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Abstract
Context. Detection probability is a key attribute influencing population-level wildlife estimates necessary for

conservation inference. Increasingly, camera traps are used to monitor threatened reptile populations and communities.

Komodo dragon (Varanus komodoensis) populations have been previously monitored using camera traps; however,
considerations for improving detection probability estimates for very low-density populations have not been well
investigated.

Aims. Here we compare the effects of baited versus non-baited camera monitoring protocols to influence Komodo
dragon detection and occupancy estimates alongside monitoring survey design and cost considerations for ongoing
population monitoring within the Wae Wuul Nature Reserve on Flores Island, Indonesia.

Methods. Twenty-six camera monitoring stations (CMS) were deployed throughout the study area with a minimum of
400 m among CMS to achieve independent sampling units. Each CMS was randomly assigned as a baited or non-baited
camera monitoring station and deployed for 6 or 30 daily sampling events.

Key results. Baited camera monitoring produced higher site occupancy estimates with reduced variance. Komodo

dragon detection probability estimates were 0.15 � 0.092–0.22 (95% CI), 0.01 � 0.001–0.03, and 0.03 � 0.01–0.04 for
baited (6 daily survey sampling events), unbaited (6 daily survey sampling events) and long-unbaited (30 daily survey
sampling events) sampling durations respectively. Additionally, the provision of baited lures at cameras had additional

benefits for Komodo detection, survey design and sampling effort costs.
Conclusions. Our study indicated that baited cameras provide the most effective monitoring method to survey low-

density Komodo dragon populations in protected areas on Flores.

Implications. We believe our monitoring approach now lends itself to evaluating population responses to ecological
and anthropogenic factors, hence informing conservation efforts in this nature reserve.
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Introduction

Large terrestrial predators are most often at risk from human
actions and increasingly require effective conservation actions

to ensure population persistence (Gittleman and Harvey 1982;
Prowse et al. 2015; Penjor et al. 2019). The key requirement to
establish effective conservation actions for apex predators is to

accurately monitor population trends and status (Karanth et al.

2011). However, because apex predators are often rare or averse
to capture or detect, non-invasive monitoring methods are rou-
tinely used to evaluate the effects of threatening processes or

conservation actions on their populations (Karanth et al. 2004;
O’Connell et al. 2010). Similarly, the increasing use of hierar-
chical models such as site occupancy and n-mixture models,

which account for imperfect detection, are now among the most
common techniques used to provide population-level inference
for apex predators (MacKenzie et al. 2002, 2006; Royle 2004;

Kéry et al. 2005). Indeed, thesemethods are often well suited for
threatened predator population studies (du Preez et al. 2014; Tan
et al. 2017; Penjor et al. 2019; Searle et al. 2020), because
threatened predators often persist at low densities where
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individual-based recapture or resighting probabilities can be too
low to allow for the alternate population estimates using mark–

recapture type models (Williams et al. 2002; Kéry and Schmidt
2008; Couturier et al. 2013; du Preez et al. 2014; Tan et al. 2017;
Searle et al. 2020).

Non-invasive monitoring techniques such as camera trapping
are now increasingly used for monitoring terrestrial reptiles, a
taxon with over 11 000 primarily predatory species (Ariefiandy

et al. 2013; Jessop et al. 2013; Welbourne et al. 2015; Adams
et al. 2017; Moore et al. 2020). Nevertheless, the use of cameras,
as measured by the capacity to achieve adequate detection for
robust population-level estimates, remains variable within and

among reptile species because of the effects of body size, species
habits and environmental factors (Ariefiandy et al. 2013;
Welbourne et al. 2015; Richardson et al. 2017; Einoder et al.

2018). In the case of large reptiles, lower population densities,
greater daily movement capacity, the effects of seasonal climatic
variation, and smaller skin surface to ambient air temperature

differences can all influence camera-based populationmonitoring
effectiveness (Ariefiandy et al. 2013; Jessop et al. 2013;
Welbourne 2013; Richardson et al. 2017; Hu et al. 2019).

Furthermore, human activities can often disproportionately
threaten large-bodied reptiles, causing their populations to be at
much lower densities than normal and thus more difficult to
monitor (Todd et al. 2010; Tingley et al. 2019). Thus, addressing

these factors by modifying camera sampling designs to increase
detection probability is a key consideration to monitor threatened
reptile populations effectively. Under such circumstances, there

may be compelling reasons to improve camera-based detection
using baits or lures (i.e. attractants) to increase detection proba-
bility (O’Connell et al. 2010; Long et al. 2012; Read et al. 2015).

Multiple studies have reported that the use of baits or lures as
attractants can vastly improve predators’ detection sensitivity
(du Preez et al. 2014;Austin et al. 2017; Comer et al. 2018). This

result is especially important in predator populations where
individuals can be cryptic or persist as low-density populations.
Hence, attractants or baits may be essential to increase detection
to prevent poor quality estimates of population-level parameters

(Thompson 2013). For this reason, baited camera traps deployed
during appropriate weather conditions can be advocated to
optimise large-reptile detection probability (Jessop et al.

2013). Although, it is important to note that these benefits
may need to consider how baits can affect a species’ movement
behaviour and create potential biases in any arising population-

level estimates (Stewart et al. 2019).
The Komodo dragon (Varanus komodoensis) is the largest

lizard and has an important ecological role as an apex predator
(Jessop et al. 2006, 2019, 2020). The current distribution of

Komodo dragons is restricted to five islands located in Komodo
National Park and several fragmented populations on Flores
Island (Jessop et al. 2007, 2018; Purwandana et al. 2014a;

Ariefiandy et al. 2015; Jones et al. 2020). Populations on Flores
Island have decreased because of anthropogenic activities and
are now increasingly reliant on a small number of reserve areas

to ensure their persistence (Ariefiandy et al. 2015, 2020; Jones
et al. 2020).

Komodo dragon populations on Flores persist at much lower

population densities (,1 dragon km�2) than those observed in
Komodo National Park (,10 dragons km�2; Laver et al. 2012;

Purwandana et al. 2014a; Ariefiandy et al. 2015, 2020). Multi-
ple field methods have been used to estimate population trends

of Komodo dragons (Ariefiandy et al. 2013, 2014). However,
these can vary considerably in their monitoring effectiveness
(Jessop et al. 2007; Ariefiandy et al. 2013, 2014; Purwandana

et al. 2014a, 2015). On Flores, low densities and trap-wary
behaviour of Komodo dragons favour wildlife cameras over
direct trapping methods as a more effective population monitor-

ing methodology (Ariefiandy et al. 2015). However, optimising
camera monitoring design is still necessary to allow conserva-
tion managers to improve the data used to evaluate these most
vulnerable populations (Jones et al. 2020). Here, we compare the

effect of baited and unbaited camera sampling on the estimates
of Komodo dragon detection probability and site occupancy,
alongside other measures of monitoring efficacy and project

running costs within the Wae Wuul Nature Reserve of Flores.
Finally, we discuss the implications of our results for managing
Komodo dragons within this protected area and, more broadly,

for other populations distributed on the island of Flores.

Materials and methods

Study area

The Wae Wuul Nature Reserve comprises a protected area of

14.84 km2 located on the western coast of Flores in eastern
Indonesia (Fig. 1a, b). The reserve was established in 1985,
aiming to increase protection of Komodo dragons beyond

Komodo National Park. The climate is highly seasonal, domi-
nated by a long dry season from March to November and a short
wet season. Annual rainfall is less than 2000 mm (Monk et al.

1997). The study area comprises a hilly coastal landscape covered
in multiple distinct vegetation communities. The two most com-
mon vegetation communities are savanna grassland (common
species include Eulalia leschenaultiana and Setaria adhaerens)

and savanna woodland (common species include Borassus

flabellifer and Zizyphus horsfeldi) that cover ,80% of the study
area (Auffenberg 1981). In valley floors holding permanent or

ephemeral watercourses, drier vegetation communities are
replaced by open deciduous monsoon forest (,20% of the study
area; dominant species include Tamarindus indica, Schleichera

oleosa and Cassia javanica) or bamboo forest. These land cover
types are representative of those found across the lowland coastal
areas of major islands in this region of eastern Indonesia,

including the adjacent KomodoNational Park (Auffenberg 1981).

Study design

Twenty-six camera monitoring stations (CMS) were deployed
within the Wae Wuul Nature Reserve. These CMS were placed

within all key vegetation communities, including deciduous
monsoon forest and savanna woodland. A minimum of 400 m
separated all sites to improve data independence obtained from

cameras (Ariefiandy et al. 2013, 2014). This 400-m distance
between monitoring sites was based on the radius of the mean
home-range area for Komodo dragons (Jessop et al. 2018;

Purwandana et al. 2021). At the commencement of the study,
each site was randomly assigned as a baited (n ¼ 13) or non-
baited (n ¼ 13) camera monitoring station to ensure equal

replicates within each cameramethod treatment. After the initial
sampling period at each station, the assigned camera method
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was reversed to the alternate method to compare estimates of

Komodo dragon detection probability and occupancy obtained
for each method at each site. The study was conducted during
June and July 2017 in the mid-dry season when environmental

temperatures permit Komodo dragons to exhibit normal daily
diurnal activity patterns and, hence, pending abundance, the
potential for good detection probability (Harlow et al. 2010a,

2010b; Jessop et al. 2013).

Camera monitoring design

At each CMS, a single outward facing Bushnell camera (Model

Trophy Cam HD 119678) was attached to a tree (40 cm above
the ground) as described elsewhere (Ariefiandy et al. 2013,
2014). Cameras were programmed to take three photos and a
1-min video each time an animal triggered the device. At

installation, all cameras were tested to confirm normal func-
tioning. For CMS allocated to the bait treatment, we used two
scent lures that comprised a small aluminium box (25� 15� 15

cm; L � W � H) and a suspended plastic bag, each containing
goat meat that was placed 4 and 2m in front or above the camera

respectively. Baited and unbaited CMSwere deployed for 6 and

30 days of monitoring respectively. The uneven durations
between treatments reflected our belief that baited cameras
would require considerably less sampling effort to produce

higher detection probabilities than those obtained from unbaited
cameras. As Komodo dragons have been observed to investigate
baits at traps for several minutes before entering traps or moving

elsewhere, we also used a 30-min camera delay to prevent
repeated photography of the same individual lizard (Ariefiandy
et al. 2014). In addition, a 3-day non-monitoring periodwas used

immediately after the transition from baited to unbaited sites.
This waiting period was implemented to remove a potential
carry-over bait effect that could have attracted Komodo dragons
and inflated detection probability at sites then monitored with

unbaited cameras. This research abided by the journal’s guide-
lines on ethical standards.

Estimating detection and site occupancy estimates

We modelled the detectability and occupancy of Komodo dra-
gons by using a single-season occupancy model, using the

(a)

(c)

(b)

Fig. 1. The study evaluated the effect of bait attractant onKomodo dragon detection probability and site occupancy estimates by using

camera monitoring stations deployed across (a) the Wae Wuul Nature Reserve located (b) on the western coast of Flores in eastern

Indonesia. (c) An image of a Komodo dragon inspecting the meat attractant contained within a metal bait box.
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software Presence (Hines 2006). Site occupancy models use

patterns of detection and non-detection over multiple surveys
(sampling occasions) of a sampling unit (CMS) to estimate
detection probabilities (p) and, thus, produce unbiased estimates

of occupancy (c) (MacKenzie et al. 2002). We modelled the
effect of baits on both the detection probability (p) andc relative
to those cameras without baits (i.e. p. c). We partitioned the
unbaited CMS detection probability data into two datasets,

given the sampling duration differences between baited and
unbaited CMS. One dataset comprised the first six, and the other
the full 30 daily sampling events. Models were ranked using

AIC, and we considered the effect of bait provision at CMS to be
influential if the model AIC was.2 units below that estimated
for the null model (Burnham and Anderson 2004).

Detection probability curves, probability of site absences
and survey design costs

To assess the expected reduction in sampling effort provided by
using baits at CMS, we produced detectability curves for CMS

with and without baits. Detectability curves represent the
cumulative probability (i.e. rate of increase) that Komodo dra-
gons will be detected after a given number of sampling occa-
sions in a site where the species is present (Wintle et al. 2005).

Cumulative detection probability curves were estimated as
pk ¼ 1 – (1 – p)k, where p is the species’ per-survey detection
probability within a given treatment and k is the given number of

sampling occasions (MacKenzie and Royle 2005).
Next, we estimated the minimum number of sequential

sampling occasions, with no detection required to be 95%

certain (i.e. a ¼ 0.05) that Komodo dragons were absent from
a surveyed site by using baited and unbaited cameras (Wintle
et al. 2012; Ferreras et al. 2018). The probability (with a¼ 0.05)
of not detecting Komodo dragons after N sampling occasions at

a given site is estimated by the formula

N >
log a

1�a

� �� log C
1�C

� �

log 1� pð Þ

Here, values of p and c are specific to baited and unbaited
CMS site occupancy estimates derived from the 6-day sampling
period.

Finally, we compared the costs of sampling for baited and
unbaited camera trapping methodology to achieve a similar
monitoring outcome (i.e. a ¼ 0.05) by calculating protocol-

specific costs of each technique, beyond common costs associ-
ated with camera purchases, as such we estimated

C mð Þ ¼
X

Cd þ Cr þ Cb � Sd þ Cbb � Sd þ Ccb � Sdð Þ

where C(m)¼method specific survey cost, Cd¼ cost of camera
deployment, Cr ¼ cost of camera retrieval, Cb ¼ cost of bait

(US$0.26 per camera per survey day (Sd)), Cbb ¼ cost of bait
boxes (US$10.00 per camera), Ccb ¼ cost of camera batteries
(US$0.20 per camera per survey day).

Results

The most parsimonious occupancy model (C (.), p (bait vs no-

bait), model weight ¼ 0.71) indicated that the effect of baits
placed at CMS vastly improved Komodo dragon detection
probability compared with the null model (DAIC¼ 57.01; model

weight ¼ 0.00; Table 1). Detection probability estimates for
baited cameras (6 daily sampling events) were 15 and 5.5 times
higher than those estimated for unbaited (6 daily sampling events)
and long-unbaited (30 daily sampling events) camera sampling

durations (Fig. 2a). Similarly, baited cameras produced 2.3 and
1.3 higher Komodo dragon site occupancy estimates at the
equivalent and long-unbaited camera sampling durations

(Fig. 2b).A goodness-of-fit test on themost parameter-richmodel
demonstrated that our data were not over-dispersed (i.e. ĉ . 1).

Effects of bait attractants on monitoring considerations

Baited cameras improved sampling efficacy and reduced mon-

itoring costs compared with sampling using unbaited cameras.
First, it was evident that based on cumulative detection proba-
bilities, baited cameras, if deployed sufficiently long enough,

could achieve perfect detection at sites with Komodo dragons,
withmuch less survey effort thanwith unbaited cameras (Fig. 3).
Compared with unbaited cameras, baited cameras reduced the

sampling effort duration from 184 to 21 days to be certain (with
a of ,0.05) that Komodo dragons were absent from a site.
Finally, because of the much-improved detection probability

achieved with baited cameras, it reduced the overall study costs
from US$580.20 to US$547.60, to obtain similar camera-based
detection levels within the study area.

Discussion

The choice of an appropriate sampling method for monitoring
threatened predator populations depends on interactions among

the program objectives, scale and resources and a species’s
detection probability (Kéry and Schmidt 2008). We demon-
strated that using baited-camera compared with unbaited-

camera monitoring greatly improved estimates of Komodo
dragon detection probability and site occupancy in the Wae

Table 1. Model selection results testing effects of baited and non-baited cameras for influencing detection probability (p) and site occupancy (C) of

Komodo dragons within the Wae Wuul Nature Reserve in West Flores

K, the number of estimated parameters; logLik, logliklihood; AIC, Akaike information criterion;DAIC, the difference in value between AIC of this model and

the most parsimonious model; and AIC weights (wi), a measure of relative model support

Model K logLik AIC DAIC wi

C(.) p(bait vs no-bait)) 3 365.43 371.43 0.00 0.71

C(bait vs no-bait)) p(bait vs no-bait)) 4 365.21 373.21 1.78 0.29

C(.) p(bait vs no-bait))* daily survey variation 62 302.17 426.17 54.74 0.00

C (.) p (.) 2 424.44 428.44 57.01 0.00
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Wuul Nature Reserve on Flores Island. Indeed, several clear
advantages were evident from using baited cameras, including a

reduced sampling effort and, ultimately, a more cost-effective
monitoring design.

Obtaining a high detection probability is a key requirement to

improve site-occupancy estimates for large predators that persist
at low density (MacKenzie et al. 2006). Such sampling designs
should aim to achieve a detection probability exceeding 0.15, so

as to allow for better occupancy estimates for predators
(O’Connell et al. 2010; Otto and Roloff 2011). With camera-
based monitoring, there are several ways to increase species
detection probability, including increasing the number of cam-

eras deployed for longer survey periods or by also placing
cameras in areas that increase detection opportunities of the
focal species (e.g. along game trails; O’Connell et al. 2010;

Geyle et al. 2020; Wysong et al. 2020). However, the use of
attractants such as baits or lures is another common means to
improve camera-based detection probability, but their use should

be assessed to ensure improved efficacy (Read et al. 2015).
It was evident that bait attractants at camera monitoring

stations greatly improved Komodo dragon detection probability

by 3.5–5 times over similar or extended durations of unbaited
cameramonitoring. This finding is consistentwith those of other
studies that indicate similar benefits of using baits or lures at
camera monitoring stations (du Preez et al. 2014; Austin et al.

2017; Tarugara et al. 2019). Importantly, these gains in detec-
tion probability alongside higher and more robust estimates of
site occupancy offset the increased daily sampling costs owing

to the purchase of goats as the bait source (Thorn et al. 2011).
Another key benefit of baited cameras was the considerable

reduction (i.e. 5-fold) in the survey effort needed to achieve

adequate Komodo dragon detection within the study area.
Reducing survey effort without compromising detection proba-
bilities has many obvious advantages (MacKenzie and Royle

2005). Most importantly, saved survey effort can be allocated
into additional sites, survey visits or additional study areas in
different ways (Sewell et al. 2012). From our perspective, the
biggest advantage is that reduced survey effort can be invested

into additional camera monitoring activities for more broadly
assessing the conservation status of Komodo dragon popula-
tions. For example, we have recently used baited camera

monitoring surveys beyond this study area to evaluate the
distribution of the Komodo dragon across Flores (,400 moni-
toring stations across 1200 km of coastline; Ariefiandy et al.

2021). This feat would not have been possible without using
baited cameras to achieve high Komodo dragon detection
relative to their survey effort requirements.

It is argued that the use of attractants to increase a species

detection must be considerate of any effects on monitoring
estimates and arising inference (du Preez et al. 2014). For
example, if increased estimates of detection at baited cameras

arise because of bait effects on animal space-use or daily
movements, it could bias parameter estimates. In the case of
baited cameras, baits could increase residency times or attract

animals beyond their normal home-range area to inflate esti-
mates of detection probability and site occupancy (Stewart et al.
2019). This problem could be especially acute if individual

animals, particularly those in low-density populations, are
detected at multiple camera stations beyond their home range.
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Consequently, ensuring spatial independence for camera data is
a crucial aspect of monitoring design (Meek et al. 2014;

O’Connell et al. 2010; Geyle et al. 2020). We know that the
independence of data among camera monitoring sites is largely
met for Komodo dragon, because our prior mark–recapture-

based studies using traps with similar inter-site distances
resulted in a ,10% within-study recapture rate of individuals
(Ariefiandy et al. 2013, 2014).

This study also indicated that estimates of Komodo dragon
site occupancy recorded within the Wae Wuul Nature Reserve
are significantly lower than those generally recorded for popula-
tions in the adjacent Komodo National Park (Purwandana et al.

2014b; Ariefiandy et al. 2015). Adult Komodo dragons, as apex
predators, mainly prey on ungulates, particularly Rusa deer
(Rusa timorensis), wild pig (Sus scrofa), and, in some locations,

water buffalo (Bubalus bubalis; Auffenberg 1981; Bull et al.
2010; Purwandana et al. 2016). Thus, we attribute this lower
occupancy estimate to be in part associated with the commen-

surate reduction of large ungulate prey availability on Flores
(Ariefiandy et al. 2011, 2015, 2016; Jessop et al. 2020). Reduced
prey is a presumed consequence of historical and increasingly

contemporary human-mediated processes (e.g. fire, poaching,
invasive predators) affecting Komodo dragon habitats on Flores
(Ariefiandy et al. 2020).

Here we advocate that protected-area enhancement actions

and community conservation approaches are needed to address
the current threats to Komodo dragons on Flores. For example,
unlike Komodo National Park, the Wae Wuul Nature reserve is

comparatively under-resourced in staff and logistical resources.
Thus, aside from ongoing monitoring of Komodo dragon popu-
lations, it is necessary to ensure that integrative conservation

actions are used to ensure prey and predator persistence in this
reserve (Ariefiandy et al. 2015, 2020). Thus, this reserve could
benefit from additional infrastructure (e.g. ranger posts) and

increased patrolling and surveillance measures that would
benefit both Komodo dragons and their ungulate prey (Hilborn
et al. 2006; Ariefiandy et al. 2015, 2020). However, as human
activities increasingly modify the habitats that directly border

this reserve, community-based conservation actions must also
be implemented in neighbouring communities (Ariefiandy et al.
2015, 2020). For example, implementing conservation aware-

ness meetings in local communities to inform and discuss the
value of protecting natural values within this reserve are deemed
essential (Kamil et al. 2019). Furthermore, working with com-

munities to reduce rates of incursions of village dogs or livestock
and stopping villagers from setting fire to habitats within or
adjacent to the reserve could be important steps to promote the
conservation of Komodo dragons in this key protected area on

Flores (Ariefiandy et al. 2020).
In conclusion, our study demonstrated that optimising cam-

era surveymethods using baits compared with unbaited cameras

can provide a better method for estimating Komodo dragon
occupancy. This result was particularly important in this study
because we aimed to effectively monitor a very low-density

population in a key protected area on Flores. We believe our
baited camera monitoring approach now lends itself to under-
standing population responses to ecological and anthropogenic

factors, hence informing conservation efforts in this nature
reserve (Ariefiandy et al. 2015).
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