re separated into two groups. The in-bag dataset consists of a

ootstrap sample with approximately two thirds of the observa-

ions in the entire dataset and is used to train the algorithm. The

n-bag samples are used to train a decision tree without pruning,

here each split is based on one of a randomly selected set of

redictor variables (Mtry). The out-of-bag (OOB) dataset contains

he remaining observations and is used to generate predictions and

stimate prediction error. Because the OOB predictions and associ-

ted error estimates are independent of the training dataset, they

roduce results that are similar to a leave-one-out cross-validation

 Hastie et al., 2008 ). This process is repeated multiple times until a

ser-defined number of decision trees (Ntree) is reached. Each de-

ision tree rule is used to cast a vote for a predicted class with

he maximum number of votes becoming the final classification

 Breiman 2001 ). The probability associated with a class is calcu-

ated as the total proportion of votes across all trees. 

We developed random forests models using R statistical soft-

are version 3.4.1 ( R Core Team 2021 ) and the randomForest pack-

ge ( Liaw and Wiener 2002 ). We set the Ntree parameter to 500,

s trial runs with this value showed a stabilization of the errors

efore this maximum tree number was attained ( Fig. 3 ). Increas-

ng Ntree to 10 0 0 or more had minimal effects on the results, so

he parameter value of 500 was retained for computational effi-

iency. The Mtry parameter was set as the default, which is the

quare root of the total number of the predictor variables used in
he model. (  

d From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 25 Apr 20
se: https://bioone.org/terms-of-use
odel assessment 

The accuracy of model predictions was assessed by compar-

ng observations with OOB predictions that were independent of

he observations, providing results similar to a leave-one-out cross-

alidation ( Hastie et al., 2008 ). We also computed accuracy statis-

ics using a data-splitting approach, where 70% of points were used

s training data and 30% were reserved as a validation dataset. 

We used the Hosmer-Lemeshow goodness-of-fit test to evaluate

odel calibration. This test is commonly used in risk and suscep-

ibility modeling ( Bai et al., 2010 ; Catry et al., 2010 ; Fang et al.,

013 ). It categorizes subgroups (referred to as deciles of risk) and

erforms a Pearson chi-square statistic on the expected and ob-

erved frequencies. A close relation of the expected and observed

requencies reflects a model with good fit ( Hosmer and Lemeshow

0 0 0 ). 

We evaluated model predictions using receiver operating char-

cteristics (ROC). ROC examines multiple classification cutpoints 

y plotting the probability of detecting a true positive (sensitiv-

ty) against a false positive (1-specificity) over a range of cut-

ffs for classifying low-density juniper based on the proportion of

otes from the random forests ensemble ( Hosmer and Lemeshow

0 0 0 ). The area under the curve (AUC) measures discrimination or

he likelihood the model will predict target versus nontarget sites.

osmer and Lemeshow (20 0 0) suggest that AUC values represent

iscrimination as being none (0.5), acceptable (0.7 −0.8), excellent

0.8 −0.9), or outstanding (0.9 −1.0). 

We investigated the model performance of a full model and

ompared it with the performance of models with manually re-

oved variables to eliminate unnecessary variables while improv-

ng our final model computation time ( Plant 2012 ). We began

y removing strongly correlated predictor variables followed by a

rial-and-error process in which we independently excluded the

emaining variables. We found the final model to have as much

redictive power as our full model with a minimal effect on the

odeling error. 

esults 

odel accuracy 

The full model with all predictor variables achieved an out-of-

ag (OOB) error rate of 15.3% (84.7% accuracy). After removing cor-

elated and redundant variables, the final model contained eight

redictor variables: distance to juniper, percent juniper in the sur-

ounding landscape, total annual precipitation, percent slope, per-

ent agriculture, soil available water storage, mean annual tem-

erature, and aspect. The OOB estimate of error rate for the fi-

al model was 15.2% (84.8% accuracy), showing that the reduced

odel had as much predictive accuracy as our full model. The

odel had an OOB class error rate of 7.2% (92.8% accuracy) for

onjuniper (juniper absence) and 36.9% (63.1% accuracy) for low-

ensity juniper (juniper presence). 

We used the Hosmer-Lemeshow goodness-of-fit test to evalu-

te the calibration of our final model. The P value for the Hosmer-

emeshow test was > 0.05 ( χ ²= 5.8565, df = 8, P value = 0.6633),

ndicating that there was not a statistically significant difference

etween the expected and observed values and the final model

as well calibrated. We also used the ROC to evaluate model pre-

ictions, and accuracy was high with an AUC of 0.884 ( Fig. 4 ). The

osmer-Lemeshow test and AUC results indicated that the final

ow-density juniper model was a good predictor of low-density ju-

iper distributions. 

Using the data-splitting validation approach, the overall error

ate was 14.6% (85.4% accuracy). The class error rates were 6.3%

93.7% accuracy) for nonjuniper (juniper absence) and 38.6% (61.4%
24
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Fig. 4. Receiver operating characteristic curve to validate low-density juniper 

model. 

Fig. 5. Mean decrease accuracy of final eight low-density conditioning factors 

(listed in descending order) assigned by our random forests model. The eight pre- 

dictor variables listed are distance to juniper, percent juniper in the surrounding 

landscape, total annual precipitation, percent slope, percent agriculture, soil avail- 

able water storage, mean annual temperature, and aspect. Variable abbreviations 

are defined in Table 1 . 
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Table 2 

Distribution of predicted probabilities for low-density juniper within the study area. 

Probability indices Pixels Acres Hectares Percent of total (%) 

0.0 0 0-0.075 15 386 464 3 421 871 1 384 782 62.6 

0.075-0.176 4 937 870 1 098 156 4 4 4 408 20.1 

0.176-0.380 2 308 263 513 344 207 743 9.4 

0.380-0.694 1 157 495 257 422 104 175 4.7 

0.694-1.0 0 0 778 916 173 226 70 102 3.2 
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Terms o
ccuracy) for low-density juniper (juniper presence). The AUC was 

.872. These results were similar to those based on the OOB pre-

ictions, confirming that accuracy remained high even when pre- 

icting observations that were outside of the training dataset. 

nvironmental predictors 

The importance of the eight predictor variables is shown in 

ig. 5 by descending order of mean decrease in accuracy. Dis-

ance to juniper was observed to have the highest conditional im-

ortance (51.71) with a strong negative relationship between low- 

ensity juniper and the distance to a seed source ( Fig. 6 a). The

ighest probabilities of low-density juniper ( > 0.25) were within 

00 m of a mature juniper seed source, and the probability de-

reased rapidly out to approximately 300 m. In the field, we ob-

erved that low-density junipers located longer distances ( > 1 0 0 0

) from a seed source were typically planted immature junipers. 

ercent juniper within a 5 × 5-pixel window (36.81) had the sec-

nd highest importance with a strong positive relationship (see 

ig. 6 b), indicating that there was an increase in low-density ju-

iper where multiple mature seed sources were in close proximity. 

otal annual precipitation (28.99) was observed to have a negative 

elationship (see Fig. 6 c) and was followed by percent slope (26.40)
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 25 Ap
f Use: https://bioone.org/terms-of-use
ith a positive relationship (see Fig. 5 d) and percent agriculture

25.11) with a negative relationship (see Fig. 6 e). The three vari-

bles with lowest importance included soil available water storage 

15.67) with a negative relationship (see Fig. 6 f), mean annual tem-

erature (13.14) with a positive relationship (see Fig. 6 g), and as-

ect with the lowest importance (6.86) and no clear relationship

see Fig. 6 h). 

uniper encroachment maps 

We produced a final low-density juniper map by grouping 

he continuous probability values into five Jenks natural breaks 

roups: 0.0 0 0 −0.075, 0.075 −0.176, 0.176 −0.380, 0.380 −0.694, and

.694 −1.0 0 0 ( Fig. 7 ). By adjusting the probability thresholds for

lassifying low-density juniper, map users can control the tradeoff

etween detection probability (sensitivity) and correctly predicting 

uniper absence (specificity) as shown by the ROC curve in Fig. 4 .

or example, using probabilities > 0.38 (the two highest probabil- 

ty classes in Fig. 7 ) as a cutoff for low-density juniper prediction

esulted in a sensitivity of 0.71 and a specificity of 0.88. 

Visualizing the probabilities as a continuum provides infor- 

ation about the relative densities of low-density juniper pixels 

cross the landscape. The probability map was able to capture 

reas of low-density, encroaching juniper that were not classified 

s juniper in the Kaskie et al., (2019) Landsat-based map ( Fig. 8 ),

ith few low-density juniper pixels where probabilities were 

 0.176 and increasing juniper density over probabilities ranging 

rom 0.176 to 1. The summaries in Table 2 show that 430 648 acres

174 277 ha) had a predicted juniper probability > 0.38 in addition

o the 209 968 acres (84 971 ha) of juniper originally classified in

askie et al., (2019) . Thus, the footprint of juniper encroachment

as considerably larger once the extent of low-density juniper 

tands was incorporated. 

iscussion 

Satellite remote sensing has been shown to accurately predict 

he spatial distribution of relatively dense, mature juniper stands 

ut is less effective at predicting locations where juniper is still es-

ablishing and cover is relatively low ( Wang et al., 2017 ; Kaskie et

l., 2019 ). In this study, we showed that it is possible to map low-

ensity stands with juniper cover < 15%) using a model with pre-

ictor variables for topography, climate, soils, land use, and seed 

ource availability. The model had a relatively high prediction ac- 

uracy (AUC = 0.88) and highlighted areas with low-density juniper 

hat were not identified by our previous Landsat-derived map of 

uniper presence/absence. The predictive map of low-density ju- 

iper highlights locations where encroaching junipers are still pri- 

arily in seedling and sapling stages and are potentially suitable 

or proactive management, such as low-intensity burning, haying, 

nd grazing, which can prevent the establishment of mature ju- 

iper that will be more difficult to remove. 

Although the original Landsat-based map ( Kaskie et al., 2019 )

as not effective at predicting low-density juniper stands, it al- 

owed us to extract predictor variables that greatly influenced the 

uniper encroachment model. This was expected, as low-density ju- 
r 2024
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Fig. 6. a-h, Partial dependence plots for eight predictor variables used in the final random forests model for predicting low-density juniper. Variable abbreviations are 

defined in Table 1 . 
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Terms of U
iper stands are usually associated with seed dispersal from es-

ablished juniper sites ( Holthuijzen et al., 1987 ; Yao et al., 1999 ).

olthuijzen and Sharik (1985) showed that within abandoned

elds, eastern redcedar density decreased as the distance from a

eed source increased. This result supports our finding that the

robability of observing low-density juniper was highest < 100 m

rom established juniper and decreased with increasing distance

rom established juniper. Additionally, Owensby et al., (1973) found

ighest establishment of eastern redcedars within fields that were

lready heavily invaded by junipers. We similarly found that an
d From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 25 Apr 20
se: https://bioone.org/terms-of-use
ncrease in the distribution of established juniper within a 5 × 5-

ixel window ( ≈60-m radius) increased the probability of low-

ensity juniper occurrence. The fact that both variables were im-

ortant in our model emphasizes that seed source density and dis-

ance to seed source are important predictors of juniper establish-

ent. 

Predictor variables related to juniper cover had the highest

onditional importance within our model, but climatic and to-

ographical factors were influential as well. The 30-yr normal of

otal annual precipitation had the third highest importance. We
24
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Fig. 7. Low-density juniper map covering the study area. Level of juniper probability is represented within five indices while including positive juniper classifications. 

Fig. 8. A close-up view of the low-density juniper map. a, c, Original Landsat juniper classification. b, d, Probabilities of low-density juniper predicted by the model. 

Downloaded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 25 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



K.D. Kaskie, M.C. Wimberly and P.J. Bauman / Rangeland Ecology & Management 83 (2022) 81–90 89 

o  

r  

f  

t  

t  

a  

c  

w  

p  

R  

i  

c  

r  

F  

a  

d  

w  

a

 

c  

s  

t  

r  

c  

f  

s  

L  

a  

t  

t  

r  

a  

a  

a

I

L  

o  

o  

i  

L  

w  

n  

L  

t  

n  

e

 

w  

d  

1  

f  

(  

f  

m  

a  

i  

p  

a  

f  

f  

c  

m  

t  

c  

d  

r

 

c  

c  

2  

y  

g  

m  

o  

i  

b  

E  

w  

h  

l  

s

R

m

d

m  

c  

(

D

 

c  

i

R

A  

 

 

A  

 

A  

 

B  

 

B  

B  

 

B  

 

B

B  

 

 

B

B  

 

 

B  

C  

C  

 

 

Downloade
Terms of U
bserved a slight negative effect for annual precipitation over a

ange of 18 −27 in (457 −686 mm). Owensby et al., (1973) similarly

ound that for every additional inch (2.54 cm) of precipitation,

he juniper invasion rate decreased by 0.2 trees per acre (0.49

rees per ha). We also found a positive relationship with slope

ngle, in agreement with previous findings that Eastern redcedar

an be associated with moderate to steep slopes ( Anderson 2003 ),

hich have shallow soils and provide less competition from other

lants and more protection from fire ( Bryant 1989 ; Pierce and

eich 2010 ). The negative relationship with agricultural land use

n a 5 × 5-pixel window suggests that activities such as active

ultivation, haying, and grazing prevent juniper establishment and

educe the potential for spread into the surrounding landscape.

ire is another type of disturbance that can greatly reduce juniper

bundance, particularly at the seedling and sapling stages. We

id not have reliable maps of fire history for our study area, but

here these data are available they could be incorporated as an

dditional predictor variable. 

Variable importance ranking for our remaining variables fell

onsiderably below the highest-ranked variables, yet removal re-

ulted in a slight reduction in model performance and they were

herefore retained in the final model. Low-density juniper occur-

ence decreased with increasing soil water storage but then in-

reased again at water storage values > 30%. Similar to the ef-

ects of slope, very low and high water storage values may indicate

ites where competition from other plant species is minimized.

ow-density juniper was also increased slightly at warmer temper-

tures, although there was only a small variation in mean annual

emperature (46 −50 °F, 7.8 −10 °C) across the study area. Aspect was

he least important environmental factor and did not have a clear

elationship with low-density juniper. Some studies have shown

spect to influence juniper establishment ( Lawson 1990 ; Schmidt

nd Stubbendieck 1993 ), whereas others have found no effects of

spect on juniper establishment ( Tunnell et al., 2004 ). 

mplications 

Previously developed juniper classification maps based on 

andsat imagery allowed us to characterize current distributions

f established juniper ( Kaskie et al., 2019 ). The predictive model

f low-density juniper developed in this study provided additional

nformation about locations with that were not detectable with

andsat imagery. These low-density juniper stands were abundant

ithin the study area. Adding the locations where low-density ju-

iper was predicted with high probability ( > 0.38) to our previous

andsat-based map more than tripled the prediction of juniper ex-

ent from 84 971 to 259 248 ha. If these additional effort s were

ot made to map low-density juniper stands, the extent of juniper

ncroachment would be greatly underestimated. 

The greater time and cost of managing juniper encroachment

ith increasing size and density emphasizes the importance of

etecting and mapping these low-density areas ( Ortmann et al.,

998 ; Bidwell et al., 2002 ). Emerging management frameworks

or reducing woody plant encroachment are inherently spatial

 Twidwell et al., 2021 ), and early detection and rapid response

ollowing woody plant recruitment has been identified as a core

anagement philosophy. Predictive maps such as the one gener-

ted in this study can support these effort s by highlighting places

n the landscape that contain low-density juniper abundance to

rioritize them for proactive management. Estimates of the total

rea of low-density juniper at a particular location can be valuable

or budgeting and determining equipment and personnel needed

or management. Knowing the locations with low-density juniper

an help to direct on-the-ground surveillance effort s and deter-

ine the management activities that will be most suitable at par-

icular sites. Because seed sources are one of the most important
d From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 25 Apr 20
se: https://bioone.org/terms-of-use
onstraints to juniper establishment, maps of the current juniper

istribution are essential for understanding where dispersal and

ecruitment will occur in the future. 

The techniques that we have used are distinctive from, but

omplementary to, other studies that have mapped rangeland tree

over as continuous variables ( Falkowski et al., 2017 ; Allred et al.,

021 ) and detected rangeland regime shifts through spatial anal-

sis of multitemporal land cover data ( Uden et al., 2019 ). All the

eospatial data that we used to develop the low-density juniper

ap are freely available for the entire United States and many

ther parts of the world. In addition, the modeling techniques used

n the study have been implemented in a variety of freely accessi-

le software platforms such as R ( R Core Team 2021 ) and Google

arth Engine ( Gorelick et al., 2017 ). Therefore, the approach that

e developed and tested can be used by a wide variety of stake-

olders, easily updated in the future, and extended to other range-

and systems where encroachment of juniper and other woody

pecies are management concerns. 

esearch Data 

Geospatial datasets containing the Landsat-derived juniper 

ap ( https://doi.org/10.6084/m9.figshare.9241688.v1 ) and pre- 

icted low-density juniper probabilities ( http://doi.org/10.6084/ 

9.figshare.17122316 ) are available from figshare. The results

an be visualized via a Google Earth Engine app available at:

 https://mcwimberly.users.earthengine.app/view/junipermaps ). 
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