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ARTICLE

Predicting soil nitrogen availability to grain corn
in Ontario, Canada
Jessica L. Stoeckli, Mehdi Sharifi, David C. Hooker, Ben W. Thomas, Froogh Khaefi, Greg Stewart,
Ian McDonald, Bill Deen, Craig F. Drury, Bao-Luo Ma, and Hamid R. Motaghian

Abstract: Predicting the soil-available nitrogen (N) to grain corn over a growing season in humid temperate
regions is the key for improving fertilizer N recommendations. The objective of this study was to evaluate a suite
of soil-N tests to predict soil N availability to grain corn over two growing seasons at 13 individual sites with
long-term history of synthetic N fertilization in Ontario, Canada (13 site-years). At each site, fertilizer N was applied
at various rates (0–224 kg N·ha−1) to determine the crop response to N fertilizer, relative yield (RY), and the most
economic rate of N (MERN). Across the entire dataset, water-extractable mineral N (WEMN) was the only soil test
that strongly correlated to both RY (r = 0.74**) and MERN (r = −0.56*) indicating that in grain corn fields with
long-term history of N fertilization, mineral forms of N in soil solution can be used for fertilizer N recommenda-
tions in southern and eastern Ontario. We also provide evidence that grouping soils based on clay content could
further refine fertilizer-N recommendations for grain corn in Ontario. A multi-year validation of the WEMN test
with more field sites and development of a fertilizer recommendation table for this soil test are recommended.

Key words: maximum economic rate of nitrogen, nitrogen fertilizer recommendation, pre-plant nitrate test,
relative yield, water-extractable nitrogen.

Résumé : Si l’on veut améliorer les recommandations concernant l’usage d’engrais azotés dans les régions à
climat tempéré humide, il faut absolument pouvoir prévoir la quantité d’azote (N) disponible dans le sol pendant
la période végétative pour la culture du maïs-grain. L’étude devait évaluer l’utilité de divers tests de dosage du
N pour déterminer la concentration de cet élément dont le maïs-grain dispose dans le sol pendant deux périodes
végétatives, à 13 endroits de l’Ontario bonifiés depuis longtemps avec des engrais N synthétiques (13 sites-
années). Les auteurs ont appliqué de l’engrais N à différents taux (de 0 à 224 kg de N par hectare) à chaque endroit,
afin de vérifier la réaction de la culture à l’engrais et d’en établir le rendement relatif ainsi que le taux d’applica-
tion le plus économique (TAPE) pour l’engrais. Parmi les données, le dosage du N extractible à l’eau est la seule
épreuve qui présente une étroite corrélation avec le rendement relatif (r = 0,74**) et le TAPE (r = −0,56*), signe
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que, dans les champs de maïs-grain fertilisés depuis longtemps avec un engrais azoté, on pourrait se fier à la forme
minérale du N présente dans les solutions de sol pour formuler des recommandations sur l’usage des engrais
azotés dans le sud et l’est de l’Ontario. Les auteurs fournissent également la preuve que grouper les sols en fonc-
tion de leur teneur en argile pourrait affiner les recommandations sur le taux d’application des engrais N pour
la culture du maïs-grain en Ontario. Par ailleurs, ils préconisent une validation pluriannuelle du dosage du N
extractible à l’eau dans un plus grand nombre de sites et l’élaboration d’un tableau pour les recommandations
qui s’appuieront sur cette épreuve. [Traduit par la Rédaction]

Mots-clés : taux d’application d’engrais azoté le plus économique, recommandations sur le taux d’application des
engrais azotés, dosage du nitrate avant les semis, rendement relatif, azote extractible à l’eau.

Introduction
Accurately predicting plant-available nitrogen (N)

during the growing season is essential for enhancing
the sustainability of grain corn (Zea mays L.) production
(Ransom et al. 2020). However, predicting corn-available
N is complicated due to interactions among drivers of
the soil N cycle such as precipitation, soil moisture and
temperature, soil properties, crop management history,
and current management practices (Morris et al. 2018).
Currently, N fertilizer recommendations for corn in
Ontario are mostly based on the pre-plant nitrate test
(PPNT), or the corn N calculator (GOCorn.net 2010)
requiring the yield goal, soil texture, previous crop, and
market prices for corn and N fertilizer data. The quantity
of labile N fractions and their relative importance
(Wu et al. 2008; Zebarth et al. 2009; Luce et al. 2011;
Osterholz et al. 2016) in suppling N to grain corn in
Ontario soils with long-term history of N fertilization
has not been studied. A more reliable soil N test for grain
corn can result in more accurate N recommendations
and less risk of adverse environmental impacts (Sharifi
et al. 2007b; Luce et al. 2011; Morris et al. 2018).

The PPNT is the pre-plant soil nitrate-N (NO3-N) con-
centration in 0–15 cm soil depth, which can be a useful
soil-N test for adjusting fertilizer recommendations
based on carryover of NO3-N from previous growing sea-
sons and early season N mineralization (Sharifi et al.
2007b; Ransom et al. 2020). However, the reliability of
the PPNT in humid temperate regions has been ques-
tioned due to the high mobility of NO3-N in soil (Sharifi
et al. 2007b; Luce et al. 2011). Another limitation of the
PPNT is its inability to predict the amount of mineraliz-
able soil organic-N, which represents a portion of poten-
tial soil N supply (SNS) for corn in humid temperate
climates (Wu et al. 2008; Zebarth et al. 2009; Whalen
et al. 2013). One alternative to the PPNT is the pre-side-
dress NO3-N test (PSNT). This soil test has gained popular-
ity in northeastern USA and eastern Canada because it
accurately determines NO3-N levels when the corn
plant is at the V6 stage just prior to the highest rate of
N uptake, enabling timely N fertilizer adjustments (Fox
et al. 1989). The PSNT has been shown to predict fertilizer
N needs for corn over a wide geographic range (Magdoff
et al. 1984; Blackmer et al. 1989; Magdoff 1991; Ransom
et al. 2020). Although the PSNT has shown greater accu-
racy in predicting crop N requirements compared to

PPNT, the need for producers to have access to side-dress-
ing equipment, soil sampling during the growing season
in a manner to capture soil NO3-N spatial variability and
potential changes in soil NO3-N concentrations over a
short period of time has hindered its widespread use
(Beauchamp et al. 2004; Ma et al. 2007). The limitations
of the PSNT justifies examination of pre-plant soil-N
indicators that account for both pre-plant-available N
and organic N that mineralizes to become plant avail-
able during the growing season. A more in depth review
of N rate recommendation methods for corn was pre-
sented by Morris et al. (2018).

In the humid temperate region that characterizes
eastern Canada, various laboratory and field-based
methods have been tested for assessing the contribution
of N mineralization to crop N uptake (Sharifi et al. 2007b;
Nyiraneza et al. 2009; Sharifi et al. 2009; Nyiraneza et al.
2012; Luce et al. 2014; Thomas et al. 2016b). Recent develop-
ments for predicting the contribution of mineralizable
soil N to crop N uptake have focused onmeasuring readily
mineralizable N, including a biologically active fraction of
soil organic-N (pool I) (Sharifi et al. 2007a), water-
extractable C and N (Luce et al. 2014; Thomas et al. 2016a,
2016b), and particulate organic matter C (POMC) and N
(POMN) (Sharifi et al. 2008; Luce et al. 2014; Thomas et al.
2016b). Pool I is the initial flush of N produced in the labo-
ratory by drying and rewetting soil in the first 2 wk of
incubation at 25 °C (Sharifi et al. 2007a). The water-extract-
able organic C and N (WEOC and WEON) were considered
by Haynes (2000) to be the most dynamic and bioavailable
fractions of soil organic matter and have been used as
indicators of plant-available N (Zsolnay 2003; Haney et al.
2012; Thomas et al. 2016b). The POMC and POMN are com-
posed of partially decomposed plant residues and organic
amendments, representing a transient pool of physically
uncomplexed organic matter that undergoes decomposi-
tion and mineralization processes to supply plant-avail-
able N (Gregorich et al. 2006; Thomas et al. 2016b).

Although some scientists have found PPNT to be a
good predictor of potential corn yield and N uptake
(Nyiraneza et al. 2009), others attempted to predict SNS
and N fertilizer recommendations for grain corn with
soil-N tests that extract biologically active organic-N
fractions (Sharifi et al. 2007a; Nyiraneza et al. 2012).
Nyiraneza et al. (2012) reported that UV absorbance of a
0.01 mol·L−1 NaHCO3 extract at 205 nm, and pool I plus
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PPNT were the most promising N availability indicators
for grain corn (0.28 ≤ r ≤ 0.62) across 25 sites in cold
humid temperate regions of Canada. They managed to
improve the predictions by grouping the soils based on
soil texture. Pool I alone or combined with PPNT
were recommended as reliable predictors of available
soil N due to their strong correlation with plant N
uptake (R2 ≥ 0.42) in some studies (Sharifi et al. 2009).
Particulate organic matter C and POMN were also
reported to be reliable indicators of soil mineralizable
N accounting for 30%–70% of the variation in plant N
uptake (Luce et al. 2011; Luce et al. 2014; Thomas et al.
2016b). These indicators have been also used to predict
soil-available N in soils that receive high organic matter
inputs (Sharifi et al. 2008). Water-extractable C and N
have recently received attention for their ability to
predict SNS to various crops (Thomas et al. 2016a;
Curtin et al. 2017). Yet, the above promising N availabil-
ity indicators have not been evaluated for grain corn in
Ontario.

In this study, grain corn N response trials were
conducted in southern and eastern Ontario over two
growing seasons, for a total of 13 site-years. The objec-
tives were to evaluate the relationship between the
soil-N tests, and relative yield (RY) and the maximum
economic rate of nitrogen (MERN) to select the most
appropriate soil-N test for grain corn in the major corn
growing regions of Ontario. We hypothesized that
soil-N tests that include a measure of readily mineraliz-
able organic-N would more accurately predict N fertilizer
recommendations for grain corn compared with PPNT or
the corn N calculator.

Materials and Methods
Field sites

The study was conducted in 2013 and 2014 on 13 farm-
ers’ fields and (or) university research farms in southern
and eastern Ontario, Canada. Site descriptions and
cropping history are presented in Table 1. All long-term
sites were managed using conventional tillage with
synthetic N fertilizers except for the trial at the Trent
University Sustainable Agriculture Experimental Farm,
which was under organic management for 5 yr prior to
establishing the trial. The average growing season
air temperature ranged from 15 to 17 °C in 2013 and
14 to 17 °C in 2014, whereas the growing season rainfall
ranged from 492 to 748 mm in 2013 and 381 to 585 mm
in 2014 (Table 1). The 30 yr mean growing season
(May–October) temperature and precipitation for
southwestern Ontario are 16 °C and 530 mm, respec-
tively. Soil physical and chemical characteristics are
summarized in Table 2.

Experimental design
At each field site, four to five N fertilizer rates were

applied to plots arranged in a randomized complete
block design with four replicates. Plot size was typically

32 m × 16 m. Rates of N fertilizer ranged from 0 to
222 kg N·ha−1, and the N source was urea–ammonium-
nitrate or urea (Table 2). The majority of N fertilizers
were applied pre-plant, but some sites received “Starter
N” through the planter (Table 2). Sites were planted to
grain corn (recommended variety and seeding rate for
each site according to guidelines provided by the
Ontario Ministry of Agriculture, Food and Rural Affairs
(OMAFRA) or a regional crop advisor) in May to early
June of each year with 76.2 cm inter-row spacing.
Phosphorous and potassium fertilizers were applied
at planting according to soil test and OMAFRA
recommendations.

Soil sampling and analyses
Eight soil cores (2.5 cm diameter, 30 cm depth) were

collected from each replicated zero-N plot with a soil
probe 5 to 10 d prior to planting and fertilizer applica-
tion. Soil samples were thoroughly mixed and then di-
vided into two subsamples. One subsample was kept
moist and stored at 4 °C, whereas the other was air-dried
and sieved (<2 mm) until analysis. Soil moisture content
was determined by drying a field moist subsample at
105 °C for 24 h. Soil pH was determined in a 1:2 soil to
deionized water suspension. Particle size distribution
was determined following organic matter removal by
the pipette method (Gee and Bauder 1986).

Eight laboratory biological and chemical soil test
indicators of the SNS were evaluated (Table 3). Soil min-
eral N was extracted from field moist soil with
2 mol·L−1 KCl (1:5 soil to extractant ratio), and the NO3-
N and ammonium-N (NH4-N) concentrations were deter-
mined by colorimetry using the modified indophenol
blue technique (Sims et al. 1995) with an Epoch micro-
plate spectrophotometer (BioTek Instruments Inc.,
Winooski, VT, USA). The soil mineral N at planting is
referred to as SMNp. The KCl-extractable NO3-N in spring
soil samples is referred to as PPNT. Water extractions
were conducted by shaking 4 g air-dried soil in 20 mL of
room temperature deionized water for 60 min (Curtin
et al. 2006; Chantigny et al. 2009). Water extracts were
then centrifuged at 4500g for 20 min, and the superna-
tant was decanted and analyzed for WEOC using a
Schimadzu TOC-VCPH (Schimadzu, Kyoto, Japan) and ana-
lyzed for water-extractable mineral N (WEMN) using the
modified indophenol blue method as described above.
Total water-extractable N (WEN) was determined using
the persulfate oxidation method (Cabrera and Beare
1993). The WEON was calculated by subtracting the
WEMN from the WEN. For POMC and POMN, 25 g of
air-dried soil was dispersed in 100 mL of a 5 g·L−1 sodium
hexametaphosphate solution in a 250 mL nalgene bottle
by shaking for 16 h, and then dispersed soil was passed
through a 53 μm sieve (Gregorich et al. 2003). The
retained sand and macro-organic matter were air-dried
overnight and then oven-dried at 50 °C for 24 h. The con-
centration of POMC, POMN, organic C, and total N of
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Table 1. Summary of the selected experimental sites’ description and management history in Ontario.

Site location

Latitude and
longitude
(°N°W)

Growing
season
rainfalla

(mm)

Mean growing
season air
temperature (°C)

Crop heat
unit (CHU)b

Previous
crop

Rates applied
(kg N·ha−1)

Starter N
applied
(kg N·ha−1) N source Tillage

2013
Ilderton 43°11′, 81°30′ 748 NA 2900 Winter wheat 0,56,112,168,224 33.6 UAN NA
Hart 43°13′, 80°82′ 492 16.9 2890 Soybean 0,56,112,168,224 28 UAN No till
Rutherford 43°13′, 80°82′ 492 16.9 2890 Grain corn 0,56,112,168,224 4.5 UAN Fall moldboard plow,

spring cultivate
Moorefield 43°75′, 80°77′ 670 15.3 2700 Winter wheat 0,56,112,168,224 0 UAN Fall chisel plow,

spring cultivate 2×
Bornholm 43°52′, 81°13′ 720 NA 2820 Winter wheat 0,56,112,168,224 0 UAN Fall coulter harrow,

spring coulter
harrow

OMAFRA–Elora 43°65′, 80°39′ 701 15.3 2680 Soybean 0,56,112,168,224 12.3 UAN Fall chisel plow,
spring cultipacked

2014
Pinkerton 44°13′, 81°17′ 395 17.0 2700 Soybean 0,94,134,202 0 UAN NA
Teeswater 44°10′, 81°22′ 395 17.0 2700 Soybean 0,94,134,202 0 UAN Strip-tillage
U of G–Elora 43°38′, 80°23′ 410 14.0 2680 Grain corn 0,28,57,115,188 30 UAN Fall moldboard plow
AAFC–Woodslee 42°12′, 82°44′ 525 16.5 3560 Grain corn 0,50,100,150,200 28.4 UAN Disk, triple K

cultivation,
harogated and
packed

U of G–Ridgetown 42°27′, 81°53′ 525 16.5 3340 Soybean 0,50,100,150 11 UAN NA
Trent Experimental
Farm

44°21′, 78°16′ 463 15.0 2500 Buckwheat 0,30,60,120,180 0 Urea Disc and harrow

AAFC–Ottawa 45°22′, 75°43′ 381 16.0 2900 Grain corn 0,50,100,150 0 Urea Fall moldboard plow,
spring cultivate

Note: UAN, urea ammonium nitrate fertilizer (28% N); NA, not applicable.
aFrom May to October: http://climate.weather.gc.ca/prodsservs/cdnclimatesummarye.html.
bOMAFRA factsheet: crop heat units for corn and other warm season crops in Ontario.
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each soil was determined following carbonate removal
using a CNS analyzer (VarioMAX cube, Elementar
Analysensysteme GmbH, Hanau, Germany). Pool I, the
flush of readily mineralizable N at the second leaching
event 2 wk after the initial time 0 leaching, was
measured as described by Thomas et al. (2015).

Corn yield and N uptake

Grain yield was measured in each plot either by hand
harvesting an area of at least 6 m2 (two corn rows, 8 m
in length) or machine harvesting using a plot or com-
mercial scale combine. Grain yields were reported at an
adjusted moisture content of 155 g·kg−1. Corn N uptake
was measured by harvesting 10 random plants per plot
at the same time as harvest. Harvested corn plants
were partitioned into kernels, cobs, and stover, and
then oven-dried at 60 °C until constant dry mass was
achieved. Tissue samples were finely ground to pass a
1 mm sieve, and the N concentrations were determined
by dry combustion with a CNS analyzer (VarioMAX
Cube, Elementar Analysensysteme GmbH, Hanau,
Germany).

Calculations

The corn N uptake in the zero-N treatment (PNU0N)
was calculated as the product of tissue N concentration
and dry matter yield for each replicated plot minus any
fertilizer N applied at planting as starter N.

Relative yield for each replicate was calculated as
follows (Sharifi et al. 2007b):

RY =
�

GY0N

GYoptimal‐N

�
× 100ð1Þ

where GY0N is the grain yield from the plot receiving no
N fertilizer, and GYoptimal-N is the grain yield from the
highest yielding N fertilizer rate. To estimate the SNS,
at corn harvest, soil samples were collected from the
zero-N rate treatments (0–30 cm depth) as described
above and stored at 4 °C until analysis. The composite
soil samples collected at harvest were analyzed for min-
eral N (SMNh) as described above. The SNS was calculated
as sum of the PNU0N and SMNh with an assumed bulk
density of 1.1 Mg·m−3.

The corn N response (Dahnke and Olson 1990) for each
site was calculated using a quadratic regression equation
(McGonigle et al. 1996; Rashid et al. 2004):

Y = a + bN − cN2ð2Þ

where Y is the corn grain yield (kg·ha−1); N is the fertilizer
N applied (kg N·ha−1).

The derivative of the quadratic equation was used to
determine MERN:

dY=dN = b–ð2cNÞð3Þ

where dY/dN is the price ratio of 1 kg fertilizer to 1 kg of
grain corn defined as R below to solve for the MERN:

R = b–ð2cNÞand therefore MERN = ðb–RÞ=2cð4Þ

Table 2. Soil physical and chemical characteristics for 13 selected experimental sites in Ontario, Canada (n= 4).

Site location Soil series

Soil texturea

pHb
Organic Cc

(g·kg−1)
Total N
(g·kg−1) C/N ratio

Clay
(g·kg−1)

Silt
(g·kg−1)

Sand
(g·kg−1)

2013
Ilderton London loam 194 438 367 7.7 20.7 1.60 13.0
Hart London loam 192 320 431 7.7 23.0 2.10 11.0
Rutherford Perth silt loam 112 373 487 7.6 16.1 1.60 10.0
Moorefield Perth loam 225 546 228 7.8 21.1 1.80 11.7
Bornholm Perth clay loamd 274 584 141 6.8 23.6 1.80 13.0
OMAFRA–Elora Woolwich silt loamd 87 470 442 8.0 19.2 1.70 11.3

2014
Pinkerton Teeswater silt loam 155 257 588 7.4 29.0 2.60 11.1
Teeswater Teeswater silt loam 168 353 479 7.9 35.0 2.80 12.5
U of G–Elora Woolwich silt loam 200 480 320 7.8 24.0 2.10 11.5
AAFC–Woodslee Brookston clay loam 406 336 258 6.6 19.0 2.20 8.60
U of G–Ridgetown Brookston clay loam 440 250 310 7.8 22.0 1.90 11.5
Trent Experimental
Farm

Otonabee loam 155 136 709 8.1 29.0 2.30 12.6

AAFC–Ottawa Brandon clay loam 350 270 380 6.8 14.0 1.30 10.8

aPipette method (Gee and Bauder 1986).
bpH in water (1:2 soil/water ratio, Hendershot et al. 2008).
cDry Combustion (VarioMAX Cube, Elementar Analysensysteme GmbH, Hanau, Germany).
dSite was tile drained.
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R was determined using the 2014 grain corn and N fertil-
izer prices: corn price = $0.18·kg−1, N fertilizer price =
$1.38·kg−1. The maximum economic yield (MEY) was
then calculated using the MERN for each site:

MEY = a + bðMERNÞ–cðMERNÞ2ð5Þ

Statistical analyses

All statistical analyses were performed using SAS
version 9.2 (SAS Institute Inc. 2011). Data were first tested
for normality using the Kolmogorov–Smirnov test and
then for outliers. Sites were grouped based on clay con-
tent into two groups of ≤240 and >240 g clay·kg−1. The
field-based indices of N supply, soil characteristics, and
the soil-N test mean values were correlated with RY and
MERN using PROC CORR. Correlations were assessed by
Pearson’s correlation for the parameters with normal
distribution or Spearman’s rank correlation where
parameters did not have a normal distribution.
Regression analysis was used to determine the associa-
tions between the laboratory-based measures of N avail-
ability and RY to select the best predictive soil-N test.
Stepwise regression (probability of F to enter the
model ≤0.05, probability of F to remove from the
model ≤0.10) were used in an attempt to improve
the relationship between the selected laboratory-based
measures of N availability and RY by including soil
characteristics.

Results
Soil-N tests

Soil organic C and total N ranged from 14.0 to 35.0 g
C·kg−1 and 1.30 to 2.80 g N·kg−1, respectively (Table 2).
The SMNp and PPNT values represented 2.8%–18.8% and
5.5%–19% of the total SNS across both years, respectively
(Table 3). The WEON concentrations varied among sites,
ranging from 26 to 48 mg N·kg−1, representing an aver-
age of 1.6% the total soil N. The WEN ranged from 29 to
65 mg N·kg−1 with an average of 76% in the organic-N
form. The WEOC values averaged about 1% of the soil
organic C, ranging from 156 to 403 mg C·kg−1. The
WEOC/WEON ratio was between 5.6:1 and 12.0:1, which
is on average 70% of the soil C/N ratio (8.6:1–13.0:1). The
POMC ranged from 684 to 6758 mg C·kg−1, and
the POMN ranged from 49.5 to 266 mg N·kg−1. On aver-
age, POMC and POMN concentrations were 12% of the
soil organic C and 6.0% of the soil total N, respectively.
The POMC/POMN ratios varied (7.3–33.2), averaging
1.8 times the soil C/N ratio. Pool I ranged from 24 to
60 mg N·kg−1 and represented 1.3%–3% of the total soil
N (Table 3). The pool I values represented 56%–197%,
and 42%–497% of the SNS in 2013 and 2014, respectively.
Soil mineral N at harvest (SMNh) values varied and
ranged from 7.2 to 75 kg N·ha−1 (average 24 kg N·ha−1)
over the 13 site-years (Table 4).

Corn yield and total N uptake
Corn grain yields ranged from 3.5 to 9.0 Mg·ha−1 in the

zero-N plots and 5.6 to 12.8 Mg·ha−1 in the non-limiting N
rate plots, with each site exhibiting a strong quadratic
response to fertilizer N application (R2 = 0.93–0.99,
Table 5). Over both growing seasons, RY ranged from
42% ± 4.9% to 101% ± 7.9%. The MERN values ranged from
103 to 257 kg N·ha−1. The PNU0N ranged from 67 to
126 kg N·ha−1 in 2013 and from 50 to 194 kg N·ha−1 in
2014 (Table 4).

Soil test correlation
A strong relationship between field-based indices of N

availability (i.e., MERN, grain corn yield in zero-N
fertilized plots, PNU, and SNS) and RY was observed
(Table 6; r= 0.60–0.78). Although the relationships were
improved when sites with clay >240 g·kg−1 were
excluded (Table 6), the correlation result after grouping
based on clay content was not reliable for sites with
clay >240 g·kg−1 due to the low number of sites (n = 5).
The soil N availability indicators were correlated to RY
and MERN (Table 6). Only the indicators that had a sig-
nificant correlation with RY were considered as reliable
soil N tests, and their relationship with MERN was then
assessed for fertilizer recommendations. The significant
correlation between an indicator and RY confirms that
variation in corn RY as a result of N availability in soil
can be predicted by the indicator. Relative yield was
positively correlated to only WEMN (r = 0.74) among
tested indicators (Table 6 and Fig. 1). Among the evalu-
ated laboratory-based indices of N availability only
WEMN was significantly correlated with both RY
and MERN (r = −0.56). A wider range of WEMN, RY, and
MERN were observed in sites with clay ≤240 g·kg−1 than
sites with greater clay content. Inclusion of soil proper-
ties in the relationship between WEMN and RY or
MERN using stepwise regression did not result in any
improvement (data not shown).

Discussion
Soil mineral N at planting and harvest is highly variable
across Ontario soils

The wide range of potentially mineralizable N
observed in the soils from the selected field sites was
probably due to interactions among the broad range of
soil properties, cropping history and differences in rain-
fall and temperature across southern and eastern
Ontario. Using an assumed bulk density for all sites
(1.1 Mg·m−3), the SMNp in this study is estimated to have
contributed similar amounts to the SNS as observed in
different studies for grain corn in eastern Ontario and
Quebec that showed the mineral N at planting repre-
sented 16% to 27% of the SNS (Ma et al. 2007; Wu et al.
2008; Nyiraneza et al. 2009). This suggests that more
than 70% of corn N uptake may derive from soil
organic-N mineralization during the growing season in
non-fertilized soils.
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Table 3. Mean values (n= 4) for soil nitrogen (N) availability indicators for 13 selected experimental sites in Ontario, Canada.

Site location
SMNp

(mg·kg−1)
PPNT
(mg·kg−1)

Pool I
(mg·kg−1)

WEMN
(mg·kg−1)

WEON
(mg·kg−1)

WEN
(mg·kg−1)

WEOC
(mg·kg−1)

WEOC/
WEON

POMC
(mg·kg−1)

POMN
(mg·kg−1)

POMC/POMN
(mg·kg−1)

2013
Ilderton 9.80 (1.5)a 6.10 (1.2) 36 (10) 11.8 (5.5) 26.8 (9.5) 38.1 (6.2) 204 (8.5) 8.9 (1.7) 3325 (261) 12.7 (8.2) 24.2 (5.5)
Hart 8.16 (2.3) 4.98 (0.61) 31 (16) 9.34 (2.0) 25.9 (6.2) 35.2 (5.2) 246 (4.1) 9.0 (0.91) 2351 (600) 142 (45) 17.1 (4.4)
Rutherford 9.12 (2.2) 4.30 (0.79) 24 (3.8) 8.33 (1.0) 26.7 (2.1) 35.0 (1.5) 185 (4.9) 7.0 (0.14) 1975 (400) 111 (35) 18.4 (4.1)
Moorefield 12.2 (4.3) 8.60 (2.1) 34 (3.0) 10.5 (2.5) 31.6 (3.4) 42.2 (3.8) 188 (5.2) 6.0 (0.41) 3190 (1440) 11.6 (4.6) 27.6 (4.4)
Bornholm 11.0 (1.5) 8.10 (0.49) 53 (4.2) 8.82 (2.1) 32.5 (2.5) 41.3 (3.2) 312 (7.1) 9.8 (0.51) 1910 (737) 8.42 (3.0) 22.7 (2.8)
OMAFRA–Elora 10.1 (1.2) 8.20 (1.3) 35 (4.0) 8.85 (1.4) 28.0 (1.5) 36.9 (14) 192 (3.6) 7.3 (0.24) 2488 (237) 60.2 (46) 33.2 (14)

2014
Pinkerton 21 (3.9) 19.7 (3.9) 43 (13) 16.1 (0.37) 48.7 (2.8) 64.7 (4.4) 306 (11) 6.4 (0.5) 3305 (183) 216 (13) 15.4 (1.6)
Teeswater 11.2 (1.7) 9.8 (1.5) 37.8 (12) 14.6 (0.24) 41.4 (2.1) 56.1 (2.7) 230 (5.5) 5.6 (0.6) 6758 (268) 266 (13) 25.6 (4.6)
U of G–Elora 10.2 (1.2) 8.9 (1.1) 30.6 (10.6) 3.58 (0.14) 26.9 (3.3) 30.3 (4.2) 209 (8.3) 7.8 (0.6) 3817 (292) 146 (17) 29.3 (14)
AFFC–Woodslee 8.7 (2.6) 7.0 (3.0) 59.7 (3.1) 3.8 (0.17) 34.7 (8.6) 38.6 (9.2) 403 (11) 12 (3.6) 1247 (146) 125 (8.3) 9.67 (2.1)
U of G–Ridgetown 15.7 (5.5) 15.4 (6.4) 41.9 (3.9) 11.4 (0.78) 29.7 (11.1) 37.5 (8.1) 156 (25.6) 6.8 (3.3) 3100 (759) 159 (43) 20.8 (4.9)
Trent Experimental

Farm
13.9 (8.6) 12.3 (10) 30.3 (8.9) 9.2 (0.35) 33.5 (9.4) 42.7 (10.8) 171 (2.5) 6.5 (2.6) 5632 (143) 175 (2.8) 32.1 (1.4)

AFFC–Ottawa 10.9 (1.5) 10.9 (1.6) 39.2 (13.3) 8.3 (0.39) 27.7 (2.8) 36.1 (4.4) 186 (9.7) 6.8 (1.4) 1363 (87) 133 (3.3) 10.4 (3.4)

Mean (n= 52) 9.7 8.8 38 10.6 32.16 42.3 238.8 7.7 2644 119 23
SD (n= 52) 4.3 3.7 11.6 4.3 8.38 11.3 68.5 2.4 2306 91 9.8

Note: SMNp, soil mineral-N at 0–30 cm soil depth prior to planting (2 mol L−1 KCl-extractable NH4-N plus NO3-N); PPNT, extractable NO3-N with 2 mol·L−1 KCl at 0–30 cm
soil depth prior to planting; WEMN, water-extractable mineral-N; WEON, water-extractable organic-N; WEN, water-extractable N; WEOC, water-extractable organic-C;
WEOC/WEON, water-extractable organic C to N ratio; POMC, particulate organic matter C; POMN, particulate organic matter N; POMC/POMN, particulate organic matter
C to N ratio.

aNumbers in parentheses are standard deviations (SD).
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A wide range in SMNh was also observed, but there was
no consistent pattern across sites. The variation in SMNh

has been related to differences in precipitation or irriga-
tion during the growing season (Jokela and Randall
1989), soil properties, and management practices

(Rasouli et al. 2014). Similar to SMNp, the majority of
SMNh was NO3-N. In Ontario, between 1981 and 2006, an
average of 57 kg NO3-N·ha

−1 remained in agricultural
soils at harvest (De Jong et al. 2009). High residual
NO3-N at harvest indicates asynchrony between SNS and

Table 4. Mean values (n= 4) for field-based indicators of soil nitrogen (N) supply for 13 selected experimental sites in
Ontario in 2013 and 2014.

Site
Zero-N yield
(Mg·ha−1)

Full N yield
(Mg·ha−1)

Relative
yield (%)

PNU0N

(kg·ha−1)
Soil N supply
(kg·ha−1)

SMNh

(kg·ha−1)

2013
Ilderton 6.4 (1.6)a 12 (1.2) 64 (15) 67 (12) 82 (12) 15 (1.2)
Hart 4.3 (0.5) 11 (1.0) 56 (5.0) 98 (24) 111 (22) 13 (2.7)
Rutherford 6.7 (1.1) 13 (0.9) 55 (6.9) 116 (29) 127 (29) 11 (0.5)
Moorefield 6.4 (0.9) 11 (0.8) 69 (7.0) 126 (13) 138 (14) 12 (1.1)
Bornholm 6.8 (0.8) 12 (0.2) 60 (7.2) 94 (14) 111 (17) 17 (2.3)
OMAFRA–Elora 7.0 (0.5) 11 (0.8) 64 (2.2) 88 (20) 102 (21) 15 (2.7)

2014
Pinkerton 9.0 (0.5) 11 (0.5) 101 (7.9) 194 (7.3) 269 (23) 75 (18)
Teeswater 7.2 (0.5) 11 (0.3) 70 (3.4) 177 (9.0) 203 (11) 26 (3.8)
U of G–Elora 4.7 (0.5) 12 (0.6) 42 (4.9) 61 (3.5) 98 (9.2) 38 (5.3)
AAFC–Woodslee 4.5 (0.4) 10 (0.8) 51 (15) 50 (6.2) 81 (13) 31 (5.7)
U of G–Ridgetown 8.2 (1.0) 12 (1.8) 55 (13) 99 (30) 114 (26) 16 (6.3)
Trent Experimental Farm 3.7 (1.1) 5.6 (0.4) 65 (17) 69 (18) 87 (15) 18 (8.3)
AFFC–Ottawa 3.5 (1.4) 7.1 (0.9) 52 (24) 51 (15) 58 (14) 7.2 (1.4)

Mean (n= 52) 6.5 11 58 97 122 24
SD (n= 52) 1.5 1.0 13 7.3 15 19

Note: Relative yield= [(GY0N/GYoptimal-N) × 100]; GY, grain yield; PNU0N, corn N uptake in zero-N plots; soil N
supply= PNU0N+ SMNh; SMNh, soil mineral-N at harvest.

aNumbers in parentheses are standard deviations (SD).

Table 5. Recommended rate of nitrogen (N) fertilizer for selected experimental sites in 2013 and 2014 using
quadratic equations based on corn yield response to fertilizer N rates, and the recommended rate based on the
corn N calculator.

Site Quadratic equationa R2
MEY
(Mg·ha−1)

MERN
(kg N·ha−1)

Corn N calculator
(kg N·ha−1)

2013
Ilderton y=−0.15x2+ 63.7x+ 4472 0.99 11.3 191 168
Hart y=−0.12x2+ 63.4x+ 2643 0.98 11.1 238 145
Rutherford y=−0.07x2+ 42.9x+ 6475 0.98 13.1 257 186
Moorefield y=−0.11x2+ 42.7x+ 6390 0.99 10.5 162 149
Bornholm y=−0.13x2+ 49.7x+ 6775 0.99 11.6 166 177
OMAFRA–Elora y=−0.14x2+ 51.8x+ 6374 0.98 11.2 160 125

2014
Pinkerton y= 0.07x2+ 23.2x+ 9027 0.99 10.7 103 121
Teeswater y=−0.14x2+ 48.9x+ 7191 0.98 11.3 145 128
U of G–Elora y=−0.18x2+ 80.1x+ 2874 0.99 11.8 203 153
AAFC–Woodslee y=−0.14x2+ 62.8x+ 2824 0.98 9.77 196 196
U of G–Ridgetown y= 0.03x2+ 21.2x+ 7995 0.93 11.2 221 212
Trent Experimental

Farm
y=−0.03x2+ 15x+ 3760 0.98 5.30 145 109

AFFC–Ottawa y=−0.07x2+ 34.7x+ 3527 0.98 7.40 182 134

Note: MEY, maximum economic yield (Mg·ha−1); MERN, maximum economic rate of N (kg·ha−1).
aQuadratic equation based on the response of corn grain yield to fertilizer N rate, where y is the grain yield in

kg·ha−1, and x is the N fertilizer rate in kg·ha−1.
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crop N demand, which may result in N losses over the
fall, winter, and spring months (Power et al. 1998;
Dinnes et al. 2002; Whalen et al. 2019). Ultimately,
limiting the amount of residual soil NO3-N at harvest
minimizes potential N losses to the surrounding environ-
ment during the non-growing season (Rasouli et al. 2014).

With the relatively low price of N fertilizer in 2014, it
was economical to apply higher rates of N for small gains
in grain yield. The MERN values were comparable to the
range reported by OMAFRA (107–237 kg N·ha−1) for corn
response trials in southwestern Ontario in 2013
(GOCorn.net 2010). Other factors that impact N fertilizer
recommendations include cropping history (Luce et al.
2011), soil properties (Dharmakeerthi et al. 2005;
Subbarao et al. 2006), and soil moisture and temperature

(Dessureault-Rompré et al. 2011). For example, in this
study, Pinkerton and Teeswater sites had high soil organic
C and total N, which probably contributed to a greater SNS
(202–269 kg N·ha−1) compared with other field sites. Soils
with greater soil organic C concentration have been shown
to generally have a greater soil water-holding capacity
(Manns et al. 2016), which may have also increased C and
N mineralization rates and reduced the likelihood that
water stress would limit crop performance.

Labile organic carbon and nitrogen fractions are used for
interpretation of variations in nitrogen availability to corn

The WEOC concentrations were comparable to
those reported for soils cropped to corn and corn–
soybean (Glycine max L.) rotations in Ontario, Canada

Table 6. Correlation coefficients (r) of soil nitrogen (N) availability indicators with relative yield (RY) and
maximum economic rate of N (MERN) at 13 selected experimental sites in Ontario in 2013 and 2014.

Parameter
Correlation
method

Full data set
(n= 13a)

Clay≤ 240 g·kg−1

(n= 8b)
Clay> 240 g·kg−1

(n= 5)

RY MERN RY MERN RY MERN

MERN Pearson −0.698** 1.00 −0.751* 1.00 −0.585 1.00
MEY Spearman −0.363 0.540 −0.714* 0.898** −0.100 −0.600
Zero N Yield Pearson 0.600* −0.397 0.764* −0.415 0.006 −0.804
PNU0N Pearson 0.777** −0.458 0.832* −0.478 0.518 −0.880*
SNS Spearman 0.692** −0.526 0.833* −0.491 0.700 −0.700
Clay Pearson −0.324 −0.013 −0.255 0.083 −0.722 0.353
Sand Pearson 0.397 −0.201 0.525 −0.478 0.040 0.281
Silt Pearson −0.217 0.187 −0.487 0.383 0.387 −0.359
pH Spearman 0.080 −0.103 0.048 −0.241 0.527 −0.949*
Organic C Pearson 0.404 −0.578* 0.483 −0.695 −0.106 −0.615
Total N Pearson 0.352 −0.468 0.592 −0.646 −0.765 0.172
C/N ratio Pearson 0.203 −0.414 −0.059 −0.484 0.661 −0.862
SMNp Spearman 0.533 −0.799** 0.866** −0.787* −0.068 −0.623
PPNT Spearman 0.357 −0.727** 0.825* −0.888** −0.123 −0.423
Corn N Calculator Pearson 0.476 0.656* −0.500 −0.314 0.816 0.725
Pool I Pearson 0.114 −0.408 0.726* −0.812* −0.607 0.481
Pool I+SMNp Pearson 0.301 −0.616* 0.879** −0.878** −0.680 −0.065
WEMN Pearson 0.743** −0.559* 0.753* −0.589 0.678 −0.945*
WEON Spearman 0.407 −0.515 0.667 −0.611 −0.500 0.400
WEN Pearson 0.562* −0.375 0.847** −0.514 −0.746 0.674
WEOC Spearman −0.170 0.041 0.333 −0.228 −0.800 0.300
WEOC/N Pearson −0.551 0.399 −0.574 0.604 −0.765 0.715
POMC Pearson 0.172 −0.359 0.255 −0.515 −0.315 −0.244
POMN Pearson 0.273 −0.294 0.540 −0.473 −0.453 0.133
POMC/N Pearson −0.043 −0.242 −0.327 −0.235 0.515 −0.911*
SMNh Spearman −0.133 −0.256 0.286 −0.595 −0.800 0.300

Note: MEY, maximum economic yield; PNU0N, corn total N uptake in zero-N plots; SNS, soil N supply
(PNU0N+ SMNh); SMNp, soil mineral-N at 0–30 cm soil depth prior to planting; PPNT, extractable NO3-N with
2 mol·L−1 KCl at 0–30 cm soil depth prior to planting; WEMN, water-extractable mineral-N; WEON,
water-extractable mineral-N; WEN, water-extractable N; WEOC, water-extractable organic-C; WEOC/N,
water-extractable organic C to N ratio; SMNh, soil mineral-N at harvest; POMC, particulate organic matter C;
POMN, particulate organic matter N; POMC/N, particulate organic matter C to N ratio; SMNh, soil mineral-N at
harvest. Correlation coefficients are presented for full data set, clay≤ 240 g·kg−1 and clay> 240 g·kg−1 soil
groups. *, P< 0.05; **, P< 0.01.

aNumbers of sites for SMNh was 12 due to removal of one outlier.
bNumbers of sites for SMNh was 7 due to removal of one outlier.
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(Gregorich et al. 2003), and to soil under a corn–
soybean–wheat (Triticum aestivum L.) rotation near
Quebec City, QC, Canada (Thomas et al. 2016a). The mean
proportion of WEON to total N (1.6%) was smaller than
range (2.6%–8.7 %) reported for 30 New Zealand soils
(Curtin et al. 2006); however, the mean WEOC to WEON
ratio (7.7) was numerically lower than some previous
studies (Gregorich et al. 2003; Curtin et al. 2006; Haney
et al. 2012), or similar to sandy loam soils (6.7 ± 1.0) fertil-
ized with calcium–ammonium-nitrate fertilizer in
Quebec (Thomas et al. 2016b). The high proportion of
total N as WEON indicates that these soils have a high
supply of soluble organic-N compounds, containing
biologically available forms of organic-N (Herbert and
Bertsch 1995) and therefore may be an important N
source for soil organisms and field crops at the selected
field sites when they are not fertilized or are under-
fertilized. Furthermore, the lower WEOC/WEON ratio
may be the result of long-term inorganic-N fertilization
without supplemental organic amendment application
leading to mining of soil C and production of N rich
water-soluble microbial byproducts.

The wide range of POMC and POMN values may be
attributed to the differences in cropping history (Griffin
and Porter 2004; Haynes 2005), or soil properties such
as soil texture, given that previous work showed a silty

clay soil had 84% greater POMC concentrations than a
sandy loam soils in Quebec, Canada (Thomas et al.
2016a). The POMN values were lowest where fields were
under continuous corn (e.g., AAFC-Ottawa, Woodslee
and Elora Research Station). The proportion of total N
as POMN was within the range reported in the literature
(Gregorich et al. 2006; Sharifi et al. 2007a), and the high
C/N ratio of this fraction is a characteristic of soils
receiving plant residues as the sole source of organic
residue (Luce et al. 2011; Sequeira and Alley 2011). The
wide range in pool I to SNS ratio, expressed as a percent-
age, indicates that the sites used in this study had
contrasting amounts of readily mineralizable N.

Soil clay content decreases nitrogen availability to corn
Soils with clay content >240 g·kg−1 showed weaker

relationships between the soil-N tests and RY than soils
with clay content ≤240 g·kg−1. These results are
consistent with other work that has found clay content
explained a substantial proportion of the variation in
soil N mineralization (Dessureault-Rompré et al. 2011;
Nyiraneza et al. 2012; Villar et al. 2014). Soil mineral N
parameters have been related to potentially mineraliz-
able N (N0) in coarse-textured soils (>300 g sand·kg−1;
match with≤240 g clay·kg−1 in this study except for one
site) but not fine-textured soils (<300 g sand·kg−1; match
with >240 g clay·kg−1 in this study except for two sites),
whereas total N was related to N0 in fine-textured
soils (Nyiraneza et al. 2012). The higher C content in soils
with greater clay content can be attributed to the clay
particles physically protecting organic matter from
microbial decomposition through physio-chemical inter-
actions and formation of aggregates (Jenkinson 1988;
Angers et al. 1997; Six et al. 1999; Kölbl et al. 2006; Yoo
and Wander 2006; Chivenge et al. 2011; Nyiraneza et al.
2012). The clay particles also may limit NH4-N availability
for oxidation and nitrification reactions by binding
NH4-N at negatively charged exchanges sites (Drury et al.
1989; Nieder et al. 2011).

Water-extractable mineral nitrogen is a strong nitrogen
availability indicator for corn

Overall, laboratory-based soil-N tests that extracted
readily available forms of soil N (e.g., WEMN, SMNp,
and PPNT) outperformed the indices that were
associated with organic forms of N in soil (e.g., total N,
POMN, and WEON) or the C-based indicators
(e.g., WEOC, WEOC/N, and POMC/N). The organic-based
C and N indicators consist of a combination of readily
available and recalcitrant C and N, which may explain
their weaker performance.

The PPNT has already been calibrated for corn in
Ontario (OMAFRA 2009). Although some corn producers
are using precision agriculture practices; others shifted
towards using expected yields or visual observations of
N deficiency/sufficiency to help predict their fertilizer N
rates (O’Halloran et al. 2004). This is due to the large

Fig. 1. Relationship between (a) relative yield or
(b) maximum economic rate of nitrogen and water-
extractable mineral nitrogen. Regression is based on whole
data set (n= 13). *, P< 0.05; **, P< 0.01.

(a)

(b)
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in-field variability that requires a high number of soil
samples to be collected per hectare. Furthermore, the
PPNT has shown varying success as a predictor of N
availability as it is highly dependent on early-season
rainfall, which may result in substantial losses due to
leaching between the time of sample collection and start
of maximum crop N uptake (Sharifi et al. 2009).

The WEMN is the N form that is readily available in
the soil solution with a consistent positive correlation
with RY and negative correlation with MERN among soil
textures. The high importance of WEMN in supplying N
to grain corn can be attributed to long-term history of
N fertilization in this region. The WEMN represented an
average of 22% of the WEN, which is comparable to the
15% found for soils under unfertilized corn monoculture,
and the 20% for soils under a corn–soybean rotation
receiving mineral fertilizer (Gregorich et al. 2003).
Literature on WEN is rare as most studies report only
the organic portion (Curtin et al. 2006; Haney et al.
2012; Luce et al. 2014; Thomas et al. 2016a). The WEON
is hypothesized to contain mobile forms of bioavailable
organic-N that is the by-product of microbial decomposi-
tion of crop residues and organic amendments (Murphy
et al. 2000; Gregorich et al. 2003). The composition and,
therefore, biodegradability of the WEON pool is impor-
tant as this pool can also be composed of recalcitrant
compounds that are resistant to further microbial
decomposition (Smolander et al. 1995; Gregorich et al.
2003; Wander 2004).

It is apparent that the WEMN is a reliable index of the
SNS for corn in soils primarily fertilized with inorganic-
N sources. However, similar to PPNT, WEMN is highly
mobile in soil, may show great in-field variability and
can be affected by early season rainfall. Our findings
reject our hypothesis; therefore, labile organic-N
fractions were not significant predictors of soil-available
N to grain corn in Ontario. However, our findings
suggest that WEMN outperformed PPNT and corn
N calculator methods in predicting soil-available N
(Tables 5 and 6). Future research may focus on readily
available pools of N in the main soil texture classes to
develop regional-based indicators for N availability
under field conditions.

Conclusion
The mineral N in the soil at planting (SMNp) was

estimated to represent about 30% of the SNS available
to a corn crop during the growing season in Ontario.
Across the entire dataset, WEMN was the only indicator
that strongly correlated with both RY and MERN; indicat-
ing that in soils with a long-term history of N fertiliza-
tion, mineral forms of N in soil solution may be used to
make fertilizer N recommendations for corn in Ontario.
Using WEMN instead of KCl-extractable mineral N, can
reduce the cost of analysis while generating more reli-
able recommendations. However, the variability due to
the soil properties and weather conditions will still exist

and requires careful attention. Evidence from this
research suggests that grouping soils based on soil
texture improved predictions of corn-available N in the
soils with clay <240 g·kg−1. A multi-year calibration of
the WEMN soil test with more field sites and develop-
ment of a fertilizer recommendation table for this test
are recommended.
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