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ABSTRACT: The relationship between people and wildfire has always been paradoxical: fire is an essential ecological process and manage-
ment tool, but can also be detrimental to life and property. Consequently, fire regimes have been modified throughout history through both inten-
tional burning to promote benefits and active suppression to reduce risks. Reintroducing fire and its benefits back into the Sky Island mountains
of the United States-Mexico borderlands has the potential to reduce adverse effects of altered fire regimes and build resilient ecosystems and
human communities. To help guide regional fire restoration, we describe the frequency and severity of recent fires over a 32-year period (1985-
2017) across a vast binational region in the United States-Mexico borderlands and assess variation in fire frequency and severity across climate
gradients and in relation to vegetation and land tenure classes. We synthesize relevant literature on historical fire regimes within 9 major vegeta-
tion types and assess how observed contemporary fire characteristics vary from expectations based on historical patterns. Less than 28% of the
study area burned during the observation period, excluding vegetation types in warmer climates that are not adapted to fire (eg, Desertscrub
and Thornscrub). Average severity of recent fires was low despite some extreme outliers in cooler, wetter environments. Midway along regional
temperature and precipitation gradients, approximately 64% of Pine-Oak Forests burned at least once, with fire frequencies that mainly cor-
responded to historical expectations on private lands in Mexico but less so on communal lands, suggesting the influence of land management.
Fire frequency was higher than historical expectations in extremely cool and wet environments that support forest types such as Spruce-Fir, indi-
cating threats to these systems possibly attributable to drought and other factors. In contrast, fires were absent or infrequent across large areas
of Woodlands (~73% unburned) and Grasslands (~88% unburned) due possibly to overgrazing, which reduces abundance and continuity of
fine fuels needed to carry fire. Our findings provide a new depiction of fire regimes in the Sky Islands that can help inform fire management, res-
toration, and regional conservation planning, fostered by local and traditional knowledge and collaboration among landowners and managers.

RESUMEN: La relacion entre la gente y los incendios forestales siempre ha sido paraddjica: el fuego es esencial como proceso ecolégico y
herramienta de gestion, pero también puede ser perjudicial para la vida y la propiedad. En consecuencia, los regimenes de incendios se han
modificado a lo largo de la historia, mediante quemas intencionales para promover sus beneficios 0 mediante la supresion activa para reducir
sus riesgos. La reintroduccion del fuego y sus beneficios a las montafias de las Islas del Cielo, en la frontera entre Estados Unidos y México,
tiene el potencial de reducir los impactos adversos de los regimenes de fuego alterados y construir ecosistemas y comunidades humanas resil-
ientes. Para fortalecer la restauracion de incendios en la regién, describimos la frecuencia y severidad de los incendios recientes en un periodo
de 32 afios (1985-2017) en una vasta regién binacional de la frontera entre Estados Unidos y México, evaluamos la variacion en la frecuencia y
severidad de los incendios a lo largo de gradientes climaticos y en relacion con la vegetacion y la tenencia de la tierra. Sintetizamos bibliografia
relevante sobre los regimenes histéricos de incendios en nueve tipos de vegetacion principales y analizamos si las caracteristicas observadas
de los incendios contemporaneos varian con respecto a expectativas basadas en patrones histéricos. Menos del 28% del area de estudio se
quemo durante el periodo de observacion, excluyendo los tipos de vegetacion en climas mas calidos que no estan adaptados al fuego (por
ejemplo, los Matorrales Desértico y Espinoso). La severidad media de los incendios recientes fue baja a pesar de algunos valores extremos
en entornos mas frios y humedos. En un punto intermedio en los gradientes regionales de temperatura y precipitacion, aproximadamente el
64% de los Bosques de Pino-Encino se quemaron por lo menos una vez durante el periodo de estudio. Las frecuencias de incendios tuvieron
correspondencia general con las expectativas histéricas para las tierras privadas en México, aunque de menor forma en tierras comunales,
lo que sugiere que el manejo ejerce influencia sobre los regimenes de incendios. En los entornos extremadamente frescos y himedos que
albergan tipos de bosques como los de Picea-Abies la frecuencia de los incendios excedié las expectativas histéricas, lo que indica que las
amenazas a estos sistemas pueden atribuirse a las sequias y otros factores. En cambio, los incendios fueron inexistentes o poco frecuentes en
grandes zonas de Bosques Abiertos (~73% sin quemar) y Pastizales (~88% sin quemar) debido posiblemente al sobrepastoreo, que reduce
la abundancia y continuidad de los combustibles finos necesarios para el transporte del fuego. Nuestros resultados proporcionan una nueva
descripcion de los regimenes de incendios en las Islas del Cielo que puede contribuir al manejo del fuego, la restauracion y la planificacion
de la conservacion regional, fomentada por el conocimiento local y tradicional y la colaboracion entre propietarios y responsables del manejo.
Palabras clave: incendio forestal, Islas del Cielo, severidad del fuego, tratamientos de combustibles, condiciones de referencia, Landsat, clima
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Background

Fire shapes ecosystems across the globe through direct and
indirect effects on many processes including biogeochemical
cycles and the distribution of vegetation communities.? Fire
is also a major evolutionary force that has shaped adaptations
of plant species, composition of vegetation communities, and
the ecology and distributions of animal and human popula-
tions.>* Hence, in systems where natural fire regimes have
been altered by reducing or augmenting fire frequency or
severity, the sustainability of ecosystem structure and function
may be threatened.>® Changes in fuel structure and ignition
patterns can alter the size and severity of fires, and affect bio-
diversity and landscape heterogeneity, property values, and
human health.”® Increased fire frequency due to warmer,
drier climates can be detrimental in fire-prone shrublands,
woodlands, and forests, where shortened fire-free intervals
limit plant recruitment, particularly by species that rely on
seeds for postfire regeneration.” Depending on ecological
context, adverse impacts of altered fire regimes may be
reduced by implementing restoration strategies, such as pre-
scribed burning and managed wildfires that are based on
information about historical fire regimes.!?

In the Sky Islands region of the United States-Mexico bor-
derlands, innovative restoration projects initiated by grassroots
organizations illustrate how local communities can engage
directly with their environments to build resilient ecosystems
and human communities.!! Restoration of fire-adapted land-
scapes, where frequent low-severity fire was common, has the
potential to contribute to multiple restoration goals including
protecting water resources, enhancing habitats for wildlife spe-
cies, and creating and maintaining the flow and connectivity of
ecosystem services across landscapes.” Within the context of
restoration, information on timing and spatial patterns of fire
and its effects on plants and animals can be integrated with
conservation.® Importantly, the considerable knowledge and
experience of traditional practitioners in the region could con-
tribute significantly to meeting the challenges of designing and
conducting vegetation treatments, prescribed burns, or man-
aged wildfire necessary for restoration.?-14

Restoring natural fire regimes at landscape scales in the
United States-Mexico borderlands, however, is complicated by
several factors. Various local-scale fuels reduction treatments
have been applied in parts of the borderlands region over the
past 3 decades, but have shown mixed success in mitigating
future wildfire risk and improving ecosystem resilience.'® Lack
of funding for large-scale fuels management and regulatory
issues complicate implementation of landscape-scale, multi-
jurisdictional fuels treatments in both Mexico and the United
States.1617 The region has complex land ownership and land
tenure patterns with varying land uses, management objec-
tives, and human population densities.!® In the United States,
most land is publicly owned and managed by federal, state, and
tribal organizations with top-down fire management plans. In
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Mexico, large-scale fire suppression and management activities
were rare historically and most lands are privately or commu-
nally owned, with few scattered protected areas overlaid on
these lands. Identifying restoration needs and tailoring restora-
tion activities across such a diverse landscape requires recogniz-
ing how legacies of management and human activities may
have shaped historical and contemporary fire patterns.

Like other parts of western North America where fire sup-
pression was prevalent, this region has seen a general trend
toward more and larger fires over the past 3 decades, particu-
larly in the United States.?®?0 Understanding the natural vari-
ability of fire activity in relation to both climate and human
activities is critical to evaluating shifts in fire regimes.!
Historically, an abundance of ignition sources from both light-
ning and humans, and a consistent period of dry weather dur-
ing late spring and early summer fostered wildfire in the
Madrean Sky Island region, except at lower elevations in
Desertscrub and subtropical Thornscrub, which lacked fuel
continuity.?>? Wildfires spread unimpeded and burned exten-
sive areas across the southwestern United States prior to
European settlement. On the US side of the border, livestock
grazing and active fire suppression essentially eliminated large
fires from the late 19th century to the 1980s,24%> whereas in
Mexico, fire suppression was highly variable, and frequent fires
continued in some areas, based on information from the few
remote sites that have been studied.26:27

Evaluating the characteristics of contemporary fires and
their relationship to both climate conditions and human
activities in the Sky Islands is now possible due to recently
developed data sets. Satellite data from the past 32years
shows that large fires were common during this period in
both the United States and Mexico, with the largest fires
(>25000ha) observed primarily in the United States during
recent droughts.’ Identifying climate conditions where
recent fires burned, the severity and frequency of fire, and the
influence of land management can provide information that
is critical and complementary to historical perspectives, and
inform fuels treatments and restoration planning, given the
uncertainty around how fires and vegetation communities
will respond to future climate change.?®

The goal of this study is to describe and analyze patterns of
recent wildfires to help guide long-term restoration and fire
management in the Sky Islands region of the United States and
Mexico. We addressed the following questions:

1. How do recent patterns of fire severity and fire frequency
vary across the region?

2. How do recent fires differ across vegetation types, land
tenure, and climatic gradients?

3. Where and how do contemporary fire characteristics
compare to expected patterns based on known historical
fire regimes? What are the climatic, biotic, and land-use
characteristics that support these fires?
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Figure 1. Maps depicting the distribution of land tenure parcels (A) and the distribution of vegetation communities (B) of the Sky island mountain ranges
of the United States and Mexico, and the general location of the Madrean Archipelago ecoregion (C). Land ownership/tenure data were obtained and

compiled from multiple databases.32-36

Methods
Study area

The 74 788 km? Madrean Archipelago Ecoregion of the United
States and Mexico is a global biodiversity hotspot situated in a
broad transition zone between the Nearctic and Neotropical
biotic realms.?»30 Biogeographical and historical complexity of
the region is driven by the influences of the Sierra Madre
Occidental and lowland Neotropics to the south, the Rocky
Mountains to the north, and the Chihuahuan and Sonoran
deserts to the east and west.3!

Our study area consists of 39 Sky Island mountain com-
plexes within the Madrean ecoregion (22 in the United States
and 17 in Mexico), with a surface area of approximately
39000km? (Figure 1). These complexes were delineated based
largely on physiographic criteria;3” upper elevations range from
a minimum of ~1600 m in the west to above 3300 m, with gen-
erally larger ranges that reach higher elevations in the north
and east. The region is characterized by bimodal precipitation
with summer (June to September) monsoon storms from the
east, and winter (November to March) storms of Pacific origin
that produce snow at higher elevations.

The Sky Islands are generally rugged and remote with lim-
ited road access or human populations, especially in Mexico.%
Valleys at the base of the mountains and foothills support a
variety of land uses and human settlements that are proba-
ble sources of fire ignition and fuels management. The
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upper-elevation forests and woodlands of the Sky Islands in
the United States are primarily managed by the US Forest
Service (USFS), Department of Interior (DOI), and Bureau
of Indian Affairs (BIA), with state and private lands in foot-
hills and lower elevations (Figure 1A). In Mexico, most upper-
elevation forests and woodlands are privately owned and
include some scattered protected areas (Figure 1A). The foot-
hills and lower elevations are a mosaic of ¢jido (communal)
and private lands with fewer protected areas, which impose
management restrictions but do not affect land tenure (Figure
1A). Although ejidos are sometimes thought to be more
intensively managed than private lands, the influence of land
tenure on vegetation and land use is complex and varies spa-
tially and with environmental and social factors. 04

Conceptual models of vegetation—fire relationships
in the Sky Islands

The Sky Islands of our study region contains 11 vegetation
types originally mapped by Brown et al in 199842 and updated
by Rehfeldt et al in 20124 (Table 1, Figure 1B). We merged
these types into 9 groups based on shared historical character-
istics of fire regimes (fire frequency and severity) and vegeta-
tion responses to fire. The resulting groups included 4 broad
vegetation formations (Semidesert and Plains Grasslands,
Sonoran and Chihuahuan Desertscrub, Chaparral, Foothills
Thornscrub) and 5 woodland and forest communities
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(eg, Spruce-Fir Forest, Madrean Evergreen Forests and
Woodlands, etc.). The predominant vegetation type is
Madrean Evergreen Forests and Woodlands (~20000km?) at
moderate to high elevations, followed by Desertscrub
(6500km?) and Thornscrub (~5000km?) at low elevations in
the south, and Grasslands (~4000 km?) at low elevations in the
north and central portion of the study area. Pine-Oak
(~1500km?), Mixed Conifer (~200km?), and Spruce-Fir
(~7km?) forests are restricted to the highest elevations (Figure
1). Chaparral (~900km?) and Pinyon-Juniper Woodlands
(~18km?) are mapped only in the 2 northernmost Sky Islands,
but similar vegetation occurs in northern Sonora. Information
on dominant species in each vegetation type and fire adapta-
tion and reproduction and regime traits are summarized in
Table 1, and more detailed descriptions are provided in the
Supplemental Materials.

Characteristics of historical fire regimes (ie, fire severity, fire
frequency, and high-severity patch size) prior to European set-
tlement were identified from various sources including regional
dendrochronology and ecology studies and historical accounts
(Table 1; see details in Supplemental materials). Fire in for-
ested vegetation communities ranged from infrequent stand-
replacing fires (spruce-fir forests; 100-400 years*#4) to frequent
mixed-severity (mixed conifer; 10-20years*4) and low-sever-
ity (pine-oak forests; 5-10years?>#-4) (Table 1). Fire regimes
in woodland vegetation types ranged from frequent (evergreen
forest and woodlands; 3-10 years) to infrequent (pinyon-juni-
per; 100-400years;>3>¢ chaparral 30-100years®”°8). Fire fre-
quency in low-elevation types is driven by fuel availability and
moisture, with high frequency in grasslands (2-10 years?+4°152)

and low frequency in thornscrub (>200years?®) and desertscrub
(>250years?32+>%) (Table 1).

Fire identification and fire severity mapping

In the United States, federal agencies maintain a comprehen-
sive spatial database of large (>400 ha) wildfires mapped from
satellite imagery (1984-present) through the monitoring trends
in burn severity (MTBS) program.>® Since an equivalent data-
base does not exist for lands in Mexico, we developed a compa-
rable database of fire perimeters and burn severity products for
the Sky Islands in Mexico.1%061 Fire perimeter®? and severity®3
data sets are available from USGS ScienceBase and links are
provided in the Supplemental Materials section.

We used Landsat-derived differenced normalized burn
ratio (ANBR) images from 335 fires identified across the region
from 1984 to 2017 to quantify spatial patterns of high-severity
fire, which is an important indicator of potential for vegetation
recovery.!® Before classification, we used the aggregate func-
tion® to resample the dNBR images; the maximum dNBR
value was assigned to ~lkm cells. Determining a threshold
value for high severity is a subjective process without prefire
and postfire field data to guide the classification.®® In the
absence of field data for the 335 fires, we classified the dINBR
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images into binary maps of high severity (1) or not (0) using
multiple thresholds; high severity was classified using a single
value from 450 to 650 in increments of 10 (ie, total of 21 clas-
sified maps). The percent high severity for each fire was calcu-
lated for each classified map by summing the raster cells with
value=1 and dividing by the total number of raster cells in the
dNBR image.

Characterizing the regional climatic environment

Our goal in characterizing the environment was to better
understand how fire regimes vary across broad regional gradi-
ents and with human influence.®®%7 To describe the regional
climatic environment, we transformed 20 bioclimatic variables
(Table 2) into 2 orthogonal axes using principal components
analysis (PCA) in R% (prcomp function). The PCA was con-
ducted using all raster cells from the bioclimatic variables so
results could be mapped and sampled for further analysis. The
first 2 principal components were retained; these axes described
most of the variability (PC1=0.62; PC2=0.28). PC1 repre-
sented a general temperature gradient expressed as a latitudi-
nal and altitudinal energy and phenology gradient, with
highest positive loadings including Beginning of the frost-free
period (0.27) and Degree-days <0°C (0.25) (Table 2). PC2
represented a heat-moisture and precipitation gradient which
varied with longitude (ie, Continentality) and elevation; high-
est positive loadings included Summer heat moisture index
(SHM) (0.39), Annual heat moisture index (AHM) (0.38),
and Mean annual precipitation (MAP) (Table 2). We selected
2 of the variables with the highest loadings to aid in interpre-
tation of results (ie, MAT and bFFP for PC1 and MAP and
AHM for PC2). Maps of PC1 and PC2 can be found in the
Supplemental Materials.

Statistical analyses

To assess regional variation in recent fires (eg, question 1), we
summarized observed fire severity and frequency from mapped
data and computed descriptive statistics. To assess environ-
mental variation in recent fire severity (eg, question 2), we
developed generalized additive models (GAMs) using high-
severity composition as the response and mean PC1 and PC2
values within each fire perimeter as predictors. Data for fires in
each country were modeled separately (n=203 fires times 21
thresholds=4263 data points for United States; n=132 fires
times 21 thresholds=2772 data points for Mexico). As high-
severity composition was measured using multiple thresholds,
model fit reflected both variability due to threshold and trends
in high severity across PC1 and PC2. Confidence intervals
(95%) were developed using 1000 points generated across the
climate gradients as a way to evaluate model fit.”! We displayed
the GAM smooth plots in panels to examine differences in
relationships across PC1 and PC2, facilitating visualization of
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Table 2. Climate data (1981-2010 climate normals; AdaptWest Project®®) used to derive the principal components (PC) for the study region.
Loadings for the first 2 principal components (PC1 and PC2) are listed, and variables selected to provide a general interpretation of results are

shown in bold.

ACRONYM VARIABLE DEFINITION PC1 PC2

AHM Annual heat moisture index, (MAT + 10)/(MAP/1000) -0.10 0.38
bFFP Julian date on which the frost-free period begins 0.27 0.04
CMD Hargreave’s climatic moisture index -0.22 0.22
DD_0 Degree-days < 0°C (chilling degree days) 0.25 -0.05
DD5 Degree-days above 5°C (growing degree days) -0.28 0.02
eFFP Julian date on which the frost-free period ends -0.27 -0.07
EMT Extreme minimum temperature over 30years -0.27 -0.07
Eref Hargreave’s reference evaporation -0.26 0.04
MAP Mean annual precipitation (mm) -0.01 -0.41
MAT Mean annual temperature (°C) -0.28 0.02
MCMT Mean temperature of the coldest month (°C) -0.28 -0.05
MSP Mean summer precipitation (mm) (May to September) -0.11 -0.37
MWMT Mean temperature of the warmest month (°C) -0.26 0.13
NFFD Number of frost-free days -0.27 -0.02
PPT_sm Summer precipitation (mm) (June to August) -0.12 -0.36
PPT_wt Winter precipitation (mm) (December to February) 0.13 -0.26
SHM Summer heat moisture index, MWMT/(MSP/1000) 0.01 0.39
Tave_sm Summer mean temperature (°C) (June to August) -0.27 0.11
Tave_wt Winter mean temperature (°C) (December to February) -0.28 -0.04
TD Continentality (°C), expressed by MCMT-MWMT 0.14 0.33

high-severity composition across climate, vegetation types, and
land management (eg, question 3).

We calculated 2 fire-regime metrics in addition to high
severity (%) described above: (1) number of times burned and
(2) mean fire return interval (eg, question 1). Metrics were
examined across the PC climate gradients and compared
observations to expectations for each vegetation type (eg, ques-
tion 2 and 3; Table 1). To quantify the number of times burned,
we used the fire perimeter data to map the total number of fires
within 100-m resolution grid cell. The mean fire return interval
within the study period was calculated by generating annual
raster maps of each fire year in which grid cell value was set to
year if burned or zero if unburned. The annual raster layers
were sampled at random locations (7=5000) to generate a
matrix of random locations (rows) and year of burning (col-
umns). The observed mean fire return interval for each random
point location was calculated as

n—1
D (fireyear,,, — fireyear,)
i=1

n—1
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where the sum of the lag differences in fire years is divided by
the number of intervals (ie, number of fire years # minus 1).
Finally, a data set of the values for times burned and mean fire
return interval was combined with values for PC1 and PC2,
vegetation types, management, and country at the random
point locations. Using the sample data, we identified what
range of climatic, biotic and land-use characteristics support
contemporary fires that differ in each of the 3 fire-regime
metrics (eg, questions 2 and 3). Data and code used for the
analysis can be found on Github: https://github.com/
HaireLab/Fuego-en-la-Frontera.

Results

Regional patterns of burned area, fire frequency,
and fire severity (Question 1)

Approximately 8675 km? of the 39 698 km? study area (21.8%)
burned between 1985 and 2017 (10480km? total area when
including areas that reburned), with much of that occurring in
Madrean evergreen forests and woodlands and pine-oak forests
(Table 3). As a percentage of total area, 64% of pine-oak forests
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Table 3. Total area occupied by each vegetation type,* area burned by vegetation type, and percentage of total area burned. Totals at bottom
include total area of all vegetation types, total area burned across all vegetation types, and percentage of total area burned.

VEGETATION TYPE

AREA (KM?)

AREA BURNED

spruce-fir forests 7
mixed conifer forests 203
pine-oak forests 1478
evergreen forests and woodlands 20598
Grasslands 5087
pinyon-juniper woodlands 18
chaparral 882
desertscrub 6462
thornscrub 4963
Total 39698

and 27% of Madrean evergreen forests and woodlands burned.
Similarly, nearly all spruce-fir and mixed conifer forests burned,
and most spruce-fir forest burned twice. Fires in chaparral,
pinyon-juniper woodlands, desertscrub, and thornscrub were
limited, but a moderate proportion (12-18%) of burned area
was observed in desertscrub and grassland relative to total area
(Table 3).

Over 25% of areas that burned experienced more than one
fire across time, with areas that reburned scattered across
mountain ranges (Figure 2A). Some locations burned up to 4
(3500ha) or rarely 5 times (80ha) (Figure 2A). Higher inci-
dences of reburning were observed near the United States-
Mexico border including in mountains just south of the Mexico
border.

Some larger mountain ranges in Mexico had only a few
small fires and minimal reburning, especially in thornscrub in
the south and southwestern portions of the study region. In
the United States, there were instances where very large por-
tions of some ranges burned in a single fire, with scattered
reburning by subsequent smaller fires (eg, Santa Catalina,
Rincon, and Chiricahua).

Geographic distribution of dNBR values varied among
mountain ranges and across latitude, in both the mean and
range of values (Figure 2B). The dNBR values were fairly low
overall, but ranges extended to =900 in 4 ranges: Pinalefio
(max=986), Chiricahua (max=951), Catalina
(max=933), and Los Ajos (max=927).

Sky Islands in the central part of the region near the inter-

Santa

national border in Mexico had greater heterogeneity in fire
effects. For example, Atascosa-Cibuta (M=33; SD=185;
max="721) and El Pinito (M=45; SD =142; max=632) had
among the highest variation, whereas borderland ranges in
the United States tended to exhibit less variation with distri-
butions often skewed toward higher values (eg, Huachuca
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175 87
949 64

5639 27
924 18
0 0

84 10
748 12
150 3
8675 22

(M=77; SD =88; max=809) and Animas (M=54; SD=102;
max = 743; Figure 2B).

Vegetation, land management, and fire severity
across climate gradients (Question 2)

The PC1 gradient represented a transition from earlier
spring onset and higher temperatures typical of lowlands to
later spring onset and cooler temperatures that characterize
montane environments. In general, PC1 values were lower in
Mexico corresponding to generally lower maximum eleva-
tions of mountain ranges to the south (Figure 3A and B).
Grassland, Desertscrub, and Thornscrub (found only in
Mexico) had much lower values along this gradient. In con-
trast, values were higher for mesic forests and woodland
types that tend to occur at higher elevations and latitudes,
especially mixed conifer and spruce-fir forests, which occur
mostly or completely in the United States (Figure 3A). True
chaparral, which only occurs in the United States, had mod-
erate values along the gradient.

Along the PC2 gradient, vegetation types mirrored PC1
density distributions, with some distinctions in location and
interpretation of heat moisture and precipitation (Figure 3C
and D). In the United States, spruce-fir forests occur in envi-
ronments with lower heat moisture and more precipitation,
transitioning to dry forests where conditions are somewhat
higher in heat moisture but lower in precipitation. In Mexico,
thornscrub occurs midway on the PC2 heat moisture/precipi-
tation gradient; while grasslands and desertscrub in both coun-
tries, as well as chaparral in the United States, have relatively
higher heat moisture and lower precipitation.

Land tenure classes in the United States were unevenly dis-
tributed along PC1, with BIA, DOI, and state lands predomi-
nant at the lower to middle portions of the PC1 gradient
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Figure 2. Number of fires during the period from 1985 to 2017 (A), and dNBR values for each mountain range, ordered from north to south (B).

(Figure 3E and F). As the gradient shifts to later spring onset
and cooler temperatures, these tenure classes are less common
and Department of Defense (DOD) and USFS classes become
more common. The USFS is the only tenure class at the upper
end of the gradient where cooler temperatures and later spring
are common. In Mexico, ejidos, private, and protected areas are
present across the lower to middle range of this environmental
gradient (Figure 3F). Values for ejido lands were lower in areas
with relatively later spring and lower mean annual temperature,
whereas protected areas were more common in those condi-
tions, indicating distributions at low and high elevations and
latitudes, respectively.

Along the second gradient (PC2), USFS and DOD lands
were common at the lower to mid-range, where heat moisture
is relatively low and annual precipitation is relatively high
(Figure 3G and H). A diversity of land tenure classes occupies
the middle to upper range of PC2; DOI and state lands were
present at the upper end of the gradient in the United States
(ie, higher heat moisture and lower annual precipitation). In
Mexico, land tenure classes overlap across the range of environ-
ments present from the middle to upper range of the gradient
(Figure 3H).
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High-severity patterns (ie, sites with remarkable prefire
to postfire changes) were closely related to environmental
gradients along PC1, based on model statistics for both
nations (34.7% and 43.6% deviance explained for Mexico
and United States respectively; Figure 4A and B). High-
severity patches were sparse or absent in places with early
growing seasons and warmer annual temperatures. Midway
along the PC1 gradient, patterns became more variable,
especially for fires in Mexico, but trends indicated low over-
all amounts of high severity. In general, high severity
increased along PC1 gradient; however, the steep upward
slope in Mexico was driven by a single outlier at the high
end of PC1. High severity in several US fires at the upper
end of PC1 (cooler temperatures, later spring) resulted in a
steep upward trend. The range in high severity was greater
for different threshold values for most fires in Mexico versus
the United States (Figure 4A and B) consistent with the
heterogeneity of dNBR values noted in section “Regional
patterns of burned area, fire frequency, and fire severity.”
Mexico fires exhibiting variability in severity composition
with different threshold classifications were located within
the middle portions of PC1 and PC2.
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Figure 3. Histogram density plots of vegetation types (A, B, C, and D) and land tenure classes (E, F, G, and H) across PC1 (A, B, E, and F) and PC2
(C, D, G, and H) climate gradients. Data were plotted separately for the United States (A, C, E, and G) and Mexico (B, D, F, and H) to illustrate the

difference in distributions and where unique vegetation types occur.

The heat moisture-annual precipitation gradient (PC2)
was a good predictor of high-severity fires in the United
States (deviance explained=53.9%) (Figure 4C). A steady
downward trend was observed as climate environments
moved from lower to higher heat moisture and from higher
to lower precipitation. In Mexico, however, high severity had
a significant but weaker relationship with PC2 (deviance
explained =5.09%). Overall, high-severity composition of
fires in Mexico was low along this gradient, based on the
model fit line (Figure 4D).
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Of areas that burned, those that burned only once were
most common and occurred across a broad range of PC gra-
dients (Figure 5A to D). Areas with late spring and lower
temperature (PC1) and heat moisture and higher precipita-
tion (PC2) burned twice during the study period. Vegetation
types at these locations were mixed conifer and spruce-fir
forests (Figure 3A; Table 4), and tenure was primarily USFS
with some BIA and private land (Figure 5A; Table 4). Areas
that burned twice were located in more central portions of
the PC gradients in several vegetation types, under a variety
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space for fire overlaps in the 2 countries; some environments were unique.
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and Mexico (lower) to help identify unique patterns.

of tenures (Figure 3; Table 4). Highest fire frequency
(mean = 2.4) was observed in grasslands under state or DOI
management and in pine-oak forests in protected areas in
Mexico (Table 4).

The shortest fire return intervals were rare, but places that
burned at intervals of 5.5 to 10years occurred in warmer, drier
environments in both the United States and Mexico (Figure 6).
In the United States, longer fire return intervals generally
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occurred in areas with higher PC1 and lower PC2 values
(Figure 6A and C,Table 4). In Mexico, longer fire return inter-
vals (mean 16-20years) were observed in pine-oak forests;
maximum intervals of 21 to 25 years occurred in Madrean ever-
green forests and woodlands and pine-oak forests on both ejido
and private lands (Figure 6; Table 4). Intervals of 26 to 28 years
were also rare but did occur in scattered locations across cli-
mate, vegetation, and tenure.
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Table 4. Number of times burned, mean fire return interval, and mean principal component values for vegetation types under various land tenure
classes. Statistics are based on a random sample of point locations that burned more than once during the study period (1985-2017).

LAND TENURE CLASS? TIMES BURNED MEAN FIRE RETURN INTERVAL CLIMATE GRADIENT

MEAN MAX MEAN MIN MAX SD PC1 (MEAN) PC2 (MEAN)

Spruce-fir forests
USFS 2.0 2.0 0.0 13.0 13.0 13.0 0.0 0.9 0.1

Mixed conifer forests

BIA 2.0 2.0 NA 3.0 3.0 3.0 NA 0.5 0.6
Private 2.0 2.0 0.0 17.0 17.0 17.0 0.0 0.6 0.4
USFS 2.0 2.0 0.0 151 1.0 21.0 4.8 0.7 0.3

Pine-oak forests

Ejido 2.0 2.0 0.0 18.6 6.0 24.0 8.0 0.5 0.4
Private 2.3 4.0 0.5 12.2 4.0 24.0 3.7 0.4 0.5
Protected 2.9 4.0 0.8 13.5 7.0 26.0 6.1 0.4 0.4

Evergreen forests and woodlands

BIA 2.0 2.0 NA 7.0 7.0 7.0 NA 0.2 0.6
DOD 2.0 2.0 0.0 24.0 24.0 24.0 0.0 0.3 0.6
DOI 2.3 3.0 0.4 14.7 5.0 28.0 6.5 0.4 0.6
Ejido 21 3.0 0.3 13.6 5.0 25.0 8.2 0.4 0.5
Private 2.2 4.0 0.4 10.4 1.0 28.0 5.7 0.3 0.5
Protected 2.2 3.0 0.4 14.6 2.0 27.0 6.5 0.4 0.5
State 2.2 3.0 0.4 10.6 5.0 28.0 6.7 0.3 0.6
USFS 21 4.0 0.3 10.5 1.0 27.0 6.0 0.4 0.5
Grasslands
DOI 2.5 4.0 0.6 9.7 4.5 15.0 3.3 0.4 0.7
Private 2.2 3.0 0.4 12.0 4.5 17.0 4.7 0.4 0.7
Protected 21 3.0 0.3 11.0 3.0 23.0 5.2 0.3 0.7
State 24 3.0 0.5 8.1 6.0 15.0 2.6 0.4 0.7
USFS 2.0 2.0 0.0 9.1 3.0 15.0 41 0.3 0.6
Thornscrub
Private 2.0 2.0 0.0 13.4 10.0 14.0 1.5 0.2 0.4
Desertscrub
DOI 2.0 2.0 0.0 4.0 4.0 4.0 0.0 0.4 0.8
Private 2.0 3.0 0.2 13.9 5.0 18.0 3.9 0.4 0.6
State 2.0 2.0 0.0 23.3 9.0 28.0 9.5 0.3 0.8
USFS 21 3.0 0.3 11.9 3.0 28.0 5.0 0.4 0.6

al and tenure classes: BIA, Bureau of Indian Affairs; DOD, Department of Defense; DOI, U.S. Department of the Interior, Private, Protected (Protected Areas in Mexico),
State; USFS, United States Forest Service.
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Discussion

Our analyses across this vast, culturally and ecologically diverse
region illuminates important contemporary patterns of fire
occurrence and fire effects and how they have varied from those
experienced historically. Results of this study, in combination
with recent work on traits and spatiotemporal distribution of
recent fires in this large region of high conservation value!®1
are especially significant in Mexico, where past studies in the
Sky Islands region were limited to only a few small areas.?>2772
Understanding fire regimes across climate gradients that
underpin plant community composition and structure can aid
in evaluating the potential impacts of human activities on
fire.?! In the middle zone of the climate gradient, the Nearctic-
Neotropical transition encompasses forest and shrub commu-
nities that are more amenable to fuel management (or
restoration activities). In contrast, forests and desert communi-
ties in extreme climates are subject to increased fire frequency
from human activities, invasive species, and climate change
that can result in dramatic shifts in vegetation communities.
Differences observed between recent fire characteristics and
expectations based on historical information highlights the
many ways past human-ecosystem interactions, land tenure,
and bioclimatic settings can interact to influence fire regimes.
Addressing interactions between land use, climate, and fire is
critical for fostering dialog among diverse stakeholders and
guiding restoration and land management objectives, especially
in areas at risk of high-severity fire.

Regional overview

Recent fires influence landscape pattern and process across the
Sky Islands region. Numerous fires occurred during the study
period and burned >10000km? of land, with over 25% of areas
experiencing more than one fire during the period. Average fire
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severity was low during the study period across the region, with
a few notable exceptions. That is, except for a few fires in cold/
wet sites that occur exclusively in the United States, most other
fires average less than 10% high severity within the fire perim-
eter (Figure 4). In all, less than 28% of the study area burned
across a period of 27years, excluding vegetation types in
warmer climates that are not adapted to fire such as desertscrub
and thornscrub. Fires in grasslands were much less frequent
than expected, suggesting an overall fire deficit (ie, lack of fire)
and the need to promote fire in these warm, dry environments
at lower elevations. In contrast, fire was more common in some
cooler mesic environments that historically burned very infre-
quently, suggesting a fire surplus. The occurrence of fires across
wide ranging environments and diverse ownership, tenure and
land use make interpretation of the fire-regime complex.

Sky Islands adjacent to the United States-Mexico border
displayed some novel contemporary fire-regime characteristics.
Mountain ranges along the border had the greatest number of
fires and mix of severities (Figure 2), with previous research
showing high variation of fire size and shape,’ and ignition
dates” outside the normal fire season. Such contemporary fire-
regime characteristics may be attributed, in part, to human
activities. This includes a highly heterogeneous mix of land
uses along the border, high population densities in border
towns, and immigration policies that funnel movements of
immigrants who use fire for cooking and warmth, which pro-
vides ignition sources, into remote areas.” Fire effects skewed
toward higher severity in the Sky Islands just north of the
United States border, which are focal areas for immigrants, and
mixed and lower severities in Mexico, where immigrant traffic
is presumably lower. Apart from anthropogenic ignition
sources, the differences in observed fire severity between
United States and Mexico are related to differences in histori-
cal legacies of land management, fire use, fire suppression, and



14

Air, Soil and Water Research

fuel accumulation. Communities living near borderland ranges
are likely most impacted by alteration of ecosystem services,”
including those influenced by wildfire. Information on current
tuel conditions and fire history can help guide fuel-reduction
treatments and manage wildfires in areas near human commu-
nities that are at greatest risk of hazardous fire, and foster con-
tinued burning in areas of Mexico that benefit from frequent,
low-severity fires.

One of the primary ways that people influence ecosystems is
by altering the location and timing of fire.”® A focus on anthro-
pogenic alterations to fire regimes in the Madrean Sky Islands
has added benefits toward restoration because of the potential
to highlight the relevance of traditional knowledge systems and
practices. Sustained use of fire for active management of forests
and woodlands was practiced historically by native peoples of
the American Southwest for propagation of wild plants and
crop cultivation,’””8 and such management supported a con-
tinuous frequent fire regime in some locations throughout the
19th and 20th centuries.”89 Recent efforts in Mexico seek to
reconcile more recently adopted fire-fighting efforts with the
ecological use of fire and community fire management.!3
Systems based on traditional knowledge have evolved to work
in concert with social and ecological conditions,!* and thus it is
possible that traditional knowledge and practice may provide
management alternatives that restore ecosystems as climatic
conditions change.

Restoring natural fire regimes to the Madrean region has
important implications for wildlife conservation. Wildlife in
these systems have evolved in the presence of frequent fire,
which helps foster habitats for many species and promotes
landscape heterogeneity.8182 Landscape heterogeneity from
varying fire severities, frequencies, and sizes can lead to
increased biodiversity,®384 but responses to burn severity can
differ based on historical fire regimes,® times since fire,% and
prefire conditions linked to timber harvest.8” Fire is important
for nutrient cycling®® and invigorating vegetation growth in
ways that foster low shrubby, herbaceous, and grassy vegetation,
which provides important food and cover for a multitude of
wildlife species,’*% including breeding birds.”»*? Hence,
ensuring land management practices that promote (restore)
and maintain natural fire regimes, combined with other active
restoration measures are complementary and essential for long-
term maintenance of biodiversity and ecosystem services.

Implementation of landscape-scale restoration planning
and subsequent actions in the study area, with a focus on fire,
requires binational cooperation and coordination between
land management agencies, tribes, and private and communal
landowners. Moving forward, it is critical to continue to
engage a wide range of stakeholders in the United States and
Mexico, including First Nations and local communities. Two
recent examples from both sides of the international border
showcase efforts to implement multistakeholder fire treat-
ments with participation of local communities in the Sky
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Islands of Sonora® and in the FireScape program in Arizona
(azfirescape.org).

Climate, land use, and vegetation conditions where
fire characteristics diverge from historical regimes

Mesic high elevation forests. Fires with the greatest proportion
of high-severity areas occurred predominantly in Mixed Coni-
fer and Spruce-Fir forests in cooler, wetter climates of the
United States. In these settings, such fire characteristics largely
match historic expectations for severity;*** however, our anal-
yses found that >85% spruce-fir and mixed conifer forests in
the Sky Islands burned during the study period and that fires in
spruce-fir forests were much more frequent than they were
historically.*

Although high-severity fires are part of the historical fire
regime within these vegetation types, the size, and frequency of
these fires could have deleterious effects on persistence of these
forests, which have high conservation value.”* While it is dif-
ficult to correlate the impact of land management and histori-
cal fire suppression on high-severity fire events, increased fire
frequency combined with recent drought events suggest cli-
mate forcing as a likely mechanism.?-%7 Spruce-fir and mixed
conifer systems evolved with high-severity fire and are able to
slowly regenerate and recover during fire-free periods, which
can last decades to centuries. Extreme drought required to fos-
ter fire in mesic spruce-fir forests were historically rare’® but
are becoming more common, particularly in southwestern
North America® where they augment risk of type conversion
into forest communities that are adapted to more frequent fire
and drought.10

Frequent fire patterns observed within spruce-fir forests will
likely continue unless management actions may reduce some of
the factors that increase risk. Reducing future fire activity in
remaining stands could be accomplished by reducing fuels in
adjacent mixed conifer and pine forests to prevent fire spread
into upper elevations. While forest restoration in mixed conifer
forests has also been proposed to reduce high-severity fire risk
for Mexican spotted owl habitat, uncertainty remains with the
short-term impacts versus potential long-term benefits of these
treatments on this species’® and effectiveness of treatments in
mitigating fire behavior.10!

Madrean Evergreen Forests and Woodlands. Madrean evergreen
forests and woodlands are the dominant vegetation type across
the region and in the adjacent Sierra Madre Occidental, and
contribute significantly to regional biodiversity.10219 More
than half the total area burned in the study region occurred
within this vegetation type which is supported by warm to
moderate temperatures and relatively early onset of the grow-
ing season (Figure 3). However, overall area burned included
only 27% of total coverage of this vegetation type, indicating an
overall fire deficit. Areas that burned multiple times had
slightly less-frequent fire than historical intervals of 3 to
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10years. While approximately 50% of this vegetation type in
the region is privately owned, only approximately 22% of pri-
vate lands burned during the study period, which contrasts
sharply with 49% that burned on USFS lands and frequent fire
observed on DOI lands (5-28years; Table 4). Fires were even
less common on ejido lands in Mexico, with only 15% burned
and high variability in high-severity fire. These contrasts sug-
gest that variation in land management practices on private
versus ejido lands may have driven these fire patterns, with
important implications for restoration.

The fire deficit on ejido and private lands suggests activities
such as grazing may have altered the abundance and spatial con-
tinuity of fine fuels, thereby precluding fire spread. Such drivers
had major impacts on fire regimes in southern Arizona after the
1890s,2446 and approximately 40years later in a northern Sky
Island in Mexico.?” Observed differences between private and
ejido lands in Mexico may be due to more intensive manage-
ment of communal lands, lower elevation settings and thus
greater aridity, or closer to human population centers, which is
associated with more intensive land uses. Given limited under-
standing of the ecology and fire histories of Madrean evergreen
forests and woodlands, high relative abundance of this vegeta-
tion type in the study area, and resilience to fire (shown, for
instance, through resprouting), they present a unique opportu-
nity for land managers to experiment with different restoration
strategies to achieve desired future conditions.0410>

Grasslands. Historically, frequent low-intensity fires were rela-
tively common in the warm, dry environments that support
grasslands in the region (Figure 3), but livestock grazing since
the late 19th century effectively reduced fine fuels that foster fire
spread, interrupted the fire cycle, and ultimately contributed to
changes in species composition and structure.!%197 In the past,
grassland fires were important ignition sources for fires in higher
elevation Madrean woodlands and forests.*” We found that only
a small percentage of Grasslands experienced fire within the
study period, and those that did burn in the United States
within  the historical
(x =8.1-9.7 years) with slightly longer intervals in Mexico

showed fire frequencies range
(x =11-12 years). Restoration of grassland fire regimes is a
management priority in some US landscapes where private land-
owners and federal agencies often collaborate on managed burns
in an effort to reduce woody vegetation cover, increase native
grass cover, and reduce stream channel erosion.19%110 However,
elsewhere in the region livestock grazing may be contributing to
the observed fire exclusion, particularly in Mexico and within
state lands in the United States, where fire exclusion is likely a
key factor in reduced fire frequency in the adjacent uplands.

Vegetation types where fire characteristics are
similar to historical regimes

Fire regimes observed in some pine-oak forests, prevalent in
wetter and cooler environments in the upper elevations of
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Mexico, appeared to be within the range of historical variabil-
ity. In fact, 64% of these forests burned at least once during the
study period, and the greatest number of reburns was observed
in protected areas like the Area de Proteccién de Flora y Fauna
Ajos-Bavispe in Mexico. On private lands in Mexico, fire fre-
quency roughly corresponded with historic fire-return intervals
but was less frequent than that found historically on ejido lands
(18.6years), which suggests land management has limited fire
in some areas. Frequent fires observed in pine-oak forests in
Mexico, suggest a need to restore frequent fire in other vegeta-
tion communities across the region and maintain fire regimes
in areas with mixed land tenures. Therefore, it is critical to
understand the environmental conditions that set the stage for
these fires, as well as how private and communal landowners
engage with fire when they occur, to design a robust regional
fire strategy that can be implemented in other areas.

The mix of high- and low-severity fires in pine-oak forests
suggest that these communities may still be at risk of conver-
sion from high-severity fire. Recent high-severity fires may
limit pine regeneration and drive conversion of mixed pine-oak
stands to oak woodlands in some places.!!! Pine regeneration
requires significant fire-free intervals,!*? and thus reburning
high-severity patches may be detrimental to regeneration.
However, managing for continued burning within areas that
burned at lower severities can help to reduce tree densities and
accumulated fuels.

Conclusions

Until recently, our understanding of contemporary fire regimes
in the Madrean Sky Islands was derived from data and research
conducted primarily in the southwestern United States. We
investigated wildfire regimes in both Mexico and the United
States and across a range of land tenure types, resulting in new
findings and a more complete picture of regional fire regimes
that can help inform fire management, restoration, and regional
conservation planning.

We identified areas in upper-elevation pine-oak forests of
Mexico with characteristics similar to estimated historical fire
regimes, while high-elevation spruce-fir and mixed conifer
forests in the United States appear to be burning more fre-
quently than historically, which represents a potential threat
to these regionally rare vegetation types. Our results suggest
that while fire remains an active natural disturbance in some
parts of the Madrean Sky Islands, human land uses and the
legacies of fire suppression continue to shift fire regimes away
from historical patterns. Woodlands and grasslands experi-
enced an overall fire deficit compared to historical, suggesting
a need to implement large- and local-scale fire treatments in
these vegetation types. Sky Islands on the United States-
Mexico border exhibited the greatest fire-regime variability
corresponding to human activities; communities along the
border may be especially vulnerable to wildfire risks, and
cross-boundary, multijurisdictional fire management may be
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necessary to counter the potentially deleterious effects of pos-
sible high-severity fire in remaining unburned areas.

Restoring wildlife habitats and landscape connectivity, pro-
tecting water sources, and sustaining cultural and economic
values associated with traditional livelihoods can benefit from
restoration programs that include fire. Regional conservation
partnerships like Sky Islands Research Collaborative, Malpai
Borderlands Group, and Wildlands Network Mexico, are
important for fostering regional and international relation-
ships and collaborations necessary to achieve these goals.
Promoting connections across landscapes and people in the
borderlands through restoration, collaborative conservation,
and communication is essential for sustaining these land-
scapes into the future.
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