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Introduction
In the mid-1980s, atmospheric temperatures were detectably 
and dramatically increasing in most parts of the world with 
projections indicating warming of 2.6 to 4.8 °C by the year 
2100 (Intergovernmental Panel on Climate Change [IPCC] 
et al., 2013). Changing climates are now undeniably real and 
perceptible, and global warming is an immediate global chal-
lenge that can affect other spheres such as greenhouse emis-
sions, soil quality, or land uses (Dore, 2005; Ghorbani et al., 
2021; Shimizu et  al., 2019). Due to the warming-induced 
change in average temperatures, precipitation variability and 
seasonality, unproductive nature of climate change is a key 
variable that can provide insights into the dynamics of the 
Earth’s ecosystems over the 20th century; an era of industri-
alization, population growth, and greenhouse gas emissions 
that has generated serious global threats to the integrity and 
resilience of the Earth’s ecosystems (Batllori et  al., 2013). 
The increasing global temperature stems primarily from 
greenhouse gas emissions (Y. Yan et  al., 2019). The global 
trend can be consequently interpreted and perceived by local 
factors and yields diverse shifts in components of regional 
climates, and thus the potential for significant departures 
from expected local conditions (Lee et  al., 2015; Rebetez, 
1996; Savari et al., 2021).

Due to these reasons, the arid and semi-arid regions and 
their sensitive and vulnerable ecosystems are heavily impacted 
by global warming, reducing species richness, degrading wild-
life population structures, and changing the behaviors of and 

activities among species (Kharuk et  al., 2007; Pereira et  al., 
2010; Rathore et al., 2019; Shagega et al., 2019). As an inevita-
ble result of climate change, these regions have also been expe-
riencing and will continue to undergo dramatic variations in 
the patterns of precipitation at least through the 21st century 
(Afreen & Singh, 2019). The Intergovernmental Panel on 
Climate Change’s (IPCC) Fifth Assessment Report (AR5) 
provides an overview of the global-scale changes and potential 
future impacts of climate change, stating that the negative 
effects of these changes outweigh the positive ones. For 
instance, precipitation will tend to decrease in most parts of the 
world and it will be accompanied by significant adverse impacts 
on vegetation that may otherwise help to reduce greenhouse 
gas concentrations and help to return to and maintain stable 
climates (Cooper, 2019; Duffy et al., 2015; IPCC et al., 2013; 
T. Yan et al., 2019).

Climate is a key factor influencing the global distribution of 
vegetation (Burry et al., 2018; Chuai et al., 2013; Y. Zhang et al., 
2013). Recent research shows that vegetation dynamics and 
variability are useful indicators of atmospheric anomalies and 
interactions (Ali et al., 2019; Hou et al., 2019). Hence, under-
standing how climatic factors affect vegetation requires an in-
depth knowledge of the relationship between these factors and 
vegetation (Muradyan et al., 2019). In this case, remote sensing 
(RS)-based indices provide simple and cost-effective means for 
the spatiotemporal investigation of the connection between 
vegetation and its influencing factors (Chu et  al., 2019; 
Eskandari et al., 2016). Vegetation is indirectly dependent upon 
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precipitation, temperature, drainage, mineralogical composi-
tion, soil type, and other factors that influence plant growth 
(Burry et al., 2018).

Foremost among the RS vegetation indices is the normal-
ized difference vegetation index (NDVI), which accurately 
reflects the status and vigor of vegetation and its characteristics 
using reflective signatures (Hou et  al., 2019; Lamchin et  al., 
2018). For example, in a study on the relationship between veg-
etation cover and climatic data, Hou et al. (2019) highlighted 
the value of NDVI for determining the effects of variations of 
precipitation and temperature as measures of climate and 
global warming on vegetation cover. Chu et al. (2019) studied 
the long-term response of vegetation to climate change and 
found a strong consistency between changes in seasonal vege-
tation from NDVI and climate change. These and many other 
studies in this field have acknowledged the capabilities of anal-
yses of long-term NDVI to reflect changes in land surface 
characteristics and the responses of ecosystems to changes in 
climates.

It is worthy to highlight that unpredictable temperatures 
and precipitation variability are among the most severe conse-
quences of climate change. They have been found repeatedly to 
be associated with the risks of floods and droughts and reduced 
agricultural productivity and plant diversity (Choo et al., 2019; 
Croke et al., 2017). Hence, it is both scientifically and practi-
cally imperative to deepen our understanding of the spatiotem-
poral variability of precipitation and temperature (Alimoradi 
et  al., 2017; Tabari & Talaee, 2011; Tošić, 2004) and their 
potential future impacts on vegetation under different scenar-
ios. Although much research has been directed toward the spa-
tiotemporal variability of changing climates, the evidence is not 
yet clear about their future impacts. In general, studies in this 
field have predicted contradictory conditions regarding fluctu-
ating temperature patterns and precipitation variability. 
Therefore, this study assesses past changes of temperature, pre-
cipitation, and NDVI during the period from 1984 to 2015 to 
project future changes and the impacts on vegetation dynamics 
for two future periods from 2014 to 2045 and 2045 to 2075. To 
achieve these goals, the Sen’s slope estimator, the Mann-
Kendall test, and Pearson’s correlation test were used. After 
that, we hypothesize that future trends in precipitation and 
temperature could be accurately estimated using the Canadian 
Earth System Model (CanESM2) model and then used to 
estimate the NDVI trend for two future periods.

Material and Methods
This study was conducted in the Khuzestan Province, located in 
the south-western part of Iran, north of the westernmost part of 
the Persian Gulf. With an area of about 63,238 km2, this prov-
ince extends from 20° to 30°N and 47.7° to 50.5°E (Figure 1). 
Most of the province is covered by the Zagros Mountains for-
ests, which are drained by two major rivers: the Karun and the 
Karkheh. These rivers form a broad alluvial fan in the southern 

portion of the province. Khuzestan’s rivers account for approxi-
mately 30% of the country’s surface waters (Moazami et  al., 
2014). The plains of this province, however, have a desert cli-
mate with very warm and dry summers. Precipitation in this 
province falls mostly during the winter and ranges from 300 
mm in the plains to 500 mm toward highlands (Ghaemi et al., 
2017).

Data used

Remote sensing data. NDVI was used to assess the trends of 
vegetation cover over time. NDVI is one of the most widely 
applied and useful RS-based vegetation indices (Gouveia et al., 
2017; Tucker et al., 2005). It is highly sensitive to vegetation 
cover changes but less sensitive to the effects of the atmos-
pheric and soils (except for areas with sparse vegetation). NDVI 
is calculated using equation (1)

NDVI =
(NIR - R)

(NIR+R)
 (1)

where NIR is the reflection of near-infrared wavelength and 
R is the reflection of visible red wavelength (Pinzon & 
Tucker, 2014). NDVI values range from −1 to +1. Higher 
values indicate denser vegetation covers (Higginbottom & 
Symeonakis, 2014). Most previous studies have used NDVI 
primarily for the analysis of vegetation growth (H. K. Zhang 
& Roy, 2016). Maps of NDVI derived from data gathered by 
NOAA’s Advanced Very High-Resolution Radiometer 
(AVHRR) at a resolution of 8 km were obtained from the 
NASA Global Inventory Modelling and Mapping Studies 
(GIMMS) website (https://ecocast.arc.nasa.gov/data/pub/
gimms). The NASA GIMMS AVHRR Global NDVI maps 
are geometrically and atmospherically calibrated and offer 
great opportunities for investigation of the effects of climate 
change on vegetation and for monitoring vegetation dynam-
ics (Pinzon & Tucker, 2014). The maximum value composite 
(MVC) approach was applied to these maps to produce 
annual GIMMS NDVI maps (Gouveia et  al., 2017; Zhao 
et  al., 2018). Moreover, only pixels with mean annual 
NDVI > 0.1 were included in the vegetation analysis (Chu 
et al., 2019; Qi et al., 2019).

Climatic data. Future decadal changes in the province’s tem-
perature and precipitation were projected using the Statistical 
Downscaling Model (SDSM 4.2). This model provides an 
effective means for statistical downscaling of the general circu-
lation model (GCM) outputs. SDSM 4.2 was developed by 
Wilby and Dawson (2013). The downscaling process with this 
model finds a meaningful relationship between the climatic 
variables recorded at ground stations (predictants) and large-
scale atmospheric variables (predictors)

Large-scale atmospheric variables including the National 
Centers for Environmental Prediction (NCEP) predictors 
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for the period 1961–2005 that covers our baseline period 
and the outputs of the large-scale CanESM2 (Wu et  al., 
2017) under available scenarios for the baseline period and 
two future projection periods (2016–2045 and 2046–2075) 
were obtained from the Canadian Climate Data and 
Scenarios (CCDS) website (Table 1). The predictors of this 
model were normalized by the mean and standard deviation 
of the daily precipitation and temperature data of Khuzestan 
Province’s synoptic stations, which were obtained from the 
Iranian Meteorological Organization for the years 1984 to 
2005. Partial correlation analysis was conducted among the 

predictors and between the predictors and the predictants to 
identify and select the most suitable predictors with the 
strongest significant relationships with the observed pre-
cipitation and temperature at the significance level of 5%. 
The selected predictors were then used to build a multiple 
regression model for each month of the year for each 
station.

The performance of the CanESM2 model in predicting 
daily precipitation and temperature was evaluated by  
R2 (equation [2]) and root mean square error (RMSE)  
(equation [3])

Figure 1. Location of the study area showing the topographical conditions, river network, synoptic stations, and wetlands of the Khuzestan province 

(bottom). 1 = Ahvaz station, 2 = Abadan station, 3 = Bostan station, 4 = Dezful station, 5 = Izeh station, 6 = Mahshahr station, 7 = Masjedsolyman station, 

8 = Omidaghjari station, and 9 = Ramhormoz station

Table 1. Specifications of the CanESM2 General Circulation Model Available as the Input of SDSM4.2 Software.

CO2 COnCEnTRATIOnS RADIATIvE fORCInG (W/M2) PROJECTIOn UnDER 
SCEnARIO

RESOLUTIOn MODEL

490 PPM before 2100 
and then reduce

Its maximum value to 3 W/m2 and 
then reduced

RCP2.6 2.8125° × 2.7906° CanESM2

690 PPM remains stable 
after 2100

Its maximum value to 4.5 W/m2 
after 2100 remains stable

RCP4.5

1370 PPM to 2100 More than 8.5 W/m2 in 2100 RCP8.5

CanESM2: Canadian Earth System Model; PPM: Parts per Million; RCP: representative concentration pathway.
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where it is the observed value, Ft is the predicted value and n is 
the number of data. Therefore, the appropriate range of evalu-
ation coefficient R2 is presented in Table 2. Also Figure 2 shows 
the steps undertaken for climate downscaling.

Finally, according to the statistical equations and the regres-
sion model fitted between large-scale NCEP predictors and 
observed precipitation and temperature, the downscaling pro-
cess was performed on the CanESM2 model outputs under 

RCP2.6, RCP4.5, and RCP8.5 scenarios. Finally, station-scale 
daily precipitation and temperature data were simulated for the 
two future periods (Figure 2).

Trends of vegetation cover and climatic variables. The Mann-
Kendall Test statistic, S, is estimated by equation (4) and the 
significance of the trend is determined by calculating the z-sta-
tistic (equation [5])
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in which σs is the standard deviation of the data, n is the num-
ber of data, Yj and Yi are the data values for consecutive periods, 
sgn(Yj – Yi) is 1, 0, or −1, implying an ascending trend, the lack 
of a trend, and a descending trend, respectively. Also, var(s) is a 
variance of the S-statistic (Zheng et  al., 2018). The trend is 
significant at the 5% level if z ≥1 96.  (Sen, 1968). The trend 
magnitude is also estimated by using the age estimator slope 
(Tabari & Talaee, 2011). In other words, the time series is con-
sidered a linear trend with noise, and the estimator (Theil-Sen 
[β]) can be used to determine a change in the slope of the 
hydrological time series, vegetation cover time series, and 
methodological time series xi (I = 1, 2, . . ., n) (Tabari & Talaee, 
2011) (equation [6])

Figure 2. Steps performed for precipitation and temperature downscaling using SDSM4.2.

Table 2. The Coefficient of the Model’s Assessment and the Range of 
Coefficient Identification (Moriasi et al., 2007).43

CLASS COEffICIEnT Of DETERMInATIOn (R2)

very good .866 ⩽ R2 < 1

Good .733 ⩽ R2 < .866

Satisfactory .6 ⩽ R2 < .733

Unsatisfactory R2 < .6
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in which Xi and Xj represent data points at times i and j, respec-
tively, and β represents the slope of the trend line whose posi-
tive (negative) values imply an ascending (descending) trend of 
the time series.

Linear regression between climatic parameters and vegetation 
cover. After fitting the CanESM2 model’s outputs, the rela-
tionship between NDVI and precipitation and temperature 
predictions was determined by regression analysis. The model 
is shown in equation (7)

NDVI b b P b T= + × + ×� �  (7)

Where P is monthly precipitation, T is monthly tempera-
ture and b, b1, and b2 are undermined coefficients determined 
by the least square method. After analyzing the trends of cli-
matic data and NDVI, the association between these variables 
was investigated using correlation analysis in which NDVI was 
the dependent variable and precipitation and temperature were 
the independent variables.

Climatic parameters are the most important factors influenc-
ing vegetation cover conditions. The assessment of the quantita-
tive relationship between vegetation cover pattern and climatic 
parameters is one of the main applications of remote sensing on a 
global and regional scale. Precipitation and temperature directly 
affect water balance and they are, in turn, two of the factors that 
are responsible for the variation in soil moisture and plant growth. 
The extended DeMartonne method from Rahimi et al. (2013) 
and Ahmadaali et al. (2021) was used for climate classification. 
According to mentioned classification, the climate of stations 1, 3, 
4, 6, 8, and 9 were Arid; and also the climate of stations 2, 5, and 
7 were Hyper-Arid, Mediterranean and Semi-Arid, respectively.

Predicting vegetation changes using climatic scenarios. Based on 
the relationships between precipitation and temperature and 
NDVI at each station, changes in the province’s vegetation 
were simulated under three scenarios from the fifth climate 
change report including RCP2.6, RCP4.5, and RCP8.5 for the 
periods 2016 to 2045 and 2046 to 2075 (Ortiz-Jiménez, 2018).

Results
Performance evaluation of CanESM2 climate 
model

The performance of the CanESM2 model was validated by com-
paring the model predictions made for the years 1984–2005 with 
data observed on the ground during this period. Table 3 shows 
the R2 and RMSE values computed between simulated and 
observed data. According to RMSE values, the least simulation 
error achieved for precipitation (6.60 mm) and temperature 
(1.50°C) occurred for data from the Mahshahr Station. These 
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findings are consistent with Pullens et al. (2019) which assessed 
the effects of climate change on European winter oilseed rape. 
According to their results, the best performing model was built 
for Czechia while the poorest performing was for Germany with 
RMSE values of 20.6 and 19.2, respectively. The predicted tem-
perature of the CanESM2 model was determined by statistical 
indices as very good in all synoptic stations of Khuzestan Province 
based on several studies (Choi et al., 2019; El-Samra et al., 2018; 
Moriasi et al., 2007; Worku et al., 2018). In terms of precipitation 
predictions, all stations fell into a very good class, except for 
Ahvaz and Abadan stations, which were classified as good.

Spatial distribution of precipitation, temperature, 
and NDVI in baseline (1984–2015)

The spatial distribution of the 31-year means temperature, 
NDVI, and precipitation values are shown in Figure 3(a) to (c), 
respectively. Interpolation of the temperature and precipitation 
data was performed using the inverse distance weighted (IDW) 
method. The temperature was found to be the highest in the 
south and lowest in the east and northeast of the province. The 
highest NDVI values were observed in the east, northeast, and 
adjacent to major rivers while the lowest values were concentrated 
in the south. The highest and lowest precipitation amounts were 
observed in the east-northeast and the south-southwest of the 
province, respectively. However, as other authors recently demon-
strated, the elevated variability of the different weather types in 
arid and semi-arid areas make these irregularities relevant to be 
considered when we interpret these results (Peña-Angulo et al., 
2019; Rodrigo-Comino et al., 2019).

Results of NDVI, temperature, and precipitation 
trend analysis for the period 1984–2015

Izeh Station received the highest amount of precipitation in 
the province (Table 4). This station, however, experienced the 

sharpest decline in precipitation (with a Z value of −2.73) over 
the past couple of decades. Masjed Soleiman Station was the 
second station experiencing a sharp precipitation decline. In 
general, precipitation in Khuzestan Province declined over the 
baseline period. Temperature decreased at Dezful, Masjed 
Soleiman, and Omidieh Aghajari stations. The highest tem-
perature decline was observed in Omidieh Aghajari station 
with a Z value of −2.88. This trend at the other stations was in 
line with the global trend of warming as it was demonstrated 
by other authors applying predictive models (Braganza et al., 
2004; Hansen et al., 2006, 2013; Pate, 2011).

In general, Khuzestan has experienced increasing tempera-
ture during the past decades. The sharpest decrease in NDVI 
was observed at Bostan Station at the significance level of 5% 
with a Z value of −4.11 while the largest increase was observed 
in Ramhormoz and Mahshahr stations with a Z value of 2.50. 
Except for Ramhormoz and Mahshahr stations, the vegetative 
cover is likely to be affected by precipitation because these 
parameters changed similarly across the province.

Regression relationship between vegetation cover, 
temperature, and precipitation

The correlation between NDVI and precipitation was nega-
tive at Ahvaz, Mahshahr, and Ramhormoz and positive at 
Abadan, Bostan, Dezful, Izeh, Masjed Soleiman, and 
Omidieh Aghajari. Of these, the statistical relationship 
between NDVI and precipitation at Omidieh Aghajari was 
the only that was significant. The NDVI–temperature rela-
tionship was negative at Ahvaz, Abadan, Bostan, Izeh 
Abadan, and Omidieh Aghajari, and of these, a significant 
relationship was observed only at Abadan (Figure 4). The 
NDVI–temperature relationship was positive, but statisti-
cally insignificant, at Mahshahr and Masjed Soleiman. It was 
negative in other stations (Table 5).

Figure 3. Mean spatial distribution of (a) temperature, (b) precipitation, and (c) nDvI for the period 1984–2015.
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Table 4. Trend of Temperature, Precipitation, and nDvI at the Stations 
of Khuzestan Province.

STATIOn PARAMETER z SIG.

Ahvaz Precipitation –1.92 ns

Temperature 4.31 ***

nDvI –2.27 ***

Abadan Precipitation –1.02 ns

Temperature 1.12 ns

nDvI –2.89 ***

Bostan Precipitation –0.37 ns

Temperature 1.49 ns

nDvI –4.11 ***

Dezful Precipitation –0.68 ns

Temperature –1.15 ns

nDvI –2.92 ***

Izeh Precipitation –2.73 ***

Temperature 5.36 ***

nDvI –1.15 ns

Mahshahr Precipitation –1.86 ns

Temperature 0.93 ns

nDvI 2.50 ***

Majsedsolyman Precipitation –2.26 ***

Temperature –0.03 ns

nDvI –0.67 ns

Omidaghjari Precipitation –0.34 ns

Temperature –2.88 ***

nDvI –0.41 ns

Ramhormoz Precipitation –2.20 ***

Temperature 4.15 ***

nDvI 2.50 ***

nDvI: normalized difference vegetation index; ns: nO TREnD.
***TREnD.

Future trends of NDVI and climatic variables 
relative to the baseline period

Under the RCP2.6 scenario, vegetation cover at Ramhormoz, 
Masjed Soleiman, Mahshahr, and Dezful stations will increase, 
compared with the baseline period, during the first future 
period, and during the second period (Table 6, Figure 5). 
Compared with the baseline period, precipitation at Ahvaz 
Station is projected to increase by 32.6% and 38.9% during the 
first and second future periods, respectively. The temperature at 

most stations would be expected to increase by 4%, but the 
increases at Abadan Station would be by 1.2% (first period) 
and 2.1% (second period).

Under the RCP4.5 scenario, vegetation coverage is pro-
jected to increase by at least 4% at the Ramhormoz, Masjed 
Soleiman, Mahshahr, and Dezful stations. In fact, the increase 
at the Mahshahr station in the first and second periods would 
be 26.1% and 42.3%, respectively. At other stations, vegetation 
would be expected to decrease during both periods. The Izeh 
station in the first and second periods will decrease by 8.4% 
and 13.9%. The temperature increases among all stations would 
be lowest in the first and second periods at the Aban (0.9% and 
3.9%) and Bostan (4.3% and 7.4%). Precipitation was projected 
to increase more rapidly during the first period than the second 
period. It was also projected to decrease to a greater degree dur-
ing the second period than during the first period. In the first 
period, the highest increase would occur at Ahvaz and Abadan 
(40.4% and 17.6%), while in the second period, the highest 
decrease would occur at Mahshahr and Izeh (27% and 23.9%).

Under the RCP8.5 scenario, vegetation cover would decline 
at Izeh and Ahvaz during the first period and at Ahvaz, 
Abadan, Bostan, and Izeh during the second period. In the first 
period, the largest decreases would occur at Izeh and Ahvaz 
(−9.5% and −8.3%) and at Izeh and Abadan (−20.1% and 
−19.7%) during the second period. The greatest increases of 
vegetation in both periods would occur at Mahshahr and 
Ramhormoz. Temperatures would increase at all stations. The 
lowest increases during both periods would occur at Abadan 
(1.5% in the first period and 8.7% in second) and Bostan (4.3% 
and 11.7%). During both periods, precipitation would decrease 
at most stations; the greatest in the first period would be at 
Mahshahr (−24.3%) and at Izeh (−37.9%) during the second 
period.

During the first future period under the RCP2.6, RCP4.5, 
and RCP8.5 scenarios, Izeh showed the largest expected tem-
perature increases (2.10°C, 1.97°C, and 2.19°C). The smallest 
increases would occur at Abadan (0.4°C, 0.33°C, and 0.48°C) 
(Figure 6). During the second period, the greatest temperature 
increases would occur at Izeh (2.39°C, 3.02°C, and 4.20°C) and 
smallest increases (.063°C, 1.20°C, and 2.34°C) would occur at 
Abadan. Average temperatures across Khuzestan Province 
were projected to increase under the three scenarios by 1.41°C, 
1.30°C, and 1.47°C in the first period and by 1.66°C, 2.26°C, 
and 3.41°C in the second period. Thus, the results show projec-
tions of increasing temperatures under the three scenarios.

Precipitation increased by 22.6%, 28.5% and 29.8% in the 
first period and by 40.7%, 35.3%, and 72.5% in the second 
period under the three scenarios. Precipitation was projected to 
increase at Abadan by 17.9% during the first period in scenario 
RCP2.6, and by 6.4% and 11.7% during the first period and 
7.9% and 28.8% during the second period under scenarios 
RCP4.5 and RCP8.5. It would increase at Omidieh Aghajari 
by 2.9% and 0.9% in the first and second periods in scenario 
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RCP2.6, and by 2.4% during the second period under scenario 
RCP4.5. With the exception of these two sites, precipitation 
would be expected to decrease at the other sites under all three 
scenarios and periods.

Vegetation is expected to increase at Dezful by 0.03, 0.03, and 
0.02 during the first periods under the three scenarios, and by 0.05, 
0.03, and 0.08 during the second periods. It would also increase at 
Mahshahr, at Masjed Soleiman, and at Ramhormoz. Vegetation 
cover was projected to decrease at the other five stations.

Climate change-based changes in NDVI

From 2016 to 2045, an increasing trend was projected for tem-
peratures at all stations and under all scenarios, except for 

Abadan, Bostan, Mahshahr, and Masjed Soleiman under the 
RCP2.6 scenario where there seemed to be no trends (Figure 
7). Precipitation was trending negatively at Mahshahr and 
Ramhormoz under the RCP8.5 scenario and at Dezful under 
the RCP4.5 scenario. The temperatures for the period from 
2046 to 2075 were unchanging at Ahvaz, Bostan, Dezful, Izeh, 
Mahshahr, Masjed Soleiman, Omidieh Aghajari, and 
Ramhormoz under the RCP2.6 scenario and decreasing at 
Abadan under the RCP2.6 scenario. On the other hand, Sen’s 
slope estimator indicated a positive increase at these stations in 
the future. Precipitation is projected to decrease significantly at 
Dezful and Izeh under the three scenarios. The trend of NDVI 
for the first period (Figure 7) decreased at Dezful and increased 
at Izeh with Z values of 2.02 and 2.073, respectively. During 

Figure 4. Correlation between nDvI, precipitation, and temperature during 1984–2015.
*Statistically significant relationship.

Table 5. Summary and Regression formula for the normalized vegetation Index Using Mean Annual Precipitation and Temperature for Each 
Station and for the Entire Study Set.

STATIOn EqUATIOn p vALUE R2 RMSE

Ahvaz 0.344 – 0.000033 × P – 0.00704 × T <.05 .1 0.01

Abadan 0.513 + 0.000042 × P – 0.01421 × T <.05 .3 0.01

Bostan 0.361 + 0.000175 × P – 0.0063 × T <.05 .03 0.08

Dezful –0.494 + 0.000064 × P + 0.03157 × T <.05 .2 0.04

Izeh 0.356 + 0.000009 × P – 0.00827 × T <.05 .06 0.03

Mahshahr –0.1039 – 0.000019 × P + 0.00545 × T <.05 .1 0.01

Majsedsolyman 0.017 + 0.000014 × P + 0.00468 × T <.05 .02 0.02

Omidaghjari 0.1530 + 0.000052 × P – 0.00318 × T <.05 .2 0.01

Ramhormoz –0.0812 + 0.000007 × P + 0.00411 × T <.05 .36 0.01

Total equation 0.119 + 0.000071 × P + 0.00018 × T <.05 .09 0.01

RMSE: root mean square error.
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Table 6. Percentage Change in nDvI and Climatic variables Compared to the Baseline Period.

InDEx STATIOn PERIOD 2016–2045 2046–2075

SCEnARIO SCEnARIO

2.6 4.5 8.5 2.6 4.5 8.5

Precipitation Ahvaz 1984–2015 32.6 40.4 46.4 38.9 52.1 86.5

Abadan 4.5 17.6 21.4 30.3 23.4 42.2

Bostan –9.6 –3.9 –7.7 –10.3 –17.8 –20.3

Dezful –10.1 –14.5 –13.9 –14.2 –22.8 –33.6

Izeh –12.8 –10.5 –13.8 –18.7 –23.9 –37.90

Mahshahr –15.0 –16.8 –24.3 –24.9 –27.0 –34.9

Masjedsolyman 5.4 5.6 6.5 3.2 0.7 –6.5

Omidaghjari 9.0 4.3 5.5 6.9 8.5 11.1

Ramhormoz –13.6 –11.7 –12.8 –19.7 –15.8 –30.3

Temperature Ahvaz 1984–2015 5.0 4.7 5.3 5.8 8.3 12.8

Abadan 1.2 0.9 1.5 2.1 4.3 8.6

Bostan 4.2 3.9 4.3 4.9 7.4 11.6

Dezful 6.0 5.5 6.1 7.2 9.6 14.2

Izeh 7.6 7.1 8.0 8.9 11.6 16.7

Mahshahr 5.9 5.9 6.7 7.1 9.5 13.7

Masjedsolyman 5.7 4.7 5.5 6.4 8.7 13.3

Omidaghjari 5.5 5.0 5.5 6.3 8.4 12.6

Ramhormoz 4.9 4.5 5.2 6.1 8.3 12.9

nDvI Ahvaz 1984–2015 –7.4 –7.4 –8.3 –8.7 –12.2 –19.2

Abadan –2.9 –1.6 –2.9 –3.9 –9.7 –19.7

Bostan –3.6 –2.6 –3.4 –4.2 –6.9 –10.1

Dezful 14.7 13.1 14.7 17.4 23.0 34.2

Izehr –9.1 –8.4 –9.5 –10.7 –13.9 –20.1

Mahshahr 25.1 26.1 30.4 24.0 42.3 61

Masjedsolyman 4.8 4.1 4.8 5.4 7.2 10.7

Omidaghjari –4.1 –4.4 –4.8 –5.4 –7.3 –11.2

Ramhormoz 15.8 14.7 16.9 19.5 27.2 41.7

nDvI: normalized difference vegetation index.

this period and under the other scenarios, the NDVI trend was 
insignificant: 33.3% of cases displayed positive trends and 
44.4% negative. During the second period, NDVI also exhib-
ited no trend under RCP2.6 with a positive change in 55.56% 
of cases and negative in 44.4%. Under the RCP4.5 scenario, 
the NDVIs during the first period were significant for all sta-
tions, 44.4% will experience positive change (the highest Z 
value of 4.59 observed at Mahshahr), and 55.6% will experi-
ence negative change (the lowest Z value of −4.26 was observed 

at Abadan). During the second period, NDVI was projected to 
increase at Mahshahr, Masjed Soleiman, and Ramhormoz but 
decrease at Omidieh Aghajari and Izeh. Under the RCP8.5 
scenario, the vegetation trends were significant for both future 
periods. Vegetation was projected to increase at these locations 
by 44.4% and 33.3% of cases during the first period and 
decrease at 55.6% and 66.7% of cases during the second period.

The highest correlation coefficients between NDVI and tem-
perature were at Abadan, Dezful, and Ramhormoz, and between 
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NDVI and precipitation at Ramhormoz (Table 7). These regres-
sion equations were used to simulate climate change–induced 
fluxes in NDVI for both future periods. The correlation between 
these two variables was highest under the RCP8.5 scenarios, fol-
lowed by the RCP2.6 and RCP4.5 scenarios.

Discussion
Trend of climate variable NDVI during the 
baseline period

During the baseline period from 1984 to 2016, precipitation 
decreased at all meteorological stations in the province; 33.3% 

of these recorded statistically significant trends, while the other 
66.77% of stations revealed no trends, which is consistent with 
Some’e et al. (2012) which reported that more than 30% of sta-
tions in Iran experienced decreasing precipitation during this 
period. Masoudi and Elhaeesahar (2016) examined precipita-
tion and temperature in Khuzestan Province and found that 
precipitation increased at 7% of stations, decreased at 67.2%, 
and remained constant at 25.8%. Moreover, 88.3% of the prov-
ince experienced increasing temperatures (T. Yan et al., 2019). 
NDVI increased by 77.7%. Although 57.1% of the area experi-
enced increases that were statistically significant, 42.85% dis-
played no trends. The trends of vegetation were positively 

Figure 5. (Continued)
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Figure 5. Trends of precipitation, temperature, and nDvI at Khuzestan synoptic stations under RCP2.6, RCP4.5, and RCP8.5 scenarios for two future 

periods: 2016–2045 and 2046–2075.

correlated to precipitation trends and negatively related to tem-
perature trends, which is consistent with WenBin et al. (2011) 
and negatively related to temperature trends, which is in agree-
ment with T. Yan et al. (2019) which reported that solar radia-
tion and precipitation had significant impacts on vegetation, 
and also with Alimoradi et  al. (2017). They highlighted that 
Land Surface Temperature (LST) determined more changes of 
NDVI than precipitation and air temperature. Also, Rathore 
et al. (2019) indicated that temperature and precipitation gov-
ern the distribution of Taxus wallichiana. Even, Hadian et  al. 
(2019) indicate that high correlations between NDVI and cli-
matic parameters signify a strong influence of climatic anoma-
lies on vegetation and that drought-induced decreases in 
precipitation are tied to vegetation decline. The relationships 
between NDVI and precipitation and temperatures were found 
to not achieve statistical significance, which might be attributed 
to the arid and semi-arid climates that dominate Khuzestan 
Province (Gouveia et al., 2017; Wingate et al., 2019).

Performance of the CanESM2 model
The predictive performance of the CanESM2 model was 
evaluated using R2 and RMSE. The model performance for 
temperature showed a good (R2) and very good (RMSE) 
agreement because annual temperatures were more consistent 
than annual precipitation totals. However, the model produced 
a moderate and good performance for precipitation predic-
tions. These results are in line with Khosravi et  al. (2017) 
where the model’s predictive performance (according to R2 
and RMSE) was higher for temperature. All nine stations 
were predicted to experience increasing temperatures during 
the two future periods relative to the baseline. Comparisons of 
increasing temperatures between the first and second period 
indicated that temperatures increased by 0.25°C, 0.96°C, and 
1.94°C under the three scenarios. Therefore, it could be con-
cluded that temperatures increase by 1.96°C from the RCP2.6 
scenario to the RCP8.5 scenario. Other authors like Shagega 
et al. (2019) predicted future climates in the Ngerengere River 
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watershed, Tanzania using Lars-WG and similarly found 
minimum and maximum temperature increases of 0.2°C and 
2.6°C, respectively, during the 2050s and 2.7°C and 4.4°C 
during the 2080s. The temperature increases were maximal in 
October and November while minimal in June and July. 
Moreover, the precipitation trends were projected to reflect 
decreases of 12% to 37% in April, May, June, and July, and 3% 
to 58% increases in other months of the year. Another example 
can be found in Gaitán et al. (2019) in which predicted tem-
peratures and cold and warm waves in Spain using the outputs 
of Coupled Model Intercomparison Project Phase 5 (CMIP5) 
and two downscaling steps. They found that climate change 
scenarios indicate there will be a gradual increase in maximum 
daily temperatures during the 21st century, with the greatest 
increase (7°C) during summers under the RCP8.5 scenario.

Projections and relationship of climate change and 
NDVI in future

Projections indicate increases in minimum temperatures as 
well, but at lower rates than the speed of warming of maxi-
mum temperatures. Minimums increased by only 3 and 5.6°C 
under the RCP4.5 and RCP8.5 scenarios by the end of the 
century. Our results are consistent with the findings of D’Oria 
et al. (2017), which reports that the climate of Tuscany, Italy, 

which predicted increasing temperatures during two future 
periods (2031–2040 and 2051–2060) of 0.8°C and 1.1°C 
under the RCP4.5 scenario and 0.9°C and 1.9°C under the 
RCP8.5 scenario. Irving et  al. (2012) revealed that mean 
annual temperature in Australia is slated to increase by 3.2°C 
and 4.2°C under the RCP8.5 and RCP4.5 scenarios, respec-
tively, during the period 2080–2099, relative to 1980–1999. In 
this study, precipitation was projected to increase at Ahvaz 
Station under all three scenarios, at Abadan Station in both 
future periods, and under all scenarios, except for the product 
of the RCP2.6 scenario during the first period, as well as at 
Omidieh Aghajari Station during the first future period under 
the RCP2.6 and for all stations under all future climate sce-
narios. These results indicate that the area can be expected to 
be wetter in the future. T. Yan et al. (2019) also found increas-
ing trends of precipitation of 61% and 5.4% for both futures 
(2021–2035 and 2051–2065) given the RCP4.5 scenario, and 
12.7% and 12.7% for both future periods under the RCP8.5 
conditions. T. Yan et  al. (2019) also projected precipitation 
increases in the Hindu Kush region of the Himalaya of 24% 
under the RCP8.5 scenario. This could be attributed to 
increasing atmospheric vapor pressure and global warming–
induced changes in the water cycle of the atmosphere (D. F. 
Zhang et al., 2017). Our results showed a decreasing trend in 
precipitation at Bostan, Dezful, Izeh, Mahshahr, and Masjed 

Figure 6. Percentage of change in vegetation, temperature and vegetation during the two future periods with respect to the baseline period.
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Soleiman stations under all three scenarios. Precipitation at 
Mahshahr Station would decrease during the first future 
period and the second under the RCP2.6, RCP4.5, and 
RCP8.5 scenarios which are consistent with Gaitán et  al. 
(2019) which indicates that precipitation in the upper reaches 
of the Jordan River is expected to decrease by 3.5% and 10.5% 
during the period from 2020 to 2049, and by 11% and 15.5% 
during the period from 2050–2079 under RCP4.5 and 
RCP8.5 conditions. Due to the specific patterns of precipita-
tion in arid and semi-arid regions, the trends differed between 
stations. Projections of increasing temperature match the 
results of IPCC et al. (2013) and Gorguner et al. (2019), which 
suggest that mean annual temperature will increase under all 
scenarios during the 21st century. The increasing temperature 
projected under the RCP4.5 and RCP8.5 scenarios are in line 
with the predictions of the IPCC Fifth Assessment Report 
(IPCC). Precipitation projections showed a positive and nega-
tive statistically significant trend at some stations and, not sig-
nificant trends in other stations, a finding that is consistent 
with Ishida et al. (2017), which showed no trend in precipita-
tion in six sub-basins of the northern California watershed 
under the RCP4.5 and RCP8.5 scenarios and also related this 
precipitation sensitivity to climate change scenarios and with 
the results of Awal et al. (2016) and Keggenhoff et al. (2014). 

Precipitation exhibited no clear trends and only indicated a 
few abrupt changes in precipitation patterns.

The trend of decreasing precipitation during the second 
period was more pronounced than during the first period so 
that the highest decrease in mean annual precipitation was 
observed under the RCP8.5 scenario, while precipitation 
remained almost constant under the RCP2.6 scenario. Z. Li 
et al. (2019) also reported similar results in the Clear Creek 
Basin in Texas, USA. According to their results, precipitation 
decreased more rapidly under the RCP8.5 scenario than the 
RCP2.6 scenario. Compared with the baseline period, NDVI 
was increasing at Ramhormoz, Mahshahr, Masjed Soleiman, 
and Dezful stations under all scenarios while the other sta-
tions experienced decreasing NDVI along with diminishing 
precipitation amounts. This interpretation is supported by 
Yang et al. (2016), which found a significantly positive rela-
tionship between annual precipitation and maximum NDVI, 
mainly in the outlet of the Shiyang and Shule River. Only 
7.64% of the Shule Basin’s area (a very dry region) showed a 
significantly positive relationship between annual precipita-
tion and maximum NDVI, indicating that precipitation may 
not be the leading regulator of plant growth in this region 
due to the inconsistency between NDVI, precipitation and 
temperature.

Figure 7. Trends of temperature (T), precipitation (R) and nDvI (n) during the two future periods.
*Significant relationship (p < .05).

Downloaded From: https://bioone.org/journals/Air,-Soil-and-Water-Research on 18 Sep 2024
Terms of Use: https://bioone.org/terms-of-use



14 Air, Soil and Water Research 

It can be concluded, based on annual NDVI analysis and its 
correlation with precipitation and temperature, that the conse-
quences of climate change may not be manifested in the NDVI 
trends because precipitation affects plants by providing water, 
while temperature controls the growth of plants under normal 
conditions, thus NDVI is a product of the complex interactions 
between climate change and human activities (Burry et al., 
2019). Temperature is projected to increase at all stations 
under the three scenarios and during the two future periods. 

Moreover, at Ahvaz, Abadan, and Omidieh Aghajari precipita-
tion has increased. In contrast, NDVI is expected to continue 
to decrease during both future periods. The highest population 
growth rate, energy use, and, in turn, greenhouse gas emissions 
are projected to occur under the RCP8.5 scenario, while the 
RCP2.6 scenario is based on an expectation of the lowest rate 
of population growth, increased use of renewable energy, and 
significant reduction of greenhouse gas emissions. The RCP4.5 
scenario assumed balanced growth. In projecting the effects of 

Table 7. Correlation Coefficients Between nDvI, Temperature, and Precipitation During the future Periods.

SCEnARIO STATIOn InDEx 2016–2045 2046–2075

R T R T

RCP2.6 Ahvaz nDvI –.715* –.416* –.797* –.389*

Abadan .594* –.914* .797* –.843*

Bostan .977* –.348 .935* –.488*

Dezful .090 .955* –.039 .968*

Izeh .313 –.954* .503* –.970*

Mahshahr –.589* .931* –.390* .960*

Masjedsolyman .501* .829* .290 .826*

Omidaghjari .959* –.558* .922* –.431*

Ramhormoz .172 .973* –.018 .977*

RCP4.5 Ahvaz nDvI –.689* –.768* –.822* –.337

Abadan .326 –.965* .609* –.795*

Bostan .894* –.556* .840* –.539*

Dezful .008 .982* .157 .977*

Izeh .009 –.983* .488* –.979*

Mahshahr –.606* .981* –.555* .970*

Masjedsolyman .273 .938* .415* .896*

Omidaghjari .883* –.469* .902* –.595*

Ramhormoz –.137 .989* .000 .976*

RCP8.5 Ahvaz nDvI –.613* –.809* –.730* –.729*

Abadan .452* –.969* .156 –.943*

Bostan .901* –.665* .887* –.756*

Dezful –.351 .980* –.450* .991*

Izeh .507* –.990* .523* –.993*

Mahshahr –.594* .983* –.451* .990*

Masjedsolyman –.112 .969* .173 .968*

Omidaghjari .887* –.559* .918* –.790*

Ramhormoz –.109 .993* –.195 .996*

nDvI: normalized difference vegetation index; RCP: representative concentration pathway.
values in bold are different from 0 with a significance level alpha < .05.
*Significant relationship (p < .05).
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climate changes on vegetation, the results achieved under the 
RCP8.5 scenario differed greatly from the other two scenarios 
because the radiative forcing under this scenario is considered 
to reach to 8.5 W/m2 by the end of the 21st century ( J. Li et al., 
2015). Given that the majority of stations showed increasing 
temperatures and decreasing precipitation and vegetation, it 
can be concluded that increasing global population growth and 
the burgeoning demand for food and energy combined with 
the limitations posed by climate change have compromised the 
quantities and qualities of natural resources and will continue 
to do so in the future. In this research, NDVI data were meas-
ured by AVHRR at a resolution of 8 km. For this pixel size, 
satellite data with lower spatial and temporal resolution are 
recommended (e.g., Landsat and MODIS, for better examina-
tion of vegetation cover). The model, CanESM2, is from the 
ensemble of the models in the IPCC’s fifth report. Data from 
the sixth report have been made available recently and these 
can now be analyzed. For better accuracy, it is recommended 
that several climatic models should be used instead of only a 
lone model. The best model should be selected by comparisons 
of their effectiveness to produce the best model.

Conclusion
Global warming has caused significant impacts in terrestrial 
ecosystems, especially to the vegetation. The long-term impacts 
of climate change on vegetation dynamics is an important 
arena of study. This study assessed and simulated the trends of 
vegetation coverage derived from AVHRR-NDVI data. 
Moreover, the relationships between observed climate data  of 
weather stations for 1984 to 2015 and CANESM2 model-
produced data for two future periods from 2016 to 2045 and 
2046 to 2075 under RCP2.6, RCP4.5, and RCP8.5 scenarios 
were investigated.[AQ14] The first future period is expected to 
show decreasing vegetation and precipitation and increasing 
temperatures. A positive relationship was found between 
NDVI and precipitation, while NDVI is inversely related to 
temperature. NDVI and precipitation would be expected to 
decrease during the first period and temperatures might be 
expected to increase at a statistically significant rate. During 
the second future period, NDVI and precipitation are expected 
to decrease, and temperatures are expected to increase. These 
predictions are statistically significant. It can be concluded that 
combining RS data with climatic data in large-scale models 
can generate useful information to inform monitoring and to 
provide insight to aid in ecosystem planning and policy deci-
sions, and with the management of vegetation and other vital 
resources.
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