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Abstract
Soil texture, or the relative proportions of sand, silt, and clay, is a key soil attribute that influences many important physical,

chemical, and biological properties of soils. Digital soil mapping is increasingly used to predict soil texture; however, few
comparisons have been made between direct prediction of a texture class, and the indirect prediction of texture class by first
predicting sand, silt, and clay content, and subsequently converting the predictions to a texture class. We predicted soil texture
class for the 5–15 and 30–60 cm depth intervals of the Ottawa soil survey project using direct and indirect approaches which
yielded a similar overall accuracy (28–36%) and kappa (0.19–0.27). The predicted soil maps had a similar spatial distribution of
soil texture classes. We then used the Euclidean distance between the texture classes to adjust the model performance metrics,
revealing the indirect approach provided the better soil texture class prediction. When comparing the predictions, the 5–15
and 30–60 cm maps were in perfect agreement for 53% and 42% of the study area, respectively, and in both cases texture
class predictions were within one texture class for over 87% of the map area. For many studies, including legacy soil surveys,
texture class information is available, and particle size distribution data are generally lacking. This study confirms that direct
prediction of soil texture class performs almost equally with indirect prediction.

Key words: digital soil mapping, texture, particle size, additive log ratio, weighted metrics

Résumé
La texture du sol, c’est-à-dire les proportions relatives de sable, de limon et d’argile, est une caractéristique capitale qui

influe sur de nombreuses propriétés physiques, chimiques et biologiques du sol. On recourt de plus en plus à la cartographie
numérique des sols pour en prévoir la texture. Cependant, on a rarement comparé la méthode de prévision directe à la méthode
indirecte qui prévoit, en un premier temps, les proportions de sable, de limon et d’argile, puis convertit le résultat en classe
de texture. Les auteurs ont prévu la classe de texture des sols d’Ottawa échantillonnés à une profondeur de 5–15 cm et de
30–60 cm par les deux approches et ont obtenu des résultats similaires pour l’exactitude générale (28–36 %) et l’indice kappa
(0,19–0,27). Les cartes du sol illustraient une distribution spatiale semblable pour les classes de texture. Ensuite, les auteurs
ont utilisé la distance euclidienne entre les classes de texture pour ajuster les mesures de la performance du modèle et ont
constaté que l’approche indirecte donne les meilleures prévisions. Quand on compare celles-ci, les cartes pour les intervalles
de profondeur de 5–15 cm et de 30–60 cm s’accordent à la perfection avec 53 % et 42 % des sols examinés, respectivement. Dans
les deux cas, la classe de texture prévue se situe à moins d’une classe de distance pour au-delà de 87 % de la surface couverte
par la carte. Si la classe de texture est souvent connue, même pour les levés les plus anciens, les données sur la granulométrie
manquent habituellement. Cette étude confirme que la méthode de prévision directe de la texture du sol est presque aussi
efficace que la méthode de prévision indirecte. [Traduit par la Rédaction]

Mots-clés : cartographie numérique du sol, texture, granulométrie, rapport logarithmique additif, pondération des mesures

Introduction
Soil texture is a unit of classification which expresses the

proportions of the individual particle size fractions (PSFs;
sand, silt, and clay) and is the most well-known composition
in soil science (Odeh et al. 2003; Krzic et al. 2021). The rela-
tive proportions of the PSFs can be used to assign a texture
class based on any one of a multitude of soil texture classifica-

tion schemes (e.g., United States Department of Agriculture
(USDA; Soil Science Division Staff 2017), Canadian System
of Soil Classification (SCWG 1998), “Aisne” triangle (Jamagne
1967), etc.). Soil texture is of critical importance because it af-
fects countless physical, chemical, and biological properties
of soil (Liu et al. 2020). Given the importance of soil texture,
there is a need for high-resolution maps of PSFs or texture
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class, and digital soil mapping (DSM) has provided a mecha-
nism by which these products can be generated with relative
efficiency (Malone and Searle 2021a).

Soil texture is typically determined either by field estima-
tion of texture class, or by laboratory analysis by determin-
ing the proportions of sand, silt, and clay in a bulk sam-
ple, usually by hydrometer, pipette, or laser diffraction. As
such, in a DSM context, texture class can be predicted di-
rectly using a categorical modelling approach (Laborczi et al.
2016; Maynard and Levi 2017; Gomez et al. 2019) or inferred
by predicting sand, silt, and clay content using a regression
modelling approach (Poggio and Gimona 2017; Pahlavan-Rad
and Akbarimoghaddam 2018; Amirian-Chakan et al. 2019;
Liu et al. 2020). In some instances, a combination approach
has been used where sand, silt, and clay content were esti-
mated for observations, where only texture class is known
based on a priori information such as a subset of samples
(Dharumarajan and Hegde 2022; Richer-de-Forges et al. 2022)
or on texture class centroids (Levi 2017; Malone and Searle
2021a). The combination approach is particularly relevant
since soil texture class data are more abundant than particle
size data due to their ease of acquisition (Levi 2017).

Compositional data, such as the composition of sand,
silt, and clay which determines soil texture class, are
non-negative and with a constant sum (Odeh et al. 2003;
Greenacre 2021). Odeh et al. (2003) noted that modelling indi-
vidual components of composition was not meaningful, and
thus introduced the use of the additive log ratio (ALR) trans-
formation of PSF data prior to kriging and compared the ap-
proach to kriging of the untransformed PSF data and compo-
sitional kriging. They concluded that kriging of the untrans-
formed data resulted in many areas not summing to unity
(100%) and that the ALR transformation technique outper-
formed both compositional kriging and kriging of the un-
transformed data. Three log-ratio transformations have since
been extensively used for soil texture modelling applications:
the ALR, the isometric log ratio, and the centred log ra-
tio (Odeh et al. 2003; Wang et al. 2020; Zhang et al. 2020;
Poggio et al. 2021). These data transformations are flexible
in that they can be used to preprocess compositional data
before modelling. As such, with the formalization of DSM
(McBratney et al. 2003), these techniques are now commonly
coupled with machine learning. Geostatistical approaches to
mapping soil properties have limitations such as the assump-
tion of normally distributed residuals, challenges associated
with nonlinear relationships between dependent and inde-
pendent variables, reliance on the variogram that might not
adequately capture spatial heterogeneity, and computational
requirements for large data sets (Wadoux et al. 2020). Con-
versely, machine learning approaches are a data-driven ap-
proach and do not make assumptions about the distribu-
tion of the data and can identify complex nonlinear rela-
tionships between covariates and the dependent variable to
partition the data more effectively and improve predictions
(Thompson et al. 2012; Wadoux et al. 2020).

Laborczi et al. (2016) noted that texture class maps could
be derived using direct and indirect prediction and that these
could be evaluated using validation statistics. Despite many
studies that leverage DSM workflows to predict either PSFs

or texture classes, we only found one study that predicted
texture class both directly using a categorical modelling ap-
proach and indirectly by first modelling PSFs and then con-
verting these to texture class (Zhang et al. 2020). Further-
more, of those studies predicting texture classes directly, the
vast majority do not account for the magnitude of misallo-
cations when reporting validation statistics. This is problem-
atic since there appears to be a disconnect between the model
performance metrics used to evaluate regression models and
those used to evaluate classification models. The fundamen-
tal difference is that in a classification model, the results are
binary——either the prediction is correct, or it is incorrect——
whereas, in regression, performance metrics are typically cal-
culated as a departure from a reference line (e.g., regression
line), and hence inherently consider the magnitude of the
error. To address this concern, the taxonomic distance can
be used to adjust the accuracy assessment of soil class pre-
dictions to account for the magnitude of a misclassification
(Minasny and McBratney 2007; Rossiter et al. 2017). Laborczi
et al. (2016, 2019) adopted this approach to soil texture class
prediction by using the two-dimensional distance between
the centroids of the texture classes of the USDA texture tri-
angle to weight the accuracy metrics; however, this should
be viewed as a three-dimensional problem, with sand, silt,
and clay of the composition representing coordinates, allow-
ing the distance to be calculated between the centroids of the
texture classes using the Euclidean distance.

To address some of these gaps, this study does the follow-
ing:

1. highlights a workflow in which texture classes are pre-
dicted directly and indirectly using the random forest
model;

2. reviews and contrasts model performance for the two ap-
proaches;

3. provides techniques based on the Euclidean distance and
texture class separation for a quantitative comparison of
texture class maps derived from the two approaches;

4. and reinforces the importance of adjusting categorical
goodness of fit metrics for the magnitude of misalloca-
tions when evaluating model performance and reporting
to aid in interpretability.

Materials and methods

Study area
The study area is the City of Ottawa, Canada, which is ap-

proximately 280 000 ha and is flanked to the north by the Ot-
tawa River (Fig. 1). The study area is complex both in terms of
bedrock geology and surficial (quaternary) geology. Bedrock
is mainly of the Paleozoic era, dominated by dolomite and
limestone with smaller areas of shales and sandstones, with
the exception of a large Precambrian unit in the northwest of
the study area (Schut and Wilson 1987). The southwest por-
tion of the study area is characterized by the Smith Falls lime-
stone plain and dominated by thin till veneers over bedrock
(Schut and Wilson 1987). The areas east of the Smith Falls
plain were mostly all subjected to inundation from the Cham-
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Fig. 1. Ottawa study area with sample locations (triangles) over the digital elevation model. The inset map shows the Ot-
tawa study area (red polygon) in relation to Ontario, Canada. Topographic base map courtesy of the Ontario GeoHub, Ontario
Ministry of Natural Resources and Forestry. Map projection: NAD83, Lambert Conformal Conic. [Colour online]

plain Sea after deglaciation, resulting in a complex distri-
bution of clay plains, beach ridges, marine sand deposits,
and estuarine deposits, with large organic deposits then ac-
cumulating in low-lying areas. For a detailed description of
the soils and quaternary and bedrock geology in the study
area, see Schut and Wilson (1987), Bélanger et al. (1995), and
MacDonald and Harrison (1979).

Recent soil survey data collection efforts (2016–2019) com-
pleted by the Ontario Ministry of Agriculture, Food and Rural
Affairs to update the soil maps for the study area resulted
in the collection of 1622 soil profiles described and sam-
pled based on pedogenic horizons. Sample sites were selected
by a combination of conditioned Latin hypercube sampling
(Minasny and McBratney 2006), expert knowledge-based sam-
pling, and opportunistic sampling where sample sites were
not accessible and alternative sites had to be identified in the
field.

Soil analysis and data processing
Soil samples were analysed for particle size distribution

(sand, silt, and clay content) using the pipette method with
hydrogen peroxide pre-treatment for the removal of organic
matter (Sheldrick and Wang 1993). Soil profile data were har-
monized to the GlobalSoilMap.net standard depth intervals
of 0–5, 5–15, 15–30, 30–60, and 60–100 cm (Arrouays et al.

2014). The equal area quadratic spline approach was used to
harmonize each soil profile from the field-described horizon
thicknesses to the standard depth intervals using the “eas-
pline” function from the “ithir” package (Bishop et al. 1999;
Malone 2018). Two depths were then selected, 5–15 and 30–
60 cm, for modelling in this study. Shallow soils were encoun-
tered in the study area, resulting in only 1525 sites with parti-
cle size data at the 30–60 cm depth interval. Particle size dis-
tribution data are compositional (sand + silt + clay = 100%),
and since the spline procedure is applied independently to
each particle size, unity of the composition is not guaranteed.
For this reason, spline-estimated values of sand, silt, and clay
for each horizon were then normalized to a sum of 100 to
enforce the compositional nature of the data using eq. 1:

nPSF = PSF
sand + silt + clay

× 100(1)

where nPSF is the normalized PSF (sand, silt, or clay), PSF is
the spline-estimated particle size fraction (sand, silt, or clay),
and sand, silt, and clay are the spline-estimated values. The er-
ror introduced by the spline procedure was minimal. For the
5–15 cm depth interval, the sum of the spline-estimated PSFs
was outside the range of 99%–101% in only two cases. Simi-
larly, for the 30–60 cm depth, only 10 observations fell out-

Downloaded From: https://bioone.org/journals/Canadian-Journal-of-Soil-Science on 18 Apr 2024
Terms of Use: https://bioone.org/terms-of-use

http://dx.doi.org/10.1139/CJSS-2022-0040


Canadian Science Publishing

838 Can. J. Soil Sci. 102: 835–851 (2022) | dx.doi.org/10.1139/CJSS-2022-0040

side the range of 99%–102%. Once complete, the texture class,
as per the texture triangle of the Canadian System of Soil Clas-
sification (SCWG 1998), was assigned to each record using the
“oss.texture” function in the “onsoilsurvey” package in the R
programming language (R Core Team 2020; Saurette 2021).

Environmental covariates
A total of 64 continuous covariates and three categorical

covariates were considered for inclusion in the predictive
models (Supplementary Table S1). The continuous covariates
can be grouped into categories based on their provenance.
The vast majority of the covariates (55) were terrain deriva-
tives generated from a LiDAR-derived, 10 m resolution digi-
tal terrain model using either SAGA-GIS implemented in the
“rsaga” package (Brenning et al. 2018; Conrad et al. 2015)
or WhiteboxTools implemented in the “whitebox” package
(Lindsay 2018; Wu 2019). Of the remaining continuous covari-
ates, six were gamma-radiometric data (Natural Resources
Canada 2019) and three were computed from a time series of
cloud-free normalized difference vegetation index (NDVI) im-
ages generated from Sentinel-2 imagery captured from June
to September in each of the 2017–2020 growing seasons us-
ing Google Earth Engine (median, maximum, and standard
deviation). The three categorical covariates were quaternary
geology (six classes), bedrock geology (four classes), and soil
order (five classes), the latter generated from the legacy soil
map (Ontario Geological Survey 2010, 2011; Ontario Ministry
of Agriculture, Food and Rural Affairs 2019; Schut and Wilson
1987). All covariates were resampled to the same resolution
as the digital terrain model (10 m) using bilinear resampling
in the case of continuous covariates (gamma-radiometric and
NDVI) and nearest neighbour resampling in the case of cate-
gorical covariates (quaternary geology, bedrock geology, soil
order). Both resampling techniques were implemented using
the “resample” function from the “raster” package (Hijmans
2021). Details for each of the covariates are outlined in the
Supplementary Materials (Supplementary Table S1).

To reduce the number of environmental covariates and
mitigate potential overfitting of the predictive models due to
the collinearity of the predictors, the variance inflation fac-
tor (VIF) technique was applied to the set of 64 continuous
covariates (Neter et al. 1983). The VIF (eq. 2) calculates how
much an environmental covariate’s (or regressor’s) variabil-
ity can be explained by the remaining covariates (regressors)
in the regression model (Craney and Surles 2002):

VIF j = 1
1 − r2

j
(2)

where rj
2 is the coefficient of determination from fitting

a linear regression between the jth independent variable
and all other independent variables. The process is repeated
until only covariates above a selected threshold remain.
Commonly used thresholds for VIF analysis are five and 10
(O’brien 2007; Pourghasemi et al. 2017); we selected the lower
cutoff to be more conservative and retain fewer covariates.
Using a threshold VIF value of five, 23 of the 64 continuous
covariates were retained as predictors for modelling. The VIF
procedure was implemented using the “oss.seqVIF” in the

“onsoilsurvey” package (Saurette 2021). Categorical covari-
ates were encoded using one hot encoding (Kuhn 2019; Kuhn
and Johnson 2013) and were all retained for modelling.

Predictive modelling approaches
Soil texture class maps were generated using two ap-

proaches: direct prediction of texture class using categori-
cal (classification) prediction, and indirect prediction where
sand, silt, and clay content were predicted and then con-
verted to texture class. A training data matrix was devel-
oped for each of the two depth increments (5–15 and 30–
60 cm) by extracting the covariate values to the sampling
locations. Each matrix contained the sample site identifier,
the sand, silt, and clay content, the texture class, and the en-
vironmental covariate values. For each depth, the data were
split into training (70%) and testing (30%) partitions using ran-
dom sampling to ensure direct and indirect prediction ap-
proaches used identical input data. Detailed descriptions of
the direct and indirect modelling approaches are outlined
below.

Direct prediction

In the direct prediction approach, the random forest algo-
rithm (Breiman 2001) was trained using the “caret” package
(Kuhn 2018). Repeated (five repeats) 10-fold cross-validation
was used to train the model using only the training data
partition (70%) and select the optimal model hyperparame-
ter (mtry). The final model from the repeated cross-validation
was evaluated using the independent test data partition. The
optimal mtry was then used to train the final random for-
est model using the entire data set, which was subsequently
used to generate the predicted maps of the soil texture
class.

Indirect prediction

In the indirect prediction approach, sand, silt, and clay con-
tent were modelled using the random forest algorithm. Soil
PSFs are compositional (sum to 100) and therefore are mod-
elled as a composition, typically using a log-ratio transforma-
tion. In this study, the ALR was used to retain the composi-
tional nature of the three PSFs, therefore reducing the three-
part composition to two parts. We selected the silt compo-
nent of the composition as the denominator for the ALR cal-
culations; the two remaining components were named alr-
Clay (eq. 3) and alrSand (eq. 4)

alrClay = ln
clay
silt

(3)

alrSand = ln
sand
silt

(4)

The random forest model was therefore trained on the ALR-
transformed clay (alrClay) and ALR-transformed sand (alr-
Sand). Repeated (five repeats) 10-fold cross-validation was
used to train each of the two models (alrSand and alrClay),
at each depth, using the same 70% training partition as the
direct prediction method, to select the optimal mtry hyper-
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parameter values for each model. The optimal models were
evaluated using the test data set on back-transformed val-
ues of sand, silt, and clay. The final models were trained us-
ing the optimal hyperparameters and the entire data set to
predict maps of alrSand and alrClay. These maps were then
back-transformed using the inverse ALR to generate maps of
sand, silt, and clay content. Finally, these maps were then
converted to texture class maps on a pixel-by-pixel basis with
the “oss.texture.r” function in the “onsoilsurvey” package
(Saurette 2021).

Model evaluation
The direct prediction models were evaluated using the

overall accuracy and Cohen’s kappa coefficient calculated
from the confusion matrix generated from the observed
and predicted values for the test data set. The rows of the
confusion matrix represent the predictions, whereas the
columns represent the observations. The diagonal of the con-
fusion matrix represents correct classifications, while the
off-diagonal represents incorrect classifications or misallo-
cations. The overall accuracy is calculated as the total cor-
rect predictions divided by the total number of observations
(Congalton 2001). Cohen’s kappa coefficient takes into con-
sideration chance agreement between observations and pre-
dictions (Cohen 1960; Rossiter et al. 2017).

The indirect prediction models were evaluated in two dif-
ferent ways. First, the sand, silt, and clay predictions (contin-
uous properties) were evaluated using Lin’s concordance cor-
relation coefficient (CCC; Lin 1989) and the root mean square
error (RMSE) by back-transforming the residuals from the al-
rClay and alrSand training models to sand, silt, and clay con-
tent. Secondly, the sand, silt, and clay predictions were then
used to determine the texture classes, which were then eval-
uated using the classification metrics described above for the
direct prediction (i.e., overall accuracy and Cohen’s kappa co-
efficient).

The overall accuracy and Cohen’s kappa coefficient, how-
ever, do not consider the magnitude of a misclassification. For
example, if an observation is classified as a clay and the model
predicts a clay loam, this is less egregious than if the model
predicted the sand. Rossiter et al. (2017) proposed the use of
taxonomic distance to adjust the accuracy of soil class pre-
dictions and outlined four approaches to computing a weight
matrix: expert opinion, numerical distance, hierarchical dis-
tance, and error loss function. This approach was adapted to
adjust the accuracy statistics for the categorical predictions in
this study using the Euclidean distance between the centroids
of the texture classes. First, the coordinates of the centroids
for each texture class were identified on the texture triangle,
with sand, silt, and clay content representing the coordinates
in three-dimensional space. The Euclidean distance between
the centroids of each pair of texture classes (e.g., distance
from clay to sand) was generated and stored as a distance ma-
trix (Table 1). To convert the distances to weights, the matrix
was normalized to a range of 0–1. Finally, since the normal-
ized Euclidean distances indicate increasing dissimilarity as
the distance value increases, the weights were recalculated as
1 – normalized distance. Therefore, in the weight matrix, cor-

rect classifications carry a weight of 1 and all misallocations
carry a weight <1 proportional to the Euclidean distance be-
tween the classes (Table 2).

Comparing direct and indirect texture class
predictions

Two approaches were used to compare the predicted soil
texture maps generated from the direct and indirect meth-
ods: a quantitative assessment using the Euclidean distance,
and a semiquantitative approach using the texture class sep-
aration, both implemented on a pixel-by-pixel basis. In the
first approach, for each of the 5–15 and 30–60 cm depth
intervals, the predicted soil texture class maps generated
from the direct and indirect prediction methods are stacked
(overlaid). Then, on a pixel-by-pixel basis, the Euclidean dis-
tance between the texture classes of the two maps is as-
signed based on the distance matrix previously calculated
(Table 1). For example, for a given pixel, if the direct pre-
diction approach was classified as a clay, and the indirect
prediction approach was classified as a loam, the Euclidean
distance assigned to this pixel would be 40. The output of
this process is a new raster map where the pixel values rep-
resent the Euclidean distance between the direct and indi-
rect prediction approaches. As such, a distance of zero would
indicate no difference between the texture class predicted
by both approaches, whereas a difference greater than zero
indicates a difference in the prediction, with the magni-
tude of the difference increasing as distance (dissimilarity)
increases.

The second approach is to generate a “texture class sepa-
ration” map. Similar to the Euclidean distance approach de-
scribed above, for each of the 5–15 and 30–60 cm depth in-
tervals, the predicted soil texture class maps generated from
the direct and indirect prediction methods are stacked (over-
laid). Then, on a pixel-by-pixel basis, the texture class separa-
tion between the texture classes of the two maps is assigned.
The “texture class separation” between two texture classes
is simply the number of classes between the two textures
in question following the most direct route through the tex-
ture triangle. For example, using the Canadian soil texture
triangle, a heavy clay and a clay are adjacent on the texture
triangle (share a boundary or vertex), and therefore are one
class apart, whereas a heavy clay and a clay loam are two
classes apart, with the clay appearing in between them. A
“texture class separation” was assigned to all pairs of texture
classes, and these values were used to assign, on a pixel-by-
pixel basis, the “texture class separation” between the maps
from the two approaches. This is a more intuitive representa-
tion of the difference between the maps: for example, a pixel
with a value of 0 indicates no difference between the two ap-
proaches (e.g., both approaches predicted sand), and a pixel
with a value of 3 indicates the difference between the two
approaches was three texture classes (e.g., one approach pre-
dicted sand, the other loam).

Finally, we can use the standard categorical goodness of
fit metrics to evaluate the agreement between the two ap-
proaches. Therefore, at each depth, the texture class maps
from the direct and indirect approaches were overlaid, and
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Table 1. Distance matrix providing the Euclidean distance between the texture class centroids for the 13 texture classes of the
Canadian System of Soil Classification (SCWG 1998).

HC SiC C SC SiCL CL SCL Si SiL L SL LS S

HC 0

SiC 43 0

C 28 32 0

SC 50 60 31 0

SiCL 59 17 42 65 0

CL 49 32 22 34 32 0

SCL 66 66 42 18 66 35 0

Si 101 58 82 99 42 65 94 0

SiL 80 41 57 72 25 39 66 27 0

L 67 45 40 43 38 19 34 59 32 0

SL 82 72 55 38 67 41 21 85 59 29 0

LS 96 92 72 47 89 60 30 105 80 51 22 0

S 105 104 82 55 101 72 41 118 93 64 34 13 0

Notes: HC, heavy clay; SiC, silty clay; C, clay; SC, sandy clay; SiCL, silty clay loam; CL, clay loam; SCL, sandy clay loam; Si, silt, SiL, silt loam; L, loam; SL, sandy loam; LS,
loamy sand; S, sand.

Table 2. Weight matrix applied for correction of model evaluation metrics of texture class calculated from the Euclidean dis-
tance between centroid coordinates (sand, silt, and clay) of the texture classes from the Canadian System of Soil Classification
(SCWG 1998).

HC SiC C SC SiCL CL SCL Si SiL L SL LS S

HC 1.00

SiC 0.63 1.00

C 0.76 0.73 1.00

SC 0.57 0.49 0.74 1.00

SiCL 0.50 0.86 0.65 0.44 1.00

CL 0.59 0.73 0.82 0.71 0.73 1.00

SCL 0.44 0.44 0.65 0.85 0.44 0.70 1.00

Si 0.14 0.51 0.31 0.16 0.64 0.44 0.21 1.00

SiL 0.32 0.65 0.51 0.39 0.79 0.67 0.44 0.77 1.00

L 0.43 0.62 0.66 0.64 0.68 0.84 0.71 0.50 0.73 1.00

SL 0.30 0.39 0.53 0.67 0.43 0.66 0.82 0.28 0.50 0.75 1.00

LS 0.19 0.22 0.39 0.60 0.25 0.49 0.74 0.11 0.32 0.57 0.82 1.00

S 0.11 0.12 0.30 0.53 0.14 0.39 0.66 0.00 0.21 0.46 0.71 0.89 1.00

Notes: HC, heavy clay; SiC, silty clay; C, clay; SC, sandy clay; SiCL, silty clay loam; CL, clay loam; SCL, sandy clay loam; Si, silt, SiL, silt loam; L, loam; SL, sandy loam; LS,
loamy sand; S, sand.

the weighted overall accuracy and kappa were calculated us-
ing the weight matrix, as described above.

Results

Particle size analysis
For both depths, sand content was the dominant particle

size, with a mean of 40.4% and 39.3% for the 5–15 and 30–
60 cm depths, respectively (Table 3). The silt was intermedi-
ate, and clay was the least important particle size averaging
25.8% and 29.2% across the 5–15 and 30–60 cm depths. This
is not unexpected as the study area is dominated by loamy
morainal deposits and sandy deposits, whereas the clay plains
occupy much smaller areas, despite the clay content of those
soils ranging as high as 84.9%.

Training and testing data
The results of the random sampling to create the train-

ing (70%) and testing data sets (30%) for the 5–15 and 30–
60 cm depths show close agreement between the frequencies
within each data set across the 11 texture classes represented
in the data (Fig. 2). Sandy loam, loam, and clay loam texture
classes dominated the 5–15 cm depth interval, whereas, at
the deeper sampling interval, heavy clay and clay textures
both increased significantly compared to the surface sam-
pling. This can be attributed to many of the glaciomarine de-
posits, which were very high in clay content, having lighter-
textured deposits at the surface. Commonly these soils were
either medium to moderately fine at the surface and grade to
clay or heavy clay in the subsoil. It should be noted that only
11 of the 13 classes from the Canadian soil texture triangle
were represented in the data set; there were no observations,
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Table 3. Descriptive statistics for sand, silt, and clay content for the full data set at each depth after harmonization to stan-
dardized depth intervals.

Depth Particle size Minimum 25% Median Mean 75% Maximum

5–15 cm Sand 0.0 16.8 36.0 40.4 63.6 96.0

Silt 0.4 21.2 34.7 33.8 45.2 79.5

Clay 0.0 12.7 22.1 25.8 36.3 83.1

30–60 cm Sand 0.0 9.8 33.3 39.3 65.2 99.8

Silt 0.0 19.9 32.3 31.5 42.8 79.5

Clay 0.0 9.8 22.9 29.2 46.5 84.9

Fig. 2. Bar plot showing the distribution of texture classes for the training and testing data sets for the 0–15 cm (a) and 30–
60 cm (b) depth intervals. HC, heavy clay; SiC, silty clay; C, clay; SiCL, silty clay loam; CL, clay loam; SCL, sandy clay loam; SiL,
silt loam; L, loam; SL, sandy loam; LS, loamy sand; S, sand. [Colour online]

and therefore no predictions for silt and sandy clay texture
classes.

For the continuous variables, sand, silt, and clay distri-
butions between the training and test data sets were well
aligned (Fig. 3). At the 5–15 cm depth, clay was positively
skewed for both the training and test data sets, whereas both
the sand and silt were multimodal, and the silt test data set
had more evident multimodality than the training data. Re-
gardless, the distributions are similar. At the 30–60 cm depth,
clay was still positively skewed, but less so than at the surface
depth, which was related to heavier materials in the subsoil

as described earlier, and the sand and silt distributions were
still multimodal, but less so than at the surface depth. Again,
the distributions between the training and test data sets were
comparable, indicating both data sets were representative of
the population of sampled sites.

Model evaluation——direct prediction of soil
texture

Model evaluation metrics for the direct prediction of soil
texture at the two depths showed fairly low overall accuracy
and kappa scores (Table 4). For the 5–15 cm depth, an over-
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Fig. 3. Comparison of sand, silt, and clay content for the training and test data sets at each of the 5–15 cm (a) and 30–60 cm
(b) depths. [Colour online]

all accuracy of 36% and a kappa of 0.25, which is considered
“fair” based on Landis and Koch (1977). The lower prediction
depth, 30–60 cm, had marginally better results with an over-
all accuracy of 36% and kappa of 0.27 (Table 4). Producer’s ac-
curacy ranged from 0% for the sandy clay loam texture class
to 61% for the sandy loam texture class in the 5–15 cm depth
and from 0% for the sandy clay loam texture class to 66%

for the heavy clay and sand texture classes at the 30–60 cm
depth. Similar ranges were seen for user’s accuracy. Based on
the confusion matrix for the 5–15 cm depth, it was clear that
many of the misallocations were in an adjacent texture class
(Supplementary Table S2). For example, for the sandy loam
texture class, 30 of the 38 misallocations were either classi-
fied as loam (20) or loamy sand (10), both directly adjacent
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Table 4. Overall accuracy, kappa, producer’s accuracy, and user’s accuracy for the direct and indirect prediction of soil texture
class with the random forest model.

Depth
interval
(cm)

Overall
accuracy

Soil texture class

Kappa C CL HC L LS S SCL SL SiL SiC SiCL

Producer’s (user’s) accuracy——direct prediction

5–15 36 0.25 31 (27) 28 (38) 22 (46) 42 (34) 35 (34) 6 (34) 0 (0) 61 (40) 7 (40) 36 (34) 44 (38)

30–60 36 0.27 14 (25) 23 (22) 66 (49) 33 (28) 9 (24) 66 (50) 0 (0) 48 (31) 27 (32) 20 (29) 39 (52)

Producer’s (user’s) accuracy——indirect prediction

5–15 34 0.22 22 (22) 51 (29) 9 (100) 54 (35) 23 (43) NA 6 (15) 46 (42) 0 (0) 18 (29) 38 (32)

30–60 28 0.19 20 (25) 26 (11) 20 (71) 54 (26) 17 (23) 27 (67) 0 (0) 39 (36) 0 (0) 46 (32) 27 (25)

Notes: HC, heavy clay; SiC, silty clay; C, clay; SiCL, silty clay loam; CL, clay loam; SCL, sandy clay loam; SiL, silt loam; L, loam; SL, sandy loam; LS, loamy sand; S, sand.

to the sandy loam texture class. Similarly, at the 30–60 cm
depth, only eight correct predictions for clay texture were
made, but 30 of the 50 misallocations were in adjacent tex-
ture classes (Supplementary Table S3). The same trend was
apparent when reviewing the correlation matrices for the in-
direct prediction approach (Supplementary Tables S3 and S4).

In general, soils tended to become either finer in texture
with depth in the areas of glaciomarine deposits or coarser
in texture in the areas of morainal and glaciofluvial deposits
(Fig. 4, left). For example, in the northeast corner of the soil
texture map, soils can be seen as silty clay to clay in the 5–
15 cm depth interval and mostly as heavy clay in the deeper
30–60 cm interval, consistent with the glaciomarine deposits
mapped in that area. The opposite trend was apparent in the
central part of the study area, where soils grade from sandy
loam to sand texture, and in the west and central areas, where
materials tended to be coarser at depth, consistent with the
morainal and glaciofluvial materials.

Model evaluation——indirect prediction of soil
texture

The random forest model performed well in predicting the
continuous soil properties of sand, silt, and clay (Table 5).
Lin’s CCC was 0.74, 0.62, and 0.71 for the prediction of sand,
silt, and clay, respectively, at the 5–15 cm depth, and 0.74.
0.59 and 0.67 at the 30–60 cm depth. Root mean square er-
ror ranged from 10.9% to 19.7% across all textures and both
depths. Given that the prediction of the particle sizes was
done as a composition using the ALR, for both depths, the
sum of the bias was zero. In the case of the 5–15 cm depth,
sand had a positive bias of 2.6%, while silt and clay had a
negative bias of −2.1% and −0.4%, respectively. At the 30–
60 cm depth, the clay had a positive bias (1.9%), while silt
and sand had a negative bias (–1.7% and –0.2%, respectively).
Particle size maps aligned well with known soil and material
patterns in the study area (Fig. 5). Clay plains in the northeast,
southeast, and northwest areas of the map had high silt and
clay content, typical of deep water, glaciomarine deposits,
while the south and west-central portions were dominated
by sandier deposits, aligning with the shallow morainal de-
posits over limestone bedrock.

Observed and predicted values for the validation data sets
were plotted over the texture triangle (Fig. 6), commonly re-

ferred to as ternary plots. For both the 5–15 and 30–60 cm
depth, it was clear that the random forest model “com-
presses” the distribution of the predictions towards the cen-
tre of the texture triangle (Fig. 6), as reported in Zhang et al.
(2020). There were no observations in the sandy clay or silt
texture classes in the 5–15 cm depth; however, there were
two observations of sandy clay in the 30–60 cm depth. This
was at odds with the training data used for the direct pre-
diction approach and was a direct result of the depth harmo-
nization of soil profiles using the “easpline” function. For the
5–15 cm depth, observations extended well into the heavy
clay and the silt loam texture classes, but the predictions
showed no observations classified as silt loam, and only a few
classified as heavy clay (Fig. 6a). A similar trend was obvious
in the ternary plots for the 30–60 cm depth where the ob-
served values were spread widely throughout the texture tri-
angle, whereas the predictions once again were in a fairly nar-
row band arching through the centre of the texture triangle
(Fig. 6b).

Finally, after converting the sand, silt, and clay maps to
texture class maps, the overall accuracy and kappa statistics
were found to be worse than those of the direct prediction
of texture class (Table 4). Overall accuracy was 34% for the 5–
15 cm depth and 28% for the 30–60 cm depth, while kappa
was 0.22 and 0.19 for the same two depths, respectively. Pro-
ducer’s and user’s accuracies were similar to those of the di-
rect prediction (Table 4).

Model evaluation——weighted accuracy metrics
Using the weight matrix (Table 2) computed from the Eu-

clidean distance between texture classes significantly im-
proved all accuracy metrics (Table 6). Overall accuracy for
the direct prediction method increased to 82% and 78% for
the 5–15 cm and 30–60 cm depths, representing increases
of 128% and 117%, respectively. For the indirect prediction
method, overall accuracy increased to 83% and 80% for the
5–15 and 30–60 cm depths, representing increases of 144%
and 186%, respectively. Similar increases were seen for kappa,
with increases from 0.25 to 0.53 and from 0.27 to 0.47 for
the 5–15 and 30–60 cm depths for the direct prediction
method, and from 0.22 to 0.56 and from 0.19 to 0.51 for
the 5–15 and 30–60 cm depths for the indirect prediction
method.
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Fig. 4. Soil texture maps were generated from direct and indirect prediction techniques for the 5–15 and 30–60 cm depth
intervals. HC, heavy clay; SiC, silty clay; C, clay; SiCL, silty clay loam; CL, clay loam; SCL, sandy clay loam; SiL, silt loam; L, loam;
SL, sandy loam; LS, loamy sand; S, sand. [Colour online]

Table 5. Goodness of fit metrics from external validation of random forest models for sand, silt, and clay content.

Depth interval (cm) Property Adjusted R2 CCC RMSE Bias

5–15 Sand (%) 0.59 0.74 17.1 2.6

Silt (%) 0.45 0.62 11.6 -2.1

Clay (%) 0.56 0.71 10.9 -0.4

30–60 Sand (%) 0.58 0.74 19.7 -0.2

Silt (%) 0.40 0.59 12.6 -1.7

Clay (%) 0.52 0.67 15.8 1.9

Notes: CCC, Lin’s concordance correlation coefficient; RMSE, root mean square error.

Comparison of direct and indirect texture class
predictions

The spatial distributions of texture classes in the direct and
indirect approaches were quite similar; however, there were
noticeable differences (Fig. 4). For the 5–15 cm depth, areas
of the loam texture class were more prominent in the south-
west of the map for the indirect prediction when compared
to the direct prediction. In the northeast corner of the study
area, larger areas were predicted as sandy loam and loamy
sand texture classes in the direct prediction approach. For
the 30–60 cm depth, the differences were more evident than

at the surface depth. For instance, the northeast corner of
the study area was dominated by the heavy clay texture class
in the direct approach, whereas the indirect approach yields
clay and silty clay texture classes as dominant; in addition,
the geographic extent of the clayey soils was larger in the
direct approach. Soils predicted as sand texture class were
more widespread in the direct prediction map, whereas the
amount of loam texture class dominates the central portion
of the map produced from the indirect prediction approach.

A more quantitative assessment can be discerned from the
calculation of the Euclidean distance, on a pixel-by-pixel ba-
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Fig. 5. Predicted maps of sand, silt, and clay content for the study area from the random forest model at the 5–15 and 30–60 cm
depths. [Colour online]

sis, between the maps generated from the two prediction
approaches (Fig. 7, left). The mean Euclidean distance was
smaller between the two maps at 5–15 cm (13.2) than that
of the maps at 30–60 cm (17.6), indicating closer agreement
between the two approaches at the surface depth compared
to the subsoil depth. The spatial patterns of the Euclidean
distance between maps were not consistent across the two
depths of prediction. For example, along the northern edge
of the study area in the centre of the map, the Euclidean dis-
tance was small at the 5–15 cm depth interval (<30); how-
ever, at the 30–60 cm interval, the Euclidean distance was
much larger (>46). Other than this, most other areas saw an
increase in the Euclidean distance when going from the 5–
15 cm maps to the 30–60 cm maps. This same trend was ap-
parent in the class separation between the maps generated
from the direct and indirect approaches (Fig. 7, right). Over-
all, the texture class separation between the two approaches
was dominantly 0 or 1 texture class; where the 5–15 cm depth
interval was dominantly zero texture class difference, while
the 30–60 cm depth was dominantly one texture class differ-
ence. For the 5–15 cm depth, 52.7% of the map was in per-
fect agreement, while another 42.1% was within one texture
class, and less than 5% of the map was two texture classes
apart (Table 7). For the 30–60 cm depth, 44.9% of the map was
one texture class apart, 42.3% was in perfect agreement, and
11.4% had two texture classes difference (Table 7). Lastly, the
weighted overall accuracy and kappa between the maps of
the two approaches, an indication of the similarity between
the maps, were 89% and 0.70 for the 5–15 cm depth and 85%
and 0.63 for the 30–60 cm depth.

Discussion
In terms of texture class prediction, model performance

metrics for the direct and indirect prediction approaches

were quite similar and were at the low end of the range
from results of similar studies. Maynard and Levi (2017) re-
ported an overall accuracy of 67% and kappa of 0.53, while
Gomez et al. (2019) reported an overall accuracy of 50% and
kappa of 0.31, both studies achieving higher performance
than our study using support vector machine models and
time-series spectral data from Landsat TM and Sentinel-2, re-
spectively. One reason for this might be the number of tex-
ture classes in the analysis; whereas our study included 10
texture classes, Maynard and Levi (2017) predicted six tex-
ture classes, while Gomez et al. (2019) predicted four tex-
ture classes in their respective study. Using random for-
est, Dharumarajan and Hegde (2022) achieved overall accu-
racies ranging from 50% to 65% and kappa scores ranging
from 0.42 to 0.47 when predicting soil texture classes as
per the GlobalSoilMap.net (Arrouays et al. 2014) depth in-
terval specifications (0–5, 5–15, 15–30, 30–60, 60–100, and
100–200 cm). Our performance metrics were better aligned
with Laborczi et al. (2016) who reported an overall accuracy
of 29% and kappa of 0.15 (calculated from the confusion
matrix reported in Laborczi et al. (2016)), with 11 texture
classes.

With regard to the prediction of PSFs, R2 ranged from 0.40
to 0.59 across the three PSFs and both depths. This is compa-
rable to Poggio and Gimona (2017) who reported R2 of 0.56–
0.58 in their two-dimensional models of sand, silt, and clay,
but better than their three-dimensional models for the 5–
15 and 30–60 cm depths which ranged from 0.30 to 0.43.
Root mean square error was within ranges from other stud-
ies (Liu et al. 2020; Malone and Searle 2021b; Pahlavan-Rad
and Akbarimoghaddam 2018) for all three PSFs, but much
higher than that reported in Amirian-Chakan et al. (2019),
whose RMSE values ranged from 2.9% to 4.4%. This was almost
an order of magnitude lower than these other studies, with
the exception of Malone and Searle (2021a) who reported
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Fig. 6. Ternary plots showing the distribution of observed and predicted values based on the indirect prediction approach in
the 5–15 (a) and 30–60 cm (b) depths.

Table 6. Overall accuracy, kappa, producer’s accuracy, and user’s accuracy for the direct and indirect prediction of soil texture
class with the random forest model adjusted based on the weight matrix calculated from the Euclidean distance between
texture classes.

Depth
interval
(cm)

Overall
accuracy

Soil texture class

Kappa C CL HC L LS S SCL SL SiL SiC SiCL SC

Producer’s (user’s) accuracy——direct prediction

5–15 82 0.53 77 (79) 83 (83) 75 (79) 85 (82) 84 (84) 79 (70) 0 (0) 89 (82) 70 (84) 82 (78) 79 (84) NA

30–60 78 0.47 71 (75) 79 (80) 83 (80) 79 (77) 82 (63) 84 (86) 0 (0) 81 (77) 71 (77) 73 (72) 80 (86) NA

Producer’s (user’s) accuracy——indirect prediction

5–15 83 0.56 80 (80) 91 (82) 73 (100) 90 (83) 81 (90) NA 75 (82) 86 (86) 0 (0) 80 (80) 82 (82) NA

30–60 80 0.51 79 (79) 82 (75) 72 (71) 89 (78) 82 (85) 82 (96) 66 (68) 82 (83) 0 (0) 87 (79) 81 (79) 69 (0)

Notes: HC, heavy clay; SiC, silty clay; C, clay; SC, sandy clay; SiCL, silty clay loam; CL, clay loam; SCL, sandy clay loam; SiL, silt loam; L, loam; SL, sandy loam; LS, loamy
sand; S, sand.
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Fig. 7. Euclidean distance and soil texture class separation maps for the 5–15 and 30–60 cm depth intervals. [Colour online]

Table 7. Summary statistics for the class separation between the direct and indirect prediction approaches at the 5–15 and
30–60 cm depths

Texture class
separation

5–15 cm 30–60 cm

Raster cells ha % Raster cells ha %

0 14 810 858 148 109 52.7 11 893 001 118 930 42.3

1 11 834 023 118 340 42.1 12 610 127 126 101 44.9

2 1377 216 13 772 4.9 3214 655 32 147 11.4

3 46 787 468 0.2 347 823 3478 1.2

4 16 259 163 0.1 19 119 191 0.1

5 418 4 0.0

Total 28 085 143 280 851 100.0 28 085 143 280 851 100.0

RMSE from 5.2% to 7.7% for silt. However, this may be ex-
plained by the tight range of silt content in Malone and Searle
(2021a) which shows most observations in their study ranging
from 0% to 30% silt. With regard to CCC, a more robust mea-
sure of the fidelity between observed and predicted values
that corrects for bias, our model validation suggested better
performance ranging from 0.59 to 0.74, when compared to
Malone and Searle (2021a) and Liu et al. (2020). Our model
performance metrics consistently declined with increasing
soil depth, which was also the case in many other studies

(Adhikari et al. 2013; Liu et al. 2020; Poggio et al. 2021; Poggio
and Gimona 2017) and has been attributed to higher variabil-
ity in training data, fewer observations available at depth,
and the use of covariates which are reflective of surface con-
ditions and therefore with a weaker relationship with deeper
soil layers. The latter two were likely in this study, given the
reduced number of sites with data at the 30–60 cm depth due
to shallow soils over bedrock, and the reliance on environ-
mental covariates mostly derived from a digital terrain model
and spectral indices.
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One advantage of the indirect prediction of texture class
reported by Zhang et al. (2020) was that conversion of PSFs
to texture class has the potential to add more texture classes
since, in the direct prediction, the models are limited to those
classes present in the training data. This advantage, however,
is not likely to be realized. As noted in Zhang et al. (2020), and
observed in our study, the contraction of the predictions to-
wards the centre of the texture triangle would likely prevent
the indirect methods from adding classes not already present
in the training data.

Intuitively, model confusion is likely to be higher between
classes that are more closely related, and lower between
classes that are distant, as is the case with texture classes.
Dharumarajan and Hedge (2022) identified higher confusion
between adjacent texture classes. For example, at the 5–15 cm
depth, only 10% of the loam observations were correctly clas-
sified whereas the majority were predicted in adjacent classes
of clay loam and sandy clay loam; and at the 30–60 cm
depth, none of the loam observations were correctly classi-
fied, but they were all classified in adjacent classes. Zhang et
al. (2020) noted the highest confusion between sandy loam
and loamy sand texture classes in their study area. Our study
reveals the same trend, where the misallocations are biased
towards adjacent classes (Supplementary Tables S1–S4). In
our evaluation metrics for classification models, overall ac-
curacy and kappa, all incorrect classifications were of the
same magnitude and treated as equally serious. Rossiter et
al. (2017) posited that misallocations are not all equally se-
rious and that evaluation metrics could be adjusted based
on the taxonomic distance between classes, using soil clas-
sification as an example. This can be applied to soil texture
classification, where the distance between texture classes can
be determined based on the distance between texture classes
(Laborczi et al. 2016, 2019). Despite accounting for misalloca-
tions using a weight matrix based on the distance between
texture classes of the USDA texture triangle, Laborczi et al.
(2016) achieved low overall accuracy and kappa, 29% and 0.15,
respectively, but did not report the unweighted results. Com-
paratively, the overall accuracy of our study ranged from 78%
to 83% and kappa ranged from 0.47 to 0.56; however, without
the unweighted overall accuracy and kappa from the previ-
ous study, a comparison is not possible. Laborczi et al. (2019)
assessed the similarity between texture class predictions that
were using different modelling approaches using both un-
weighted and weighted accuracy metrics. They saw signif-
icant improvements in overall accuracy and kappa: for ex-
ample, for one comparison, they noted overall accuracy and
kappa increased from 39% to 85% and from 0.27 to 0.42, re-
spectively. Although not the same application, the magnitude
of the increase in the metrics was similar to those from our
study.

It is interesting that the overall accuracy and kappa were
initially lower for the indirect prediction than for the di-
rect prediction in our study, but that after computing the
weighted scores, the indirect prediction approach perfor-
mance metrics indicate this approach was superior. This
means that overall the direct prediction of texture class
had fewer misallocations, but that those misallocations were
more serious (i.e., farther away from the observed texture

class) than those of the indirect method, and this was not
at all reflected in the unweighted performance metrics. This
was unexpected but could prove useful when comparing dif-
ferent modelling approaches in the future.

There were some differences in the calculation of the
weight matrix used in the two studies. First, we used the
Canadian texture triangle, which has an additional texture
class, heavy clay, which would explain a difference in the
weights between the clay texture class and all other classes
from those computed by Laborczi et al. (2016, 2019). In ad-
dition, instead of calculating the two-dimensional distances
between the centroids of the texture classes of the texture
triangle, we computed the Euclidean distance between the
centroids of the texture classes using their sand, silt, and clay
values. This generally increased the distance between texture
classes that had a significant amount of silt and the other tex-
ture classes. For example, the largest distance in the matrix
from Laborczi et al. (2016, 2019) was 83, between sand and
silt, whereas the Euclidean distance we calculated was 118.
Distances between the silt texture class and silt loam, loam,
sandy loam, loamy sand, and sand texture classes increased
by 23%, 40%, 30%, 42%, and 42% when using the Euclidean
distance compared to the distances calculated directly from
the two-dimensional texture triangle, which was then also
reflected in the weight matrix, meaning that our approach
applied a higher cost to misallocation of texture class.

A comparison of texture class maps predicted using differ-
ent approaches can also be achieved using the computed dis-
tance matrix. Laborczi et al. (2019) compared a soil texture
class map generated from classifying PSF maps directly from
sand, silt, and clay predictions for 0–30 cm depth interval, to
a map generated by calculating weighted average sand, silt,
and clay for 0–5, 5–15, and 15–30 cm predictions and then
classifying to soil texture. The authors report that 68% of the
maps were in perfect agreement (predicted the same class),
while the remaining 32% of the maps showed a mostly minor
difference, and small isolated areas showed a major differ-
ence; however minor and major difference categories were
not defined. Furthermore, when comparing the two predic-
tions, the validation points showed a weighted overall ac-
curacy of 93% and kappa of 0.76. In terms of perfect agree-
ment between the maps, our predictions showed 53% and
42% agreement for the 5–15 and 30–60 cm depths, slightly
lower than the previous study. Finally, in terms of weighted
performance metrics, overall accuracy was 89% and 85%, and
kappa was 0.70 and 0.63 for the 5–15 and 30–60 cm depths,
which was also a bit lower than the results from Laborczi et
al. (2019), but within the same range.

The comparison maps we produced, Euclidean distance
and texture class separation, we feel, were more useful in in-
terpreting the similarities and differences between two cate-
gorial maps of soil texture. The Euclidean distance map could
be useful when interpreting the models to understand pre-
diction uncertainty. Although not done as part of this as-
sessment, prediction uncertainty was likely related to the ar-
eas with a larger Euclidean distance between the two maps.
Furthermore, these maps could be useful for model diagnos-
tics in future work by evaluating variable importance to un-
derstand which covariates are being leveraged the most by
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the two approaches. The class separation map was certainly
the most intuitive way to assess the differences between the
maps, converting a continuous scale of distance to a class
easily understood by a pedologist. We decided to assign a
class separation value between the texture classes for creat-
ing these maps; however, another approach might be to cal-
culate the mean Euclidean distance between all texture class
pairs with one class of separation and reclassify the Euclidean
distance map using the calculated mean. This would partially
account for the relative uneven texture class sizes of the tri-
angle. For example, the silt loam, heavy clay, clay, and sandy
loam texture classes are quite large, and when combined they
occupy 57% of the texture triangle; the relative size of the tex-
ture classes could also be considered in future studies.

Using a weight matrix to compute adjusted model perfor-
mance metrics, which almost guarantees improvements by
providing partial scores for misallocations, might seem like a
self-fulfilling exercise for the producer of the map(s). Rossiter
et al. (2017) pointed out that from the producer’s perspective,
it might provide a more realistic assessment of their work,
and from the user’s perspective, a refined assessment of the
reliability of the map. In our study, when comparing the un-
weighted performance metrics from the direct categorial pre-
diction (e.g., overall accuracy and kappa ranging from 28% to
36% and from 0.19 to 0.27) to the continuous predictions of
sand, silt, and clay (CCC ranging from 0.59 to 0.74), although
not directly comparable, one would note the relatively poor
performance of the categorial models. The use of the weight
matrix in essence allows the producer to leverage continuous
data (Euclidean distance) to provide a more realistic evalua-
tion for the user, improving the usefulness and interpretabil-
ity of the final map.

Conclusion
In this study, we compared direct and indirect approaches

for the prediction of soil texture classes using the random for-
est machine learning algorithm. Both approaches resulted in
soil texture maps that were quite similar and had small sub-
tle but important differences. With regard to validation of the
approaches, both yielded similar overall accuracy and kappa
scores. In both cases, however, performance metrics were
quite low compared to most studies. We then demonstrated
the use of a weight matrix, based on the Euclidean distance
between the centroids of the texture classes of the texture tri-
angle, to account for the magnitude of misallocations in the
texture class predictions. Interestingly, the indirect approach
performance metrics improved more than those of the direct
approach, meaning the direct approach had fewer misallo-
cations overall, but those misallocations were more serious
than those of the indirect approach. In general, the adjusted
performance metrics provide a better estimate of the reliabil-
ity of the texture map being generated. Finally, we showed
how the distance matrix can be used to compare multiple
soil texture class maps by either calculating the Euclidean
distance between the maps or by converting to class separa-
tion maps, which is more intuitive for soil scientists. Based
on the analysis, it appears that the indirect approach is a su-
perior option for predicting texture class, which is not sur-

prising since it is a more data-rich approach that uses sand,
silt, and clay data as opposed to simply using a texture class,
and results in a texture class map that aligns with the pre-
dicted maps of sand, silt, and clay. However, in the absence
of particle size data, the direct prediction of texture class is a
suitable alternative.
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