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Abstract
The recent introduction of invasive Indo-Pacific lionfish species (Red Lionfish Pterois volitans and Devil Firefish P.

miles, hereafter collectively referred to as lionfish) into the western Atlantic Ocean has been extensively documented
in both the scientific literature and the media. Nevertheless, much of the information synthesized has been obtained
via diver-based surveys and there is likely a depth-related bias to the understanding of the temporal and spatial
dynamics of the lionfish invasion. Accordingly, we examined data from a broadscale fisheries-independent trawl
survey of bare substrates and low-relief habitats that was initiated in 2008 in the eastern Gulf of Mexico. Lionfish
were first observed in the survey in 2010, when two individuals were collected off southwestern Florida. The
distribution of lionfish continued to expand northward through the Florida panhandle in 2011 and 2012, when 40 and
29 lionfish were collected, respectively. A dramatic increase in the abundance (391 individuals) and distribution of
lionfish occurred in 2013. Evidence from this survey suggests that lionfish first colonized deeper (>30 m) low-relief
habitats before populations expanded into shallower waters. The prevalence of lionfish on primarily nonreef habitats
at depths beyond those frequented by recreational divers will likely have important implications for efforts to control
or eradicate lionfish populations in the region. Moving forward, information from long-term, multispecies surveys
such as this will continue to provide valuable insight into the spatial and temporal dynamics of the lionfish invasion
and allow us to assess long-term ecological consequences of increasing lionfish abundances.

Range expansion into the western Atlantic Ocean by two

invasive Indo-Pacific lionfish species, the Red Lionfish Pterois

volitans and the Devil Firefish P. miles (hereafter collectively

referred to as lionfish), has progressed at an unprecedented rate.

Lionfish were first reported off southeastern Florida in the mid-

1980s; the distribution of reported lionfish sightings remained

localized through 1999, after which they rapidly expanded their

range (Schofield 2009, 2010; Johnston and Purkis 2011). From

2000 to 2006, lionfish expanded northward along the eastern

U.S. coastline, to Bermuda, and subsequently to the Bahamas.
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Since 2007, lionfish have spread throughout the Caribbean,

reaching the Florida Keys in 2009 (Ruttenberg et al. 2012) and

the Gulf of Mexico in 2010 (Schofield 2010; Fogg et al. 2013).

Often strongly associated with reef habitats (Schultz 1986; Biggs

and Olden 2011; Claydon et al. 2012), lionfish in the western

Atlantic Ocean have been found to occupy mangrove (Barbour

et al. 2010; Claydon et al. 2012; Pimiento et al. 2015), seagrass

(Biggs and Olden 2011; Claydon et al. 2012), and lower riverine

habitats (Jud and Layman 2012) as well.

Although the invasion and subsequent expansion of lionfish

populations throughout the western Atlantic Ocean have been

generally well documented (Côt�e et al. 2013), most studies

have relied heavily on data collected by recreational or scien-

tific divers (Schofield 2009, 2010; Ruttenberg et al. 2012; Scy-

phers et al., in press). As a result, the understanding of the

dynamics of the lionfish invasion in waters deeper than those

routinely sampled by diver-based surveys (~35 m) is some-

what restricted. Several studies have documented lionfish at

depths as great as 100 m (Meister et al. 2005; Whitfield et al.

2007; Lesser and Slattery 2011; Nuttall et al. 2014), where

water temperatures are well within the thermal tolerances of

the species (Kimball et al. 2004). The effectiveness of diver-

based control efforts directed at shallow-water lionfish popula-

tions may be undermined by rapidly increasing lionfish popu-

lations at greater depths. A more quantitative examination of

depth-related lionfish population dynamics is essential for

informing population control strategies and quantifying eco-

logical impacts. Accordingly, we analyzed data from a broad-

scale, fisheries-independent trawl survey to (1) characterize

the range expansion of lionfish in the eastern Gulf of Mexico

from 2010 through 2013 and (2) assess depth-associated pat-

terns in lionfish abundance, frequency of occurrence, and size.

METHODS

Study area.—Our analyses focused on data collected in the

eastern Gulf of Mexico, from the Dry Tortugas north to the

Florida–Alabama border, at depths from 4 to 104 m. Sediment

composition in the eastern Gulf of Mexico is dominated by

quartz-rich sand on the inner shelf, mollusk-rich sand over a

broad area of the middle shelf, and sand rich in coralline algae

on the outer shelf (Randazzo and Jones 1997). Although trawl-

able, nonreef bottom habitat is abundant, most of the natural

hard-bottom habitat in the Gulf of Mexico is found off of Flor-

ida and the Yucatan Peninsula, with patches of coral and

sponge habitat occurring extensively along the West Florida

Shelf (WFS) (Briggs 1958; McEachran and Fechhelm 1998).

Much of the multibillion-dollar fishing industry in the eastern

Gulf of Mexico is derived from species associated with these

hard-bottom habitats.

Field methods.—Data were collected as part of the recent

Florida expansion of the Southeast Area Monitoring and

Assessment Program’s (SEAMAP) annual summer groundfish

trawl survey. This survey (Eldridge 1988) employs a

stratified-random sampling design in which annual sampling

effort is proportionally allocated among depth and geographic

strata. Initiated in the early 1980s, the SEAMAP groundfish

trawl survey originally extended from the Mississippi–Ala-

bama border westward to the Mexico border, encompassing

National Marine Fisheries Service (NMFS) statistical report-

ing zones 11–21. In 2008 and 2009, exploratory summer sur-

veys were conducted from Tampa Bay to Alabama (NMFS

zones 5–10) to investigate the feasibility of expanding the

SEAMAP groundfish survey into the eastern Gulf of Mexico;

this survey was expanded to encompass NMFS zones 2–10 in

2010 (Figure 1). All samples were collected during June and

July using a standard 12.8-m SEAMAP shrimp trawl towed at

a speed of 3 knots, and tow duration was generally 30 min

(bottom sampling area D approximately 1.03 ha/tow). Trawls

were typically towed over bare substrates or low-relief habitats

to minimize damage to sensitive bottom communities. All

lionfish collected were enumerated and measured to the near-

est millimeter standard length (SL), and pertinent site informa-

tion was recorded, including location and water depth.

Additional survey details can be found in Rester (2011).

Analytical methods.—To visually explore the patterns of

lionfish expansion in the eastern Gulf of Mexico, the locations

where trawl sampling was conducted and those where lionfish

were collected were plotted annually in a GIS, with symbol

size being proportional to the number of lionfish collected. No

lionfish were collected in the 2008 or 2009 trawl surveys, so

those data were not included in subsequent analyses. For data

collected between 2010 and 2013, summary statistics were cal-

culated of the annual trawl sampling effort, frequency of lion-

fish occurrence (percentage of annual trawl samples that

contained at least one lionfish), total number of lionfish col-

lected, and mean number of lionfish collected per trawl.

Annual length frequency distributions were also constructed,

and a series of Kolmogorov–Smirnov two-sample tests, using

the Bonferroni correction for multiple pairwise comparisons

(a D 0.05/3 or 0.017), were used to compare length frequency

distributions between all years excluding 2010 (SAS Institute

2006; Sokal and Rohlf 2012). For 2013 data only, the mean

number of lionfish per haul and mean size of lionfish collected

(mm SL) were compared among depth bins using one-way

analysis of variance (ANOVA) and the Tukey–Kramer adjust-

ment for pairwise comparisons (SAS Institute 2006); depth

intervals were chosen to divide the data into six depth quan-

tiles. The frequency of occurrence data, in terms of overall

sampling effort as well as samples containing lionfish, were

summarized for 10-m depth bins and analyzed via habitat suit-

ability analysis (Baltz 1990) to explore nonlinear patterns of

habitat selection along the gradient of depths sampled.

RESULTS

Lionfish were first collected in survey trawls in 2010

(Figure 2; Table 1), when two individuals were captured off
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Florida’s southwest coast in depths of approximately 45 m. In

2011 and 2012, lionfish were more abundant (N D 40 and N D
29, respectively) and catches expanded northward into waters

off the Florida panhandle. This expansion first occurred pri-

marily in deeper waters but extended inshore after 2012. A

dramatic increase in abundance occurred in 2013 (N D
391 lionfish). That year, lionfish were collected in 40% of all

trawl samples and at a mean rate of 2.57 individuals/haul (SE,

0.44).

The size of lionfish captured in trawls has increased since

the initial invasion into the eastern Gulf of Mexico (Table 1;

Figure 3); at a D 0.017 for each pairwise test, length fre-

quency distributions did not differ between 2011 and 2012

(PKS D 0.03) but did differ between 2011 and 2013 (PKS <

0.01), as well as between 2012 and 2013 (PKS < 0.01). In

2010, both individuals collected were less than 100 mm SL,

but maximum size had exceeded 300 mm by 2012 and

400 mm by 2013. In 2013, both mean lionfish abundance (F D
9.18; P < 0.01) and size (F D 3.60; P < 0.01) differed signifi-

cantly among the depths sampled (Figure 4). The mean

abundance of lionfish was significantly greater in depths from

49 to 67 m than it was in depths less than 35 m, whereas the

mean size of lionfish was significantly greater in depths from

49 to 67 m than it was in depths from 27 to 35 m. Overall,

lionfish exhibited the highest suitability at depths from 30 to

80 m (Figure 5); no lionfish were collected in waters shallower

than 20 m in any year of the survey.

DISCUSSION

This study in the eastern Gulf of Mexico provides the first

quantitative description of the lionfish expansion that consid-

ers predominantly nonreef habitats and depths beyond those

examined in most prior studies. Although the lionfish invasion

has been well documented in general, most available literature

has emphasized the colonization of shallow habitats (e.g., reefs

or various estuarine habitats) at depths accessible to divers.

However, lionfish have been observed in waters as deep as

100 m in the western Atlantic Ocean (Meister et al. 2005;

Whitfield et al. 2007; Lesser and Slattery 2011) and

FIGURE 1. Spatial extent of the Southeast Area Monitoring and Assessment Program (SEAMAP) trawl survey in the eastern Gulf of Mexico. Annual sampling

effort is allocated proportionally among statistical reporting zones (2–10) based on the total area of the seafloor from 4 to 110 m.
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northwestern Gulf of Mexico (Nuttall et al. 2014). Using a

stratified-random sampling design across depths to 104 m, we

detected the initial expansion into the southeastern Gulf in

2010, which coincides well with the first reports from the

lower Florida Keys (Schofield 2010). However, diver-based

sightings of lionfish during late 2010 in shallower waters off

the Florida panhandle and central western coast (USGS 2014)

suggest there were likely multiple and simultaneous expansion

pathways into the eastern Gulf of Mexico. Because the SEA-

MAP trawl survey did not include the extreme southeastern

portion of the gulf before 2010, we cannot confirm or refute

the notion that introduction into the gulf was possible as early

as 2008, an idea based on the projected age at length (e.g., Bar-

bour et al. 2011) of a single large specimen collected in 2012

(Fogg et al. 2013). Nevertheless, the first reported lionfish

sighting from the Dry Tortugas did not occur until late 2009

(Schofield 2010), so it is doubtful that lionfish would have

been collected even if trawl effort had been allocated to the

region during that period.

The results from this study indicate that in the eastern Gulf

of Mexico lionfish likely first settled in deeper habitats along

the WFS. Central America is identified as the probable source

of lionfish in the gulf (Johnston and Purkis 2011), and deeper

WFS habitats would have been the first ones encountered by

larvae transported by prevailing currents (e.g., the Yucatan

and Loop currents). The incursion of the Loop Current into the

Gulf of Mexico varies during the year, typically attaining its

most northerly intrusion during the summer (Sturges and

Evans 1983). With Loop Current surface velocities exceeding

60 cm/s in early summer 2010 (Hamilton et al. 2011) and the

mean settlement age for planktonic Red Lionfish larvae esti-

mated at 26.5 d (Ahrenholz and Morris 2010), lionfish larvae

from the Yucatan could have been transported more than

1,300 km before settlement, placing them along the eastern

wall of the Loop Current and in proximity to the WFS. Drift-

buoy trajectories recorded during that period also identified

cyclonic eddy flows along the eastern Loop Current wall that

forced a northward counterflow along the west Florida slope

(Hamilton et al. 2011). The overall increase in size from 2010

to 2012, combined with distribution records, provides evi-

dence of a general northward expansion within deeper waters

prior to the population expansion inshore. Lionfish become

reproductively active within their first year (Morris and Whit-

field 2009), and a growing pool of larvae originating from

both early colonizers to the WFS and from exponentially

growing upstream populations likely facilitated a secondary

and more radial population expansion across WFS habitats.

Four years after the initial invasion onto the WFS, lionfish

densities remain highest in depths of 40–80 m, similar to

recent observations in mesophotic depths of the northwestern

Gulf of Mexico (80–90 m; Nuttall et al. 2014). In their native

range, lionfish are collected most often in shallower waters

FIGURE 2. Spatial distribution of lionfish collected during the annual (2008–2013) summer SEAMAP trawl surveys in the eastern Gulf of Mexico. The black

circles represent the locations where trawl samples were collected and no lionfish were captured. The red circles represent the locations where lionfish were col-

lected, and the size of each red circle represents the relative number of lionfish collected within each set.
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(Kulbicki et al. 2012); as populations continue to increase in

abundance, we expect lionfish density in shallower waters to

increase.

Although gonads were not analyzed, a significant propor-

tion of lionfish collected in this study were large enough to be

reproductively active (Morris and Whitfield 2009), so nonreef

habitats in deeper waters may be an important source of lion-

fish larvae. In general, the SEAMAP trawl survey is restricted

to bare substrates or low-relief habitats, but because very little

high-resolution habitat information is available for much of

the study area, some samples were collected over or near live

bottom (sponges, gorgonians, etc.) and higher-relief reef struc-

ture. Lionfish use a variety of marine substrates in both their

native and nonnative ranges, but they are most commonly

associated with structured habitats such as reefs, mangrove

swamps, and artificial structure (Barbour et al. 2010; Kulbicki

et al. 2012; Schofield et al. 2014). Several studies have docu-

mented, to some extent, ontogenetic shifts in habitat affinity.

In studies from Roat�an, Honduras (Biggs and Olden 2011),

and the Turks and Caicos islands (Claydon et al. 2012),

smaller lionfish tended to occupy seagrass habitats, whereas

mature individuals were associated with structured reef envi-

ronments. Consequently, the lionfish abundance and length

data collected from low-relief habitats in the eastern Gulf of

Mexico may not represent the portion of the population associ-

ated with more structured habitats. Furthermore, the size dis-

tribution of our catch is strongly influenced by the trawl

sampling gear and small postsettlement individuals were not

collected in our surveys. Nevertheless, these data provide a

conservative and quantitative estimate of the rapid population

growth in the eastern Gulf of Mexico. To fully describe the

dynamics of lionfish populations in these deeper environments

will require data from sampling methods complementary to

this trawl survey, such as traps or underwater cameras, that

can effectively quantify biota in reef or live-bottom habitats

(Bacheler et al. 2013; Dahl and Patterson 2014; Nuttall et al.

2014).

The widespread establishment of lionfish populations in the

eastern Gulf of Mexico beyond depths accessible to divers

FIGURE 4. By depth, the average number of lionfish per trawl (upper panel)

and the average standard length of lionfish (lower panel) collected during the

summer 2013 SEAMAP trawl survey in the eastern Gulf of Mexico (error bars

indicate SE). Mean values were compared by ANOVA, and the letters above

each bar represent groupings as determined via pairwise tests between depth

quantiles (means with at least one letter in common are not significantly

different).

FIGURE 3. Annual length frequency distribution of lionfish collected during

the summer SEAMAP trawl surveys in the eastern Gulf of Mexico (2008–

2013; no lionfish were collected in 2008 or 2009). Values along the x-axis rep-

resent midpoints of 50-mm size-class bins.

TABLE 1. Annual sampling effort and overall catch data for lionfish collected during the summer SEAMAP trawl survey in the eastern Gulf of Mexico.

Year

Total

number of

samples

Mean (range)

sampling

depth (m)

Number (and

percent) of samples

containing lionfish

Total number

of lionfish

collected

Mean § SE

lionfish per

haul

Mean (range)

standard

length (mm)

2010 161 39 (7–100) 2 (1.2%) 2 0.01 § 0.01 91 (85–97)

2011 143 38 (4–97) 9 (6.3%) 40 0.28 § 0.14 174 (129–251)

2012 162 37 (9–101) 16 (9.9%) 29 0.18 § 0.05 172 (70–337)

2013 152 41 (5–104) 61 (40.1%) 391 2.57 § 0.44 208 (62–404)
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likely has important implications for control strategies and

fisheries management. There is little evidence that lionfish

populations are vulnerable to biological controls such as pre-

dation (Hackerott et al. 2013), and there is very limited infor-

mation on their susceptibility to parasitism (Ruiz-Carus et al.

2006; Bullard et al. 2011) or disease in nature. A single lion-

fish, believed to have been released from an aquarium, was

collected in 2006 in association with a red tide bloom near

Pinellas County, Florida (Schofield 2010), and frequent epi-

sodic red tide events in the eastern gulf may provide some

level of control in shallow coastal habitats as populations

expand into nearshore regions. At present, removal of lionfish

by divers is probably the most common method of control, but

this method is generally applicable to waters shallower than

~35 m. Lionfish are rarely caught in hook-and-line fisheries

but have been reported as incidental catches in some deepwa-

ter fisheries (Akins 2012) and are frequent bycatch in commer-

cial trap fisheries (National Marine Fisheries Service,

Southeast Fisheries Science Center, Trip Interview Program,

personal communication). Recently developed models predict

that containment of lionfish populations will prove very diffi-

cult if portions of the adult populations remain unexploitable

(Arias-Gonz�alez et al. 2011). Accordingly, the development

of directed trap fisheries for lionfish may offer alternatives to

removal by divers in these deeper habitats. In deeper waters,

many ecologically and economically important reef fishes uti-

lize habitats that overlap with those of lionfish, and species

such as Red Grouper Epinephelus morio, Vermilion Snapper

Rhomboplites aurorubens, Gray Snapper Lutjanus griseus,

and Lane Snapper L. synagris were often caught in conjunc-

tion with lionfish in our survey trawls. The ecological effect of

proliferating lionfish populations on these economically

important native species and their prey base is unknown, but

recent investigations conducted in shallower waters of the

Bahamas document the potential for adverse impacts (Albins

and Hixon 2013) on native reef fish recruitment (Albins and

Hixon 2008) and prey species’ biomass (Côt�e and Maljkovic

2010; Green et al. 2012). At mesophotic depths, declines in

coral reef herbivores caused by lionfish predation or avoidance

of lionfish resulted in a phase shift to algae-dominated com-

munities (Lesser and Slattery 2011).

To date, our data suggest that the lionfish expansion in the

eastern Gulf of Mexico is still in progress, yet it is unclear

how long it will continue. Results from ongoing trawl surveys

in the eastern Gulf of Mexico should allow us to document

when lionfish abundances eventually level off. Further, this

survey, which began before the invasion, should allow us to

monitor and assess long-term ecological consequences of

increasing lionfish abundances in the eastern Gulf of Mexico.
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