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Abstract

The aim of this paper is to bring attention to weed ecology research that is taking place in an
unexpected discipline: archaeology. While archaeobotanists (archaeologists or botanists who
specialize in archaeological plant remains) have been accessing literature in weed ecology
for decades and applying the findings to their own studies, their results are almost exclusively
published in archaeological journals such as the Journal of Archaeological Science or Vegetation
History and Archaeobotany. For this reason, their work is underutilized by weed ecologists,
especially those who have an interest in historical weed ecology. Archaeobotanical research
could help weed scientists understand the long-term effects of agricultural practices on weed
communities and predict the potential impacts of climate change. This paper begins with a brief
review of the history of archaeobotany as a discipline, then describes ways in which weed
ecology is applied in archaeobotany, including Functional Interpretation of Botanical
Surveys (FIBS). Finally, we present opportunities for future collaboration between archaeobo-
tanists and weed scientists.

Introduction

This paper considers intersections between the disciplines of archaeobotany and weed ecology.
Archaeobotany, the study of archaeological plant remains, is performed by both archaeologists
and botanists. Plant remains are preserved through processes such as waterlogging, desiccation,
and charring and recovered during archaeological excavations. Seeds from weedy species are
often found among the remains of economic plants such as cereals.When weed seeds are present
in archaeological samples, archaeobotanists can use insights from weed ecology (the study of
how weeds interact with their biotic and abiotic environments) to better understand the
agricultural systems from which they came. This approach has led to breakthroughs in archaeo-
logical understandings of agricultural practices such as irrigation (Charles et al. 2003), crop
rotation (Bogaard et al. 1999), and fertility management (Neveu et al. 2021). In particular,
the Functional Interpretation of Botanical Surveys (FIBS) approach has expanded the study
of weeds in archaeology (Charles et al. 1997). FIBS uses functional traits (such as canopy height
or germination time) rather than species identities to describe how agricultural practices shape
weed communities. Archaeobotanists using the FIBS approach apply functional insights from
modern weed ecology to archaeological weed remains.

We suggest that the FIBS approach to archaeological weed studies is relevant not only to
archaeologists studying ancient agriculture but also to modern-day weed scientists with an
interest in historical weed ecology. For example, FIBS may illuminate the long-term effects
of agricultural regimes on plant communities or provide insight into weed responses to climate
change. This review seeks to (1) summarize the history of archaeobotany and its relationship
with weed ecology, (2) explain how FIBS enables archaeobotanists to identify ancient agricul-
tural practices, and (3) highlight opportunities for future collaboration between archaeobotan-
ists and weed scientists.

Background

Archaeobotany, a term interchangeable with paleoethnobotany, began in the 19th century as an
intersection between botany and archaeology. Unlike paleobotany, archaeobotany is focused on
human–plant interactions rather than the evolution of plants. Possibly the earliest example of
what might be called archaeobotanical research was conducted in 1826, when botanist Carl
Sigismund Kunth studied the plant remains from the tombs at Deir el-Bahri along the Nile
(Stuart 2018). In the 1860s, Oswald Heer demonstrated the survival of waterlogged plant
remains from a Swiss lake (Stuart 2018). These two studies were crucial in showing that plant
remains could survive in archaeological contexts, and more studies followed. Interest in the
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discipline grew slowly, but by the 1960s, archaeobotanical research
had become commonplace (Pearsall 2019). Funding through the
U.S. National Science Foundation (NSF) for archaeobotanical
studies peaked in the 1990s (Marston et al. 2015: 10), but archae-
obotany continues to be a thriving and growing discipline with five
NSF Doctoral Dissertation Research Improvement grants in 2021
utilizing archaeobotanical methodologies. While this article
focuses primarily on macroremains (specifically weed seeds) that
can be seen with the human eye, archaeobotany also encompasses
the study of microremains such as phytoliths, starches, and pollen.
There is an increasing interest in the archaeobotany community in
collaborating with other plant ecologists and landscape specialists
on research topics of mutual interest (de Vareilles et al. 2021).

The aim of archaeobotany is to better understand human–
plant relationships in the past and illuminate ancient human
behaviors (Wright 2010). Human actions such as harvesting, crop
processing, and cooking result in the deposition of plant remains
into the archaeological record. These plant remains are then
collected by archaeologists from contexts in archaeological sites,
such as pits, middens, and floor surfaces. Archaeologists distin-
guish between “primary” deposition, in which remains are depos-
ited at the location where they were used, and “secondary”
deposition, in which the location of the deposit is not the
location where the remains were used (Schiffer 1972). Table 1
illustrates some examples of primary and secondary deposition.
Understanding how plants became part of the archaeological
record is key to making accurate interpretations based on the data
(van der Veen 2007).

Weed flora in archaeobotanical samples have been the subject
of study for decades (Knörzer 1979; Wasylikowa 1981). Historical
weed flora are often quite different from those found in present-
day cultivated fields. Modern weed research can help archaeobo-
tanists interpret weed flora from the past by providing rich data
sets on weed species responses to specific abiotic and biotic factors
or management regimes. The development of archaeobotany is
tied to the development of processual archaeology in the 1950s
and 1960s, also known as “New Archaeology,” which emphasized
empirical data sets and quantitative methods over the previous
cultural–historical approach (Binford 1989). Findings from weed
ecological research began to have a significant impact on archae-
obotanical studies in the 1960s and 1970s with the increasing
implementation of flotation techniques for seed recovery,
a method suggested by the botanist Hugh Cutler (Struever
1968). Using flotation, soil samples (usually at least 1 L in size,
often 10 to 30 L) are placed in a fine mesh (usually 500 μm)
and submerged in water (see Figure 1). When agitated, the soil falls
through the mesh. Stones, bones, and other artifacts are left behind
in the mesh. Lightweight objects such as snail shells and charred
seeds float to the top of the water and are caught in a finer mesh
sieve (usually 250 or 300 μm; see Figure 2). This “light fraction” is
carefully dried and then sorted with the use of a microscope. The
benefit of flotation is that it allows seeds to be recovered even when
they are not noticed by excavators, allowing for the recovery of

small weed seeds that would be otherwise overlooked. As smaller
weed seeds began to be recovered in greater numbers with
flotation, archaeobotanists began to study them in greater detail.

Weed ecology can only be applied in archaeological research
if weed species can be identified. Several factors may limit weed
identification. First, flotation has not been used equally by archae-
ologists in all parts of the world. Generally, flotation requires access
to running water or the ability to store and transport bulk soil
samples to a location where they can be processed, as well as time
and labor to process the samples. Not all projects are able to fulfill
these requirements. This disparity has affected the regions where
weed ecology can be applied to archaeological research, with a
heavy bias toward Europe and the Near East. An additional barrier
stems from the lack of region-specific weed identification manuals
for some areas. For example, the lack of weed manuals for
southeast Asia hinders the identification of weed seeds even when
they can be recovered (Rahman et al. 2020). Finally, weed seeds do
not always become part of the archaeological record. Weed seeds
were harvested along with crops and accidentally charred through
a variety of processes, such as in crop-drying ovens. Some cropping
systems are much more likely to produce archaeological traces
of weed seeds than others. For example, small weed seeds
(e.g., Chenopodium spp. and Amaranthus spp.) are far more likely
to be accidentally trapped in a cereal harvest than in a squash
(Cucurbita maxima Duchesne) harvest. This difference creates a bias
toward the archaeobotanical study of weeds in cereal-cropping systems.

Table 1. Examples of plant remains recovered from archaeological sites.

Archaeological context Source of plant remains Deposition type

Buried soil horizon/cultivation layer Remains from stubble burning, remains of household waste used as fertilizer Primary and secondary deposition
Grain-drying oven Remains of processed cereals Primary deposition
House floor Remains of stored crops, remains from ash spread on floors Secondary deposition

Figure 1. Example of a flotation setup from Bamburgh Research Project, July 2019.
The mesh is placed in the wooden tank and water is recirculated through two black
settling tanks.
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Historically, weed ecological research in archaeobotany (like
ecological research in general) could be divided into two
approaches: the autecological approach and the synecological
approach. Autecology focused on the behavior of individual
species. Synecology, also referred to as phytosociology, focused
on plant communities as a whole. Using the presence or absence
of key diagnostic species known to have narrow ecological ranges,
archaeobotanists would be able to interpret entire weed commun-
ities to make inferences about the environments in which these
communities might have been formed. For a more detailed discus-
sion of the differences between these two approaches, see van der
Veen (1992).

In the late 1990s, Charles et al. (1997) introduced a third way to
apply weed ecology in archaeobotany: Functional Interpretation of
Botanical Surveys, or FIBS. The underlying assumption of this
approach is that species that tolerate certain ecological factors often
share a suite of common adaptive characteristics, referred to as a
“functional type.” By considering these functional types rather
than specific species, FIBS makes it easier to compare archaeo-
logical samples for which different species may be present and
different agricultural practices may have been in use. This
approach relies heavily on multivariate statistics, primarily
discriminant analysis and correspondence analysis (Charles
et al. 1997). FIBS has become one of the dominant methods of
applying weed ecology to archaeobotany (Jones et al. 2010). The
development of this method has been supported by the increasing
prevalence of functional approaches in present-day weed science
(Bàrberi et al. 2018; Gaba et al. 2014; Jones et al. 2010; Navas
2012; Neve et al. 2018). Examples of FIBS in archaeobotany will
appear throughout this review.

Practical Applications of Weed Ecology in Archaeobotany

Weed ecological information has several practical applications in
archaeobotanical research, particularly research on agriculture. For
example, weed seeds in archaeobotanical samples can be used to
investigate the provenance of cereals. Weed seeds can also provide
insight into the practices used in past cropping systems, enabling
archaeobotanists to answer questions such as “Was this system
irrigated or rainfed?” Other practices that can be investigated
through weed ecological approaches include crop rotation, sowing
time, manuring, disturbance, and weed management. More
broadly, weed ecological approaches can be used to explore ques-
tions about the long-term, landscape-level effects of agricultural
systems, including effects occurring in the context of climate
change.

The use of weed ecological information represents an exciting
avenue for further research into cropping systems of the past. This
research has the potential to illuminate ancient practices andmight
also identify localized approaches that can be adapted for the
present day. In the following sections, we outline the primary uses
of weed ecological knowledge in the field of archaeobotany and
suggest future directions for the field.

Provenance

Cereals found at archaeological sites were not always grown near
the sites. This distinction is particularly important for higher-
status sites whose residents could afford to import cereals from
elsewhere.Weed ecology offers amethod for identifying the origins
of cereal remains found at these sites (Jones 1984). Lodwick (2018)
used correspondence analysis on weed seeds associated with spelt
(Triticum spelta L.) from southern England in the Iron Age to
explore the geographic origin of the spelt. The author argued that
the weed species could be separated into groups based on soil
requirements, such as their affinity for calcareous soils. Samples
containing many weed seeds from a particular group likely origi-
nated from an area with soils appropriate for that group of weeds.
Weed species used in this analysis included corn chamomile
(Anthemis arvensis L.), henbane (Hyoscyamus niger L.), and prickly
poppy (Papaver argemone L.). Applying this approach does require
a significant amount of prior work in understanding the ranges of
different weed species and soil characteristics of the surrounding
areas but is potentially quite promising in regions like the
United Kingdom where such background data are readily
available. If combined with other methods, such as strontium
stable isotope analysis of cereals (Bogaard et al. 2014; Styring
et al. 2019), this approach could help archaeologists understand
cereal-based agricultural networks that supported large settle-
ments in various geographic regions.

Crop Rotation

Crop rotation (sequentially growing different crops on the same
land) and fallowing (leaving the land to “rest” for a period of time)
regimes can have an enormous impact on agricultural productivity
and sustainability (Magdoff and van Es 2021; Palmer 1998a, 1998b;
Sumner 1982). Understanding the spatial and temporal distribu-
tion of crops can help researchers understand risk management
in past agricultural systems (Marston 2017). Crop rotation systems
cannot necessarily be inferred from the crop species composition
of archaeological samples containing mixed species (e.g., a sample
containing both cereals and pulse crops), because mixing can
occur through a variety of processes, including postdepositional

Figure 2. Image of light fraction in a fine mesh sieve bag.
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mixing or mixing during various processing stages (Jones and
Halstead 1995).

Weed ecological knowledge provides a window into crop rota-
tion systems of the past, because crop sequences impact weed seed-
bank composition (Bohan et al. 2011). For example, Bogaard et al.
(1999) identified 14 functional attributes related to the duration of
the growth period, ability to regenerate under high disturbance,
and drought resistance. These functional attributes were used to
study how weed communities responded to various crop rotation
and fallowing systems. The authors found that attributes related to
high productivity (i.e., tall, broad canopies; low dry matter content;
thick, wide leaves) were associated with rotation regimes including
a legume crop. Later studies have interpreted archaeobotanical
data based on this association. For example, the abundance of
thin-leaved species such as common corncockle (Agrostemma
githago L.), false thorow-wax (Bupleurum lancifolium Hornem.),
and darnel (Lolium temulentum L.) could reflect a lack of crop
rotation in the Roman and Visigothic periods at a site in the
northeastern Iberian Peninsula (Colominas et al. 2019). In a
different study, Neveu et al. (2021) suggest that an increase in
perennial weeds and grassland plants during the Iron Age in
northwestern France could be explained by crop rotation involving
pasturing. Although recovered weed seeds do not provide definite
information about crop rotations, weed ecology can be combined
with other methods to reconstruct ancient cropping systems.
As weed scientists continue to identify rotation effects on weed
community composition, these insights may provide archaeobo-
tanists with new ways to interpret weed seed assemblages.

Sowing Time

A fixed crop-sowing time is one of the earliest signs of agricultural
adaptation (Hillman 1981). Storing seeds properly will prevent
them from germinating until farmers trigger germination
by providing suitable conditions (e.g., planting the seeds). For
example, wild emmer [Triticum turgidum ssp. dicoccoides
(Asch. & Graebn.) Thell.] naturally germinates in autumn; storing
and planting the seeds for spring germination is an example of
agricultural adaptation (Hillman 1981). During later transforma-
tions of regional agriculture, changes in crop-sowing time accom-
panied influxes of new crop species. For example, an influx of bread
wheat (Triticum aestivum L.) occurred in Britain in the first millen-
nium Common Era (CE) under Roman rule (Jones 1981). Many of
these newly introduced crop species that became dietary staples
could be sown in multiple seasons. Others were more successful
in a particular season or under particular climatic conditions.
Understanding variation in crop-sowing times offers insight into
how humans adapt agricultural strategies over time while simulta-
neously creating a framework into which we can add other agricul-
tural activities, such as harvesting and crop processing. Finally,
identifying the season in which a crop was sown can improve
the accuracy of radiocarbon dating because radiocarbon levels fluc-
tuate throughout the year (Manning et al. 2018).

Archaeobotanists have been trying for decades to use the pres-
ence of weed flora to determine crop-sowing times. Bogaard et al.
(2001) demonstrated through correspondence analysis that crop-
sowing time has a significant impact on the composition of weed
flora. The authors also used correspondence and discriminant
analyses (the FIBS approach) to understand the relationship
between crop-sowing time and weed functional attributes related
to seasonality, regeneration following disturbance, the quality of
the growth period (largely indicative of soil fertility), and shade

tolerance. A discriminant analysis using functional attributes
as discriminant variables achieved 97% success in correctly
classifying weed groups according to crop-sowing time (spring
or autumn). This analysis used previously published data
(Hofmeister 1991, 1992, 1996; Hüppe and Hofmeister 1990) on
cereals, including bread wheat and root/row crops in 20th-century
Germany. Functional attributes were also used to classify weed
groups according to crop-sowing time in an experimental trial
in northwest Spain with glume wheat (largely spelt; Charles
et al. 2002). The successful use of this approach (using weed
ecology to infer crop-sowing time) in different regions and crop-
ping systems suggests that the approach may be broadly applicable
in archaeological contexts. Crop-sowing time is also a topic of
interest to weed scientists. For example, a study by Gunton et al.
(2011) on weed communities in arable fields across France found
that crop-sowing timewas strongly related to weed traits, including
Raunkiaer life form, germination time, and flowering time.

One concern about using weed seeds to determine crop-sowing
time is that crop-processing practices introduce systematic bias
against spring-sowing indicators through sieving (Bogaard et al.
2005). Weed species associated with autumn crop sowing often
have larger seeds than weed species associated with spring crop
sowing (Bogaard et al. 2005). Fine sieving tends to favor larger
weed seeds in the products (smaller weed seeds fall through
the sieve and become by-products; Figure 3). Consequently, fine
sieving may cause weed seed assemblages associated with
spring-sown crops to mimic weed seed assemblages associated
with autumn-sown crops (Bogaard et al. 2005). It is possible to
limit this bias by focusing on samples at an early stage of crop
processing that have not yet been sieved. The stage of crop
processing can be determined through discriminant analyses
focused on the amounts of grain, chaff, and weed seeds present
in a sample (Jones 1992; McKerracher 2019). Crop-processing
actions such as threshing, sieving, and hand sorting remove some
weed seeds more efficiently than others due to differences in seed
size and morphology (Figure 3). For this reason, the types of weed
seeds found in a sample are a reliable indicator of crop-processing
stage (Jones 1987).

McKerracher (2019) identified the crop-processing stages of
samples from early medieval England, then used discriminant
analysis and correspondence analysis to investigate crop-sowing
times. The correspondence analysis was based on weed species
such as A. githago, common lambsquarters (Chenopodium album
L.), and catchweed bedstraw (Galium aparine L.). Because crop
processing biases weed seed assemblages toward indicators of
autumn sowing, results that appear to reflect spring sowing can
be interpreted with more confidence than results that appear to
reflect autumn sowing. In a similar study from Neolithic Iberia,
Antolín et al. (2015) found indicators of spring sowing, including
saltbush (Atriplex patula L. or Atriplex prostrata Bouchér ex DC.),
C. album, and heliotrope (Heliotropium europaeum L.).

Irrigation

Irrigation is one of the primary methods that past (and modern-
day) societies have used to intensify agricultural production and
extend arable land into marginal arid regions. Identifying the
presence of irrigation archaeologically can be a challenge, however.
Jones et al. (1995) studied contemporary cropping systems in
Borja, Spain, where the primary difference between the fields
was dry farming versus the use of various forms of irrigation.
This study did not use the FIBS methodology, but rather relied
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on two phytosociological associations identified by Braun-
Blanquet and de Bolós (1957): the Roemerieta-Hypecoetum
penduli (associated with rainfed winter cereals) and the
Atripliceto-Silenetum rubellae (associated with irrigated winter
cereals). The authors found that these different phytosociological
associations differed between fields, with the strongest difference
between intensely and moderately irrigated fields (rather than
between irrigated and dry fields).

Charles et al. (1997) applied the FIBS methodology to the data
from Jones et al. (1995). By using the FIBS methodology, the
authors were able to reach more general conclusions about how
irrigation affects weed communities that could be applied to
archaeological case studies in other regions. For example, weed
species in irrigated fields tended to have higher specific leaf areas
and taller canopies (Charles et al. 1997). Charles et al. (2003)
demonstrated the use of the FIBS methodology to identify
differences between rainfed and irrigated agriculture in Jordan.

Other archaeobotanists have taken different approaches to
identifying irrigation levels from the weed seeds in samples. For
example, Marston (2017) investigated the presence or absence of
seeds from weed species known to thrive in wetter conditions, such
as sedges (family Cyperaceae), at Gordion (an archaeological site
70 km southwest of Ankara, Turkey). When this author noted a
significant increase in the number of sedges in the Roman phase
of occupation, he linked it to the increase in bread wheat produc-
tion and suggested that the combination of these factors indicated
an increase in irrigation. Another example comes from Iron Age
Thailand, where Castillo (2011) found a high co-occurrence of rice
(Oryza sativa L.) with paracress [Spilanthes acmella (L.) L.],
a common weed of dryland rice cultivation. This finding suggested
that the rice had been grown under rainfed conditions rather than
in irrigated fields.

Soil Fertility

A recently developed use of weed ecological information in archae-
obotany concerns the identification of manuring practices and
fertility management. The nutrient requirements of many weed

species are already known, largely because weed scientists have
studied responses to fertility in their efforts to understand
weed–crop competition (Little et al. 2021). Neveu et al. (2021)
used known nitrogen and pH requirements for weed species
(such as wild carrot [Daucus carota L.], hawkweed oxtongue [Picris
hieracioides L.], and hemp-nettle [Galeopsis spp.]) to better under-
stand soil fertility and fertility management in the Bronze and Iron
Ages in northwestern France. In this region and period, crops such
as free-threshing wheats (Triticum spp.) would have depleted soil
fertility if soil nutrients were not replenished. The low frequency of
species linked to nitrogen-poor soils suggests that fertility did
not decrease during the study period, perhaps because growers
used the best land available and fertility management practices
(Neveu et al. 2021). In these respects, Bronze Age and Iron Age
agriculture in northwestern France may have borne some similar-
ities to modern-day cereal-cropping systems.

More generally, historical soil health is an important and under-
studied topic in archaeology (Montgomery 2008). Most studies of
historical soil health are conducted on buried soils using methods
such as micromorphology, geochemical analysis, and stable
isotope analysis (Bell and Boardman 1992). Weeds can also serve
as indicators for some soil characteristics, including compaction
and water availability as well as fertility (Mohler et al. 2021;
Pätzold et al. 2020). Although less sensitive than the soil tests that
can be performed on present-day soils, analyses of weed flora
provide general information about historical soils. This informa-
tion may help clarify how agricultural systems affect soils across
long timescales (centuries). For example, Rösch (1998) used
agricultural weeds from southwestern Germany to demonstrate
increasing soil acidification over the course of thousands of years
(Neolithic to present day).

Cultivation Intensity

Recently, functional weed ecology studies in archaeobotany
have focused less on identifying specific strategies (crop rotation,
sowing time, irrigation, etc.) and instead emphasized a more
general approach of identifying “low-intensity” (extensive) versus

Figure 3. Stages of cereal crop processing with their products (grain and weed seeds) and by-products (chaff and weed seeds). Adapted from McKerracher (2013) and
Jones (1984).
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“high-intensity” (intensive) agricultural strategies (Bogaard et al.
2016; Jones et al. 1999). The archaeobotanical definitions of these
terms resemble typical agronomic definitions but focus on labor
rather than capital inputs. In archaeobotany, intensity is defined
as labor inputs per unit of land, with labor inputs being defined
by the application of strategies such as irrigation, manuring, inten-
sive weeding, or tillage (Bogaard et al. 2016, 2018).

An early study looking at disturbance and fertility in agricul-
tural systems found that larger weed species (canopy size and leaf
size) were found in systems with less disturbance and higher
fertility (Jones et al. 2000). Disturbance and habit productivity
(fertility and water availability) explain considerable variation in
present-day weed communities (Jones et al. 2010; Légère et al.
2005). Conversely, variation among weed species assemblages
from archaeobotanical samples can provide insight into the
disturbance regimes and habitat productivity of past agricultural
systems (Jones et al. 2010). This approach has been used in studies
of Neolithic Ireland, Britain, and continental Europe to demon-
strate that Neolithic farmers grew crops in fixed, long-term plots
rather than practicing shifting cultivation (Bogaard and Jones
2007; McClatchie et al. 2014; Whitehouse et al. 2014).

Archaeobotanists may also use stable isotope analysis (δ13C and
δ15N) of cereal crops to identify agricultural practices (irrigation
and manuring, respectively) more clearly (Bogaard et al. 2007;
Fraser et al. 2011; Styring et al. 2016; Wallace et al. 2013). For
example, Aguilera et al. (2008) combined the study of weed seeds
with the study of nitrogen and carbon isotope values in their
analysis of a Neolithic site from Spain. Their study categorized
weed species as “ruderal” or “cereal” weeds and found that ruderal
weeds were associated with barley (Hordeum vulgare L.) cultiva-
tion, while cereal weeds were associated with wheat cultivation.
The authors attribute these associations to barley’s status as a
secondary crop, relegated to more marginal areas, while wheat
was confined to intensely cultivated fields. These archaeobotanical
data, combined with δ15N analysis of the cereals, suggest that
increased competition with ruderal weeds led to a decrease in
nitrogen availability for the barley and therefore a decrease in grain
nitrogen content. Other researchers have performed stable isotope
analyses on the archaeological remains of animals (e.g., livestock)
to incorporate animal husbandry into their studies of low- versus
high-intensity cultivation (Alagich et al. 2018; Styring et al. 2017).

Historical Weed Management

Archaeobotany offers a way to study the relationships between
humans and weeds in the distant past. For example, samples
from southwestern Germany suggested that A. githago became less
prevalent in the early Medieval period because fields were inten-
sively weeded (Rösch 1998). A 1,500-yr sequence of pollen samples
from Northumberland (northern England) showed how manage-
ment factors, including grazing intensity and burning, affected the
species composition of a pastoral landscape (Davies and Dixon
2007). These data provided insight into the effects of management
factors on species diversity and the balance between heather
[Calluna vulgaris (L.) Hull] and other species. In the context of
invasive species biology, archaeobotanical data from eastern
France (Neolithic to present day) have been used to demonstrate
relationships between management factors (e.g., tillage) and the
prevalence of invasive species (Brun 2009).

These examples show that archaeobotanical data sets often
cover very long timescales. For this reason, they can illuminate
the long-term effects of weed management practices or the effects

of weed management in agricultural systems that are not used in
the modern world. Such knowledge could contribute to a broader
understanding of weed ecology.

Ecological Diversity, Sustainability, and Climate Change

Weed ecological information can be used to assess long-term
impacts of past agricultural regimes on the diversity of local flora.
Ferrio et al. (2012) categorized weed species represented in the
archaeological assemblage from Tell Halula, a Neolithic site in
Syria, as “cereal weeds” (weeds often associated with cereal crops)
and “other weeds.” During the Neolithic era, weed community
diversity decreased and the ratio of cereal weeds to other weeds
increased. These changes were associated with agricultural inten-
sification. An inverse association between weed community diver-
sity and agricultural intensification is well established in the weed
science literature (Carmona et al. 2020; José-María et al. 2010;
Storkey et al. 2010). Further archaeobotanical evidence for agricul-
tural intensification in the Neolithic has been found across Europe,
such as the establishment of permanent fields rather than shifting
cultivation in Germany, Britain, and Ireland (Bogaard 2002;
McClatchie 2014; McClatchie et al. 2014).

More generally, archaeobotanists can use weed ecology
to explore the sustainability of past food-production systems
at a landscape scale. For example, Marston (2017) used weed
ecology to understand the overall “health” of habitats surrounding
the site of Gordion. He argues that examining weed taxa can
provide archaeobotanists with valuable information such as
whether surrounding grazing lands were overgrazed or represen-
tative of healthy grassland communities. Recently, Motuzaite
Matuzeviciute et al. (2021) used weed seeds to reconstruct the land-
scape surrounding the prehistoric site of Chap I in Kyrgyzstan.
They observed a high density of Chenopodium species, which
suggests a nitrogen-rich environment, and Fabaceae species, which
could have contributed to nitrogen levels. They also observed
several weed species that typically occupy open, moist environ-
ments, such as Carex species. These data suggested an open,
human-constructed landscape that required careful management
through irrigation.

Because archaeobotanical studies frequently cover long time
periods, they may reveal connections between climate change
and changing agricultural practices. A recent study of animal
husbandry and plant cultivation in Neolithic and Bronze
Age China suggested that increasing environmental exploitation,
associated with agricultural diversification and intensification,
provided resilience in a period of dramatic climate change
(Jing et al. 2020). Another study from Iron Age northeastern
Thailand used weed flora to demonstrate a shift from dryland to
wetland rice cultivation, likely in response to an increasingly
arid climate (Castillo et al. 2018). These examples show that
archaeobotanists can use weed ecology knowledge to study human
responses to climate change (cropping system adaptation).

We propose that future collaborations between archaeobotan-
ists and weed scientists could also provide insight into weed
responses to climate change. Contemporary studies have revealed
dramatic impacts of anthropogenic climate change onweed species
ranges (Clements and DiTommaso 2011; Peters et al. 2014).
Archaeobotanists can examine weed species distributions over
the course of the Holocene. By collating all the archaeobotanical
research that has taken place within a particular region and time
period, researchers can identify sites where a weed species was
present or absent. When integrated with paleoclimate data, such
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as rainfall metrics taken from tree rings, this approach might
provide information about the bioclimatic niche of the weed
species and its potential response to climate change. Caveats to
this approach include (1) the possibility that weed species repre-
sented at an archaeological site were products of trade rather than
components of the plant community surrounding the site, (2) the
possibility that non-climate factors (e.g., management practices)
excluded weed species from some sites, and (3) the possibility that
direct effects of climate change on weeds might be confounded
with indirect effects mediated by cropping system adaptation
to the novel climate. These caveats might be addressed by
combining archaeobotanical data with other data types (e.g., other
indicators of provenance) and by adapting the FIBS approach.
Some functional attributes could be useful in separating the effects
of climate change from the effects of changing management
practices on weed communities, but these attributes have not
yet been identified.

Conclusion

Archaeobotany is a field that benefits greatly from weed
science knowledge. Weed ecological approaches used by archaeo-
botanists since the mid-20th century have become increasingly
sophisticated. These approaches have been used to investigate the
provenance of plant remains and numerous aspects of ancient
agricultural systems, including crop rotation, sowing time, irriga-
tion, soil fertility, cultivation intensity, and weed management.
Archaeobotanical research on these agricultural practices is
supported by advances in functional weed ecology. This research
might be accelerated by increased collaboration with weed scien-
tists, who can help archaeobotanists identify the best functional
indicators of agricultural practices. Increased collaboration may
also facilitate progress in weed science. The length of the archae-
obotanical record, which in many places stretches back thousands
of years, presents a rich data set for weed scientists seeking to
understand the long-term effects of human influence on agricul-
tural weed communities. In addition, archaeobotanical data reflect
weed species responses to climate. Thus, increased collaboration
between archaeobotanists and weed scientists is likely to be benefi-
cial to both fields of study.
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