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Encroachment of woody plant species on rangelands is of critical concern for rangeland health and func-
tion. Recent advances in unpiloted aerial vehicles (UAVs) technology have opened new opportunities for
natural resource personnel to quantify features within the landscape. Our goal was to combine infor-
mation derived from UAV and Sentinel-2 imagery to quantify the presence and spatial distribution of
mesquite (Prosopis glandulosa). The specific objectives were to 1) evaluate the accuracy of UAVs to esti-
mate mesquite height and 2) classify mesquite using a combination of height metrics and spectral infor-
mation by combining UAV and Sentinel-2 remote sensing data. We conducted our study in three different
ecoregions in Texas. We collected on-site tree height field measurements and created two UAV-derived
height outputs at 50 m and 100 m above ground level (AGL). We then used a random forest classification
with data derived from the UAV to inform Sentinel-2 imagery of mesquite locations to assess its pres-
ence at the landscape level. Linear regression analysis showed that 50-m AGL mesquite height estimates
from UAV explained 95% of the variability. Variability explained from 100 m AGL height estimates was
slightly lower at 92%. Accuracy assessments from using UAV training data to predict mesquite presence
using Sentinel-2 imagery yielded overall accuracy of > 80% for all sites, user accuracies up to 86%, and
producer accuracies up to 92%. UAV-derived heights of mesquite were reliable. UAV imagery can be used
as training data for Sentinel-2 satellite imagery to assess mesquite presence on Texas rangelands. Being
able to combine the high spatial resolution of the UAV imagery with the high temporal resolution of the
Sentinel-2 satellite imagery could improve our ability to use UAVs to monitor rangelands.
© 2022 The Author(s). Published by Elsevier Inc. on behalf of The Society for Range Management.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

Encroachment of woody plant species on rangelands is of criti-
cal concern for rangeland health and function (Ansley et al., 2001;
Carey et al., 2012; Shackelford et al., 2013). Woody plant encroach-
ment often occurs with livestock overgrazing, fire suppression,
and/or mechanical disturbance (Archer and Stokes 2000; Archer
2010; Ku et al., 2012; Adam et al., 2017; Teleki et al., 2019). Woody
plant encroachment can negatively affect ecosystem services by al-
tering soil nutrient cycling, hydrologic cycling, and reduction in
herbaceous growth (Schlesinger et al., 2000; Archer et al., 2001;
Heaton et al., 2003; Huxman et al., 2005; Wilcox 2007; Mirik
and Ansley 2012). The increase of woody plant encroachment has
been shown to facilitate decreases in biodiversity because of other
species being outcompeted for resources (Ratajczak et al., 2012;
Teleki et al., 2019).

Honey mesquite (Prosopis glandulosa; hereafter “mesquite”) is
one of the most invasive native woody species within the south-
western United States (Dahl 1982; Ansley et al., 2001, 2018; Ku
et al., 2012; Adam et al., 2017). Its native range expands from
northern Mexico and throughout the southwestern United States
in 11 states including California, Arizona, New Mexico, Texas, and
Louisiana (Ansley et al., 1997; NRCS 2020). The encroachment
of mesquite has resulted in loss of native rangelands across the
southwest with negative effects on ecosystem functions such as
reductions in water yield (Ansley et al., 1997; Ball and Taylor
2003; Nie et al., 2012). Although mesquite has been a part of the
Texas landscape since before European settlements, it has become
problematic to many ranchers and landowners within its range,
which has been attributed to its adaptability and rate of spread
into areas where it was not prevalent beforehand (Hennessy et al.,
1983; Ansley et al., 1997; Anderson and Roderick, 2003). Mohamed
et al, (2011) showed that even under proper grazing manage-
ment, mesquite encroachment causes adverse effects on peren-
nial grass production, which decreases available forage for livestock
production. Because of mesquite’s ability to reestablish and spread
throughout the landscape, it is essential for rangeland managers to
be able to monitor mesquite presence at the landscape level (Adam
et al., 2017; Ansley et al., 2018) over time and space. Remote sens-
ing approaches can be a viable solution to monitor mesquite pres-
ence across landscapes.

Remote sensing has been used to map and quantify the distri-
bution of mesquite (Musick 1984; Fang et al., 2005; Yilmaz et al.,
2008, Mirik and Ansley 2012; Adam et al., 2017). Methods used for
monitoring mesquite include Light Detection and Ranging (LiDAR)
(Ku et al., 2012), aerial imagery (Ansley et al., 2001), and satellite
imagery at multiple resolutions (2—60 m) (Musick 1984; Mohamed
et al, 2011; Adam et al, 2017). Ku et al, (2012) were able to
use terrestrial LiDAR to estimate mesquite biomass at the plot
level (5x20 m). However, LiDAR still remains a costly operation
(Iglhaut et al., 2019; Jiang et al., 2020). Ansley et al., (2001) were
able to successfully assess increases in mesquite canopy cover from
1976 to 1995 using low-altitude aerial images with high-resolution
aerial photography (0.1 m) from a traditional piloted aircraft in
North Texas but were limited by temporal flight availability and
cost. The use of Digital Orthophoto Quadrangle (DOQQ) imagery
from the National Aerial Imagery Program (NAIP) is limited to a
revisit time of 2 yr, and spatial and spectral resolution can make
species differentiation difficult to achieve when multiple woody
species are present. The use of LANDSAT satellite imagery for de-
tecting mesquite species has proven to be effective because of
the high temporal resolution (revisit times every 16 d), but its
use can be restricted because of the coarse spatial resolution (30
m) and the amount of cloud cover present when data are col-
lected by satellites (Musick 1984; Fang et al., 2005; Yilmaz et al.,
2008). These methods have proven to be successful at monitor-

ing mesquite; however, low spatial resolution, high costs for high-
resolution imagery, and/or low revisit times may limit continuous
monitoring of mesquite (Ansley et al., 2001; Yilmaz et al., 2008;
Cunliffe et al.,, 2016; Gillan et al., 2019). Recent developments of
remote sensing platforms such as PlanetScope imagery (Dos Reis et
al.,, 2020) and Sentinel-2 (Drusch et al., 2010) with a higher spatial
resolution (3 m and 10—60 m, respectively), spectral resolution (4
and 13 bands, respectively), and revisit times (1-5 d) than LAND-
SAT (spatial resolution: 30 m; spectral resolution 9 bands; revisit
time: 16 d) offer new opportunities to improve the detection, clas-
sification, and monitoring of temporal trends of invasive species
such as mesquite.

The Sentinel-2 satellite mission from the European Space
Agency provides open-access imagery with 13 spectral bands ev-
ery 5 d (ESA 2021). This data source has grown in popularity
in research since its launch in 2015 because of increased spatial
and spectral resolutions (e.g., Puliti et al., 2018; Kattenborn et al.,
2019; Jensen et al., 2020). Sentinel-2 imagery has been used for
vegetation mapping (Addabbo et al., 2016), invasive species mon-
itoring (Jensen et al., 2020), and woody cover spatial distribution
(Ng et al.,, 2017; Kattenborn et al., 2019). Given this higher spa-
tial and spectral resolution, Sentinel-2 has the potential to de-
tect mesquite trees that were not detectable with LANDSAT im-
agery. However, Sentinel-2 imagery is still too coarse to differenti-
ate small trees (< 1 m? cover) in the landscape, which can result
in reduced accuracy (Kattenborn et al., 2019; Daryaei et al., 2020).
Within the past decade, unpiloted aerial vehicles (UAVs) have be-
come more widely used to assess the volume, amount, and spatial
distribution of woody vegetation (Laliberte and Rango 2011; Mayr
et al., 2018; Jackson et al., 2020). UAVs may offer opportunities to
bridge the gap between satellite imagery and field data collection.

Unpiloted aerial vehicles and higher-resolution satellite imagery
have emerged as a possible solution to quantify the distribution
of mesquite (Laliberte and Rango 2011; Jackson et al., 2020). The
use of conventional red-green-blue (RGB) sensors mounted on a
UAV can provide 2-dimensional (2D) and 3-dimensional (3D) prod-
ucts that can be used to better assess woody cover such as mea-
surements of canopy structures, distinguishing different vegetation
types, and amount of vegetation cover (Zainuddin et al., 2016;
Mayr et al.,, 2018). LiDAR can provide accurate measurements of
canopy volume and height for trees and shrubs, but it still re-
mains relatively costly compared with the data derived from struc-
ture from motion (also known as digital aerial photogrammetry)
(Iglhaut et al., 2019; Jiang et al., 2020). The functionality of UAVs
allows for the generation of imagery at very high spatial resolu-
tions and temporal coverage to map and monitor small patches
of vegetation within rangelands that often cannot be captured by
satellite imagery (Gonzalez-Dugo et al., 2013; Sankey et al., 2018).
Deriving tree heights and land cover area are key components in
rangeland monitoring and surveying methods (Wang et al.,, 2017).
Recording tree heights and diameter allows managers the ability
to monitor growth of the plant species, calculate the volume of
the plant, and calculate forage biomass, and it can aid in deter-
mining available habitat for wildlife species (Ivosevic et al., 2015;
Zainuddin et al.,, 2016; Guo et al., 2017; Manfreda et al., 2018;
Zhang et al., 2018). Laliberte et al., (2010) were able to perform
rangeland inventory assessments to monitor rangelands in South-
ern Idaho using UAVs with a hierarchical classification process to
distinguish different features and vegetation types within the land-
scape. Rossi et al., (2018) were able to more accurately delineate
degraded forests in northern Argentina using a combination of UAV
imagery and satellite imagery.

New remote sensing approaches allow the combination of UAV
imagery as training datasets for satellite imagery (Puliti et al.,
2018; Kattenborn et al., 2019). The information acquired by UAVs
can be used to inform lower-resolution imagery (e.g., Sentinel-2) to
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improve image classification and combine high spatial resolution
imagery with high spectral resolution images to map and quan-
tify the distribution of woody cover species (Rossi et al., 2018;
Kattenborn et al., 2019). Puliti et al,, (2018) used a combination
of UAV and Sentinel-2 imagery to estimate forest growing stock
volume in southeastern Norway using hierarchical model-based
inference. Images acquired from UAVs have been used as train-
ing data for Sentinel satellite imagery to identify three invasive
woody cover species (Kattenborn et al.,, 2019) and detect riparian
vegetation with an emphasis on riparian forest habitats (Daryaei
et al., 2020). These new technological advances can help improve
our ability to assess the spatial distribution of woody encroach-
ment in rangelands and provide additional tools in the natural re-
source manager’s toolbox for planning and adaptive management
(Laliberte et al., 2010; Manfreda et al., 2018; Al-Najjar et al., 2019).

The goal of this project was to assess the presence and spatial
distribution of mesquite derived from two different remote sens-
ing sources. The specific objectives were 1) evaluate the accuracy
of using UAV-based approaches to estimate mesquite height and
2) classify mesquite vegetation presence using a combination of
height metrics and spectral information by integrating UAV train-
ing data and Sentinel-2 remote sensing data.

Methods
Study sites

This study was conducted in three study areas: a private ranch
in Hood County, Texas; a private ranch in Jim Hogg County, Texas;
and a property owned by Texas A&M University-Kingsville (here-
after “South Pasture”) located in Kleberg County, Texas (Fig. 1).

The Hood County ranch lies within the western Cross Timbers
ecoregion (Gould 1962). Annual rainfall on the property ranges
from 660 to 1 016 mm, and annual temperatures range from 11°C
to 25°C (US Climate Data 2020b, Granbury, TX). The topography of
this area is hilly with varying elevation change that ranges from
259 m to 305 m above sea level (a.s.l.). The soils in the area
are mostly composed of loam, which makes up 47% of the land
area, followed by silty clay soils comprising 42% of the area, and
the other 11% is comprised of mixed complexes (Web Soil Sur-
vey 2020b). The dominant woody species are oaks (genus Quer-
cus) and mesquite; the dominant forb is Engelmann’s daisy (En-
gelmannia peristenia), and the dominant grasses are little bluestem
(Schizachyrium scoparium) and sideoats grama (Bouteloua curtipen-
dula) (see Table S1, available online at 10.1016/j.rama.2022.03.007
..., for the complete list).

The Jim Hogg County ranch lies within the western portion of
the Coastal Sand Plain ecoregion in South Texas (Fig. 1; Fulbright
et al., 1990). The annual rainfall for the property is 500—-800 mm
(Mata et al., 2018; Walther 2019) and has annual temperatures
ranging from 16°C to 29°C (US Climate Data 2020a, Hebbronville,
TX). Elevation at the site is 156 m a.s.l,, and the topography is rela-
tively flat. The soils consist mostly of the Delmita and Bruni series,
which make up 43% of the area, followed by Delmita fine sandy
loam series (40%) and the Nueces-Sarita association (17%) (Web
Soil Survey 2020a). The dominant woody species is mesquite, the
dominant forb is hoary milkpea (Galactia canescens), and the dom-
inant grasses are tanglehead (Heteropogon contortus) and coastal
sandbur (Cenchrus spinifex) (see Table S2, available online at ..., for
the complete list).

The South Pasture property also lies within the South Texas
Plains ecoregion (see Fig. 1; Gould 1962). The average annual rain-
fall at the site is 736 mm, with annual temperatures ranging from
15°C to 28°C (US Climate Data 2020c, Kingsville, TX). Elevation at
the site is 18 m a.s.l, and the topography is relatively flat. Soils on
the site consist mostly of sandy clay loams and loamy fine sand,

which both account for 25% of the area, respectively, along with
Palobia-Colmena complex (22%), clay loams (14%), and river wash
(14%) from the creek that runs through the middle of the prop-
erty (Web Soil Survey 2020c). The dominant woody species are
mesquite and lime prickly ash (Zanthoxylum fagara), the dominant
forbs are woolly croton (Croton capitatus) and Texas lantana (Lan-
tana horrida), and the dominant grasses are King Ranch bluestem
(Bothriochloa ischaemum) and bufflegrass (Pennisetum ciliare) (see
Table S3, available online at 10.1016/j.rama.2022.03.007, for the
complete list).

Data collection

We collected UAV data at two altitudes: 50 m and 100 m above
ground level (AGL). All UAV flights took place on sunny, clear days,
with winds < 16 km e h~!. We used a DJI Phantom IV UAV (SZ DJI
Technology Co. Shenzhen, China) for Hood County and a DJI Phan-
tom IV RTK UAV (SZ DJI Technology Co. Shenzhen, China) for Jim
Hogg County and South Pasture. The DJI Phantom IV has an in-
tegrated GPS/GLONASS system (Global Positioning System/GLObal
NAvigation Satellite System), allowing for faster, more precise satel-
lite acquisition during flights, and the DJI Phantom IV RTK con-
nects to a mobile base station that allows images to be geocoded
to a higher georeferenced accuracy (1.2 cm relative horizontal ac-
curacy) during flight. Both UAV units were equipped with a 2.5-cm,
20-megapixel camera mounted to a gimbal that stabilizes the cam-
era with the movement of the UAV (pitch, roll, and yaw). Image
data collection in Hood County was conducted on June 27, 2019
and consisted of 7 flight missions having a total flight area of 70
ha, 17 ha of which were used for model training and height anal-
ysis. Image acquisition at the Jim Hogg County ranch consisted of
2 flight missions on November 6, 2020, encompassing a flight area
of 142 ha, with 46 ha used for model training and height analysis.
The UAV flights at South Pasture occurred on October 14, 2020 and
consisted of 2 flight missions, with a total flight area of 144 ha, 42
ha of which were used for model training and height analysis.

Natural color UAV images (red, green, and blue bands) were
acquired with a double-grid flight pattern, at a speed of 3-5
km e h~!, at 70° camera angle, and with 80% image overlap
(DiMaggio et al., 2020). We chose these parameters to improve the
3D model by having oblique images to capture the vertical struc-
ture of mesquite. We used the Pix4D capture application (Pix4D
Inc,, San Francisco, CA) for Android for the DJI Phantom IV and
the DJI Pilot application (SZ DJI Technology Co. Shenzhen, China)
for the DJI Phantom IV RTK. We did not use ground control points
(GCPs) in our flight missions, which provided us the opportunity
to compare the two UAVs georeferenced accuracies without addi-
tional input from georeferenced points.

For each study site, we located pastures that had mesquite trees
present and used ArcGIS Pro v. 2.5 (ESRI, The Redlands, CA; here-
after “ArcGIS Pro”) to create 10 random points that fell within each
pasture. In the field, we navigated to each of these points and cre-
ated a 22.86-m buffer area. Within the buffer area, we measured
every mesquite tree’s canopy height and its location (Klimas et al.,
2004) using a Trimble R1 GPS unit (50-cm accuracy). The buffer
area size was chosen on the basis of current Natural Resource Con-
servation Service practices for quantifying mesquite in rangelands
(D. Daniels, unpublished data). To measure the canopy heights,
we used a telescoping measuring rod and recorded each height
and unique ID number for each mesquite/GPS point location. We
then co-located the GPS points with the UAV imagery to identify
mesquite trees and delineate mesquite presence and heights.

We acquired Sentinel-2 imagery for each study site (Hood
County, Jim Hogg County, and South Pasture) from the US
Geological Survey’s Earth Explorer (USGS, Reston, VA; https://
earthexplorer.usgs.gov). Sentinel-2 imagery captures data in 13
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Fig. 1. Study sites locations: Hood Co. is in the Cross Timbers ecoregion (1); Jim Hogg Co. is in the Coastal Sand Plain ecoregion (2); and South Pasture is in South Texas

Plains ecoregion (3) (Gould 1962; Fulbright et al., 1990).

bands: red, green, blue, and 1 near infrared bands at 10-m res-
olution; 3 red edge bands, 1 narrow near infrared band, and 2
shortwave infrared bands at 20-m resolution; and coastal aerosol,
water vapor, and shortwave infrared/cirrus bands at 60-m resolu-
tion (ESA 2021). We selected cloud-free imagery collected near-
est the date of UAV data acquisition. We acquired one scene on
June 29, 2019 for Hood County; one scene on October 31, 2020 for
Jim Hogg County; and one scene on November 17, 2020 for South
Pasture.

Data processing and analysis
We used convergent image networks to develop photogram-

metric models using structure-from-motion (SfM), which helped
improve model reconstruction accuracy (Cunliffe et al., 2016;

Sanz-Ablanedo et al., 2018) for UAV imagery collected at each
site. The SfM photogrammetry approach in Pix4D Mapper (Pix4D
SA, Switzerland) allowed us to stitch overlapping images cap-
tured from the UAV to create and model our 2D orthomo-
saics, 3D photogrammetric meshes, and 3D point cloud datasets
(LAS format) using structured algorithms (Cunliffe et al., 2016;
Zainuddin et al., 2016; Liu et al, 2018; Al-Najjar et al, 2019).
These 2D (e.g., orthoimagery) and 3D (point cloud data) out-
puts can be used to model canopy height and volume along
with 3D photorepresentation of landscapes (Cunliffe et al., 2016).
We used two methods of evaluating canopy height from the
UAV: the Vertical Measurement Tool (VMT; ESRI 2021a) in
ArcGIS Pro and the LAS Point Cloud height metric output
(ESRI 2021b). We compared both UAV-derived height meth-
ods to field-collected canopy height data to assess the perfor-
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mance of each approach. We also compared root mean square
error (RMSE) of the geolocation accuracy for each UAV flight (Pix4D
SA, Switzerland).

VMT

We used the mesquite GPS locations in the 3D photogram-
metric mesh to identify individual mesquite trees (n=81 in Hood
County, n=46 in Jim Hogg County, and n=41 in Kleberg County)
in ArcScene (ArcGIS Pro). For each tree, we used the VMT in ArcGIS
Pro (ESRI 2021a) to measure from the base of the mesquite tree to
the crown and recorded the height value.

LAS Point Cloud

We verified that ground points in the dataset were properly
assigned by using the Classify LAS Ground tool (ESRI 2021b). We
calculated heights of objects within the image, assigned a mini-
mum height value to 0.5 m, and rescaled cell size to 0.2 m with
the LAS Height Metrics tool (ESRI 2021c). We exported this out-
put as a 2D LAS height raster that we used to record individual
tree height values (Zainuddin et al., 2016). We used the GPS lo-
cation points to identify the mesquite trees to digitize the canopy
crowns (Mayr et al., 2018). We used the 2D LAS height raster layer
and digitized mesquite layer as an input to receive an output of
the maximum height for each shape using the zonal statistics tool
(ESRI 2021d). This value represented mesquite tree heights, which
were compared with field-recorded values (Mayr et al., 2018).

Regression analysis

We performed linear regressions to examine the relationship
between field-collected variables and the UAV-derived outputs pro-
duced by the VMT and the LAS height metrics layer using NCSS
statistical software (NCSS, LLC, Kaysville, UT). Linear regressions
were performed on both 50-m altitude flights and 100-m altitude
flights for each of the three study sites. We compared coefficients
of determination and residuals (e.g., RMSEs) of the linear models
following methods described by Graybill (Graybill 1976). To verify
the models, we calculated the prediction coefficients of determina-
tion (prediction r2) along with PRESS statistics (Montgomery et al.,
2012; DiMaggio et al., 2020).

Scaling from UAV to satellite imagery

We used the UAV-derived products (2D orthomosaic and 3D
point-cloud dataset) to classify mesquite. On the basis of height
and individual identification of mesquite trees based on GPS data
collected in the field, we created a classified image from the UAV
orthomosaic with two classes, “mesquite” and “not-mesquite.” The
spectral information (red, green, and blue) alone did not pro-
vide enough information to separate mesquite from other types of
land cover. We used random forest machine learning techniques to
quantify amount of mesquite cover within the landscape from the
UAV-derived products. Machine learning is the use of artificial in-
telligence to perform tasks not explicitly programmed by humans
(Ghahramani 2015). To delineate “not-mesquite,” we digitized var-
ious features in the imagery such as roads, water, and other veg-
etation at a scale of 1:50 in ArcGIS Pro 2.x (ESRI, the Redlands).
We then used the pixel boundaries of the Sentinel-2 imagery to
create a 10-m fishnet polygon grid within the area of the UAV or-
thomosaic. If mesquite is present in the fishnet, we included it
as present. We input mesquite presence from the fishnet grid to
inform classification of Sentinel-2 satellite imagery (Kattenborn et
al., 2019). We used the random forest classification to perform the
conversion analysis (Al-Najjar et al., 2019; Kattenborn et al., 2019;

ESRI 2021e.). For our input layers, we used Sentinel-2 bands 2-8,
8a, 11, and 12 (Kattenborn et al., 2019; Jensen et al., 2020). We
excluded bands 1, 9, and 10 because of coarse spatial resolutions
(60 m) and because their purposes did not match our objectives as
these coarse bands are primarily used for cloud screening and at-
mospheric corrections (Kattenborn et al., 2019; ESA 2021). We used
80% of our training data for model training and 20% for verification
of the model (Kattenborn et al., 2019).

Accuracy assessments of mesquite presence classification were
performed using a confusion matrix and kappa statistics (Landis
and Koch 1977; Carfagna and Gallego 2005; Ng et al., 2017). To
perform the accuracy assessment, we created 200 random points
across each study site with a 10-m minimum distance required
between points. We implemented this minimum distance to pre-
vent multiple points from falling in the same square of the fish-
net grid. Using the 10-m fishnet and high-resolution UAV imagery,
we verified the presence or lack of mesquite within the 10-m fish-
net pixel. We compared overall accuracy, user’s accuracy, and pro-
ducer’s accuracy values using a confusion matrix (Landis and Koch
1977; Story and Congalton 1986; Carfagna and Gallego 2005; Shao
et al., 2019). Overall accuracy refers to the number of pixels classi-
fied correctly versus the total number of pixels used for the accu-
racy assessment (Congalton 1991). The producer’s accuracy refers
to the number of correctly classified pixels divided by the total
number of reference pixels for each category. The user’s accuracy
refers to the number of correctly classified pixels divided by the
total number of classified pixels for each category. We calculated
kappa statistics (ranged 0—1) to represent differences between ac-
tual agreement, reference data, and the classification classifier in
comparison with the likelihood of agreement between a random
classifier and reference data (Landis and Koch 1977; Adam et al.,
2017).

Results

Pixel resolutions ranged from 1.71 cm? to 2.4 cm? for the 50-m
AGL flights and 3.39 cm? to 4.76 cm? for the 100-m AGL flights
(Table 1). Geolocation RMSE values were higher in the imagery ac-
quired from the DJI Phantom IV when compared with the DJI Phan-
tom IV RTK (see Table 1). For both the VMT and the LAS height
estimations, the 50 m AGL Hood County site had the highest r2
values out of all the sites with (r2=0.95, RMSE=24.9 and 26.6
cm) (Fig. 2). The 100-m AGL Hood County site also had the high-
est r2 values out of the 100-m AGL flights (r2 =0.91, RMSE=32.3
cm for the VMT; r2=0.92, RMSE=29.6 cm for the LAS). The es-
timated mesquite heights from the 50-m AGL flight corresponded
more closely to the field-measured heights than those estimates
from the 100-m AGL flight for both height estimation methods
(r2=0.884 vs. r2=0.758, respectively, for the VMT; r2=0.796 vs.
r2 =0.764, respectively, for the LAS; see Fig. 2). The Jim Hogg
County site had higher 2 values for the VMT at 50-m AGL than
100-m AGL (r2=0.851 and r?2=0.587, respectively, and lower r2
values with LAS at 50-m AGL than 100-m AGL (r?=0.827 and
r2 =0.857, respectively). We found that the Hood County site had
regression RMSE values that ranged from 24.9 cm to 32.3 cm, and
the other two sites had average errors that ranged from 54.7 cm
to 93 cm (Table 2). Differences between r? values and prediction
r2 values for the different height analysis and sites ranged from
0.0022 to 0.0452, and PRESS statistics were 5—18% higher than
corresponding original error sum of squares values for the height
analysis (see Table 2).

Overall accuracy assessment of mesquite presence derived from
Sentinel-2 satellite imagery (Fig. 3) was > 80% for all three
study sites (Table 3). The highest accuracy was seen in the South
Pasture property with an accuracy of 87.5%, followed by Hood
County with 84% and Jim Hogg with 80.5%. The highest values for
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Table 1
Unpiloted aerial vehicle (UAV) processing accuracy separated by flight mission; geolocation root mean square error (RMSE) triangulation values in cm from Pix4D photogram-
metry software processing.

Flight mission UAV model Pixel size (cm) RMSE X (cm) RMSE Y (cm) RMSE Z (cm)
Hood 50m F1 2.35 58.6404 156.5385 36.6762
Hood 50m F2 2.4 124.7067 135.7747 128.7687
Hood 50m F3 1.86 102.4717 51.4863 114.2609
Hood 50m F4 DJI Phantom IV 239 1311338 110.7732 59.3524
Hood 100m F1 412 41.8060 61.7831 48.5952
Hood 100m F2 4.66 211.9485 276.2539 53.4396
Hood 100m F3 4.76 134.7223 252.2633 44.5589
Jim Hogg 50 m 171 0.2063 0.2254 0.7380
Jim Hogg 100 m DJI Phantom IV RTK 3.39 0.3310 0.5890 2.4762
South Pasture 50 m 222 0.2830 0.3098 0.5966
South Pasture 100 m 4 0.2866 0.2760 0.9154
Table 2

Statistical regression comparisons between unpiloted aerial vehicles (UAV)-derived height methods to field collected canopy height data; root mean square error of regressions
(RMSE) in c¢m; PRESS statistics and predicted r? values were computed for model validation; PRESS statistics % difference is the percentage higher the predicted error sum
of squares is compared with the original error sum of squares.

Study site Flight altitude Height Tool 2 value P value RMSE (cm) Prediction r2(PRESS statistic) PRESS statistics % difference
Hood 50 LAS 0.9566 P < .001 24.9 0.9544 5%
m VMT 0.9504 P < .001 26.6 0.9468 7.3%
100 LAS 0.9263 P < .001 29.6 0.9129 18%
m VMT 0.9120 P < .001 323 0.8971 17%
Jim 50 LAS 0.8267 P < .001 60.2 0.8137 7.5%
Hogg m VMT 0.8510 P < .001 55.8 0.8380 8.7%
100 LAS 0.8567 P < .001 54.7 0.8443 8.6%
m VMT 0.5870 P < .001 92.9 0.5418 1%
South 50 LAS 0.7959 P < .001 64.8 0.7762 9.7%
Pasture m VMT 0.8844 P < .001 48.7 0.8748 8.3%
100 LAS 0.7644 P < .001 69.6 0.7398 10.4%
m VMT 0.7583 P < .001 70.5 0.7295 12%
?=095 =095 ?=091 =092
y =0.8087x + 0.6328 y =0.8507x + 0.5665 y =0.7849x + 0.915 y =0.8008x + 0.897

Hood Co.

%

”=0.85 . |F=08 =059 =085
i y =0.7354x + 2.0158 . y =0.7687x + 1.8245 y =0.5546x + 3.299 . y =0.7606x + 2.015
.

Canopy Heights (m)
Jim Hogg Co.

?=0.88 #=079 ?=076 ?=076
y=0.8964x + 1.2208 y=0.7943x +2.0394 o Y =0.924x + 1.2028 .
H
L)

South Pasture

50m 100m
Height value from UAV (m)

Fig. 2. Canopy height comparison regressions. Rows indicate the three study sites; Y-axis, the field-recorded canopy height measurement; Columns, the combination of
unpiloted aerial vehicle (UAV)-derived outputs and altitude differences; X-axis, the UAV-derived canopy height with each of the UAV methods (vertical measurement tool
and LAS point cloud raster.
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Meters

Fig. 3. Image classification of mesquite. From top to bottom: UAV imagery; Sentinel-2 imagery; classified imagery using random forest prediction.

producer and user accuracy were in the South Pasture site (Pro-
ducer accuracy =92%; User accuracy =87%). The Jim Hogg County
site yielded lower producer accuracies than the Hood County
site (Producer accuracy=70%; User accuracy==89%) but higher
user accuracies (Producer accuracy=73%; User accuracy=60%).
The highest Kappa values were observed at South Pasture
(K=0.74), followed by the Hood and Jim Hogg sites (K=0.61 and
K=0.56).

Discussion

The analysis of UAV-derived canopy height methods provided
reliable measures of woody cover vegetation (Mesquite) in Texas
rangelands. Our analyses of UAV point cloud data provided reliable
measures of mesquite height. Our highest 2 was 0.95 for both the
VMT and LAS height metric (Hood County; 50 m AGL), and our
lowest r2 was 0.587 for VMT (Jim Hogg County 100 m AGL) and
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Table 3

Accuracy assessments using confusion matrix results of the three study sites comparing mesquite and other landscape classes; with Overall Accuracy (OA), User Accuracy

(UA), Producer Accuracy (PA), and Kappa statistics.

Hood Co. mesquite other Total UA % PA %

Mesquite 39 27 66 59.1% 88.6%
Other 5 129 134 96.3% 82.7%
Total 44 156 200

OA=84% Kappa=0.61

Jim Hogg Co.
Mesquite 48 18 66 72.7% 69.5%
Other 21 113 134 84.3% 86.3%
Total 69 131 200

0A =80.5% Kappa=0.56

South Pasture

Mesquite 105 16 121 86.8% 92.1%
Other 9 70 79 88.6% 81.4%
Total 114 86 200

OA=87.5% Kappa=0.74

0.764 for the LAS height metric (South Pasture; 100-m AGL). For
the Hood County site, prediction errors ranged from +24 to 32 cm.
Errors were larger at the Jim Hogg and South Pasture sites with
errors ranging from +54 to 92 cm. Trees were taller at the Jim
Hogg and South Pasture site, which may have increased the pre-
diction error. Our UAV-derived canopy height results were compa-
rable with other studies (Zarco-Tejada et al., 2014; Wallace et al.,
2016; Mayr et al, 2018). Mayr et al, (2018) used a UAV at 70-
m AGL to record canopy heights of Acacia mellifera, Dichrostachys
cinerea, and Terminalia sericea by subtracting digital terrain mod-
els from digital surface models and compared outputs with field-
recorded canopy heights, which yielded r? values ranging from 0.7
to 0.72. Zarco-Tejada et al.,, (2014) had r? values that ranged be-
tween 0.81 and 0.86 when comparing field-measured olive tree
heights to digital surface model UAV outputs from a fixed-wing
UAV flown at 200-m AGL. Wallace et al., (2016) compared aerial
LiDAR- and UAV-derived 3D point cloud heights acquired at 30-m
AGL and reported 2 values of 0.84 (LiDAR) and 0.68 (point cloud).
Our results from three different ecoregions in Texas indicate that
UAVs could reliably measure mesquite canopy heights to assist in
assessing canopy structure.

We found that UAV flight altitude was not critical for the es-
timation of mesquite tree canopy heights. Prediction errors were
similar for each of the flight altitudes evaluated, regardless of lo-
cation. Our results at 50-m AGL (see Table 2) and 100-m AGL (see
Table 2) were similar to Torres-Sanchez et al., (2015), who reported
r2 values of 0.90 at 50-m AGL and 0.84 at 100-m AGL. Our model
verification results for tree height estimation (see Table 2) showed
that our original models were robust with r? differences < 0.05
and PRESS statistic error sum of squares ranging between 5% and
18% higher than the error sum of squares in the original model.
Models were more robust for the 50-m AGL flights than the 100-
m AGL flights for all study sites; however, the differences in ac-
curacy were relatively minor. Flying UAVs at higher altitude would
allow users to cover larger areas for woody vegetation monitoring.
Our results indicate that the differences in accuracy between the
flight altitudes would not compromise the quality monitoring of
mesquite heights.

We found that both UAV models proved to be able to capture
accurate representations of the landscape. The DJI Phantom IV RTK
provided higher horizontal accuracy (see Table 1) and provided the
ability to create single large flight missions rather than multiple
small missions. We observed higher r2 values with the DJI Phan-
tom IV missions at Hood County than at the other two sites. How-
ever, the Hood County flights had the higher geolocation RMSE val-
ues (see Table 1). The RMSE value, however, was not critical to the
analysis because we were still able to identify individual trees that

we measured in the field. We observed that mature mesquite trees
often had thin branches as the highest point in the canopy, which
may not be dense enough to pick up in the SfM analysis, thus re-
sulting in reduced accuracy. Meyer et al., (1971) showed that as
mesquite trees grow, most of the new stems grow on the upper
branches, making them the smallest and thinnest part of the tree.
With taller trees in Jim Hogg County and South Pasture (1 m to >
8 m) compared with Hood County (1—6 m), lower r? values could
be explained by the presence of these thin branches, which were
likely difficult to capture in the SfM analysis.

Our results indicate that UAV imagery can be used as training
data for using Sentinel-2 satellite imagery and machine learning
(random forest) techniques were useful for developing mesquite
presence maps over large areas. Overall accuracy values for the
models exceeded 80%, similar to other comparable studies. Ng et
al., (2017) reported a user accuracy of 72% and a Producer accuracy
of 73% specific to Prosopis in Sentinel-2 imagery, which was simi-
lar to the results reported in this study (User accuracy =60—86%;
Producer accuracy =70-92%). Discrepancies with image classifica-
tion in satellite imagery because of its coarse spatial resolution
where single pixels encompass multiple landscape features are a
common problem (Ng et al., 2017; Daryaei et al., 2020). To limit
model confusion, we classified the presence of mesquite without
trying to classify multiple landscape classes. The strength of agree-
ment of our sites were moderate to substantial, with our Kappa
values ranging between 0.56 and 0.74 (Landis and Koch 1977). The
approaches presented in this study could be extrapolated to other
woody plant species on rangelands. Canopy height has been shown
to be one of the most important measures to determine woody
cover structure and ecological value in rangelands (Zarco-Tejada et
al., 2014; Wallace et al., 2016), along with providing insight into
wildlife habitat (Hyde et al., 2006; Martinuzzi et al., 2009). Our
results could be easily used to quantify the presence and spatial
distribution of other woody plant species to quantify the amount
of cover in the landscape. These methods, used in combination
with time-series data, could provide useful baselines for moni-
toring change and spatial structure of woody cover in rangelands
(Rhodes et al., 2021).

Combining high spatial resolution of UAV imagery with
Sentinel-2 satellite imagery could assist with future monitoring of
mesquite in rangelands. Past remote sensing methods have spa-
tial, spectral, and/or temporal resolution limitations (Mata et al.,
2018). Recent advances in satellite and UAV imagery are providing
new opportunities to meet these needs. Adam et al., (2017) used
a different approach than our study to classify mesquite and other
landscape classes by performing random forest classification and
support vector machine on World View-2 satellite imagery (1.5-2
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m spatial resolution). Although they produced higher user and
producer accuracies with mesquite than our results (User accu-
racy =96%; Producer accuracy =100%), this could be attributed to
the higher spatial resolution (2 m vs. 10 m) or number of accuracy
assessment points to study size area (164 points for 4 795 ha vs.
200 points for < 150 ha; Shao et al., 2019). Their overall accuracy
(overall accuracy =86%), however, is comparable with our results
(see Table 3). Further research needs to address point density for
accuracy assessment and area coverage to validate UAV classifica-
tion with lower-resolution imagery.

The analysis of UAV-derived canopy height methods provided
reliable measures of mesquite height in Texas. We found that the
UAV flight altitude was not critical between 50 m and 100 m
AGL for the estimation of mesquite tree canopy heights. We also
found that using machine learning techniques, UAV imagery can
be used as training data for Sentinel-2 satellite imagery to produce
landscape maps of mesquite presence. Being able to combine the
high spatial resolution of the UAV imagery with the high tempo-
ral resolution of the Sentinel-2 satellite imagery could improve our
ability to use UAVs to monitor mesquite in rangelands. Our find-
ings show the potential use of UAV to effectively link information
on the ground, UAV-derived products, and satellite imagery for a
wider variety of applications. Similar approaches can be used to
determine the presence of other woody cover species in different
ecosystems. The development of new multispectral cameras can
provide opportunities to identify woody cover species and use frac-
tional cover analysis to determine the cover of different species
across the landscape by upscaling the information to satellite im-
agery. Additional spectral, temporal, and spatial resolution (e.g.,
next-generation Planetscope imagery) combined with UAV prod-
ucts present new opportunities to efficiently quantify and monitor
land cover and land cover changes at scales that were not possible
a few years ago.

Implications

Our study showed that UAVs can be used to efficiently assess
mesquite height in rangelands in different ecoregions of Texas.
These heights can provide valuable information for management
decisions for woody plant encroachment. Having height metrics
can also assist with determining habitat for wildlife species. Our
regions of interest were limited by UAV capability to collect data
(i.e., battery time), so we tested our approach in three different
study areas, which provided more generalizable approaches to as-
sess the amount mesquite presence. These assessments can be
used to quantify the presence and spatial distribution of mesquite
and potentially other woody plant species to help develop strate-
gies for woody plant management in rangelands. The methods de-
scribed in this study also show possibilities for managers to assess
wildlife habitat, conduct rangeland inventories, and establish base-
lines to prioritize ecological management strategies.
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