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ABSTRACT

The role of Quaternary glacial-interglacial intervals in shaping the diversity and distribution of Neotropical species has
been the focus of considerable research. The Neotropics sustain the highest passerine diversity on Earth, but little is
known about this region’s historical biogeography based on fossils. To assess how passerine species were affected by
Quaternary climate fluctuations, we identified 625 late Pleistocene fossils (individual fossilized bones) from the now
arid and faunally depauperate Talara Tar Seeps in northwestern Peru. Of the 21 passerine species identified, only 2
likely live at the site now; the remaining 19 species require more mesic conditions. Species identified included
members of the Thamnophilidae (antbirds), Melanopareiidae (crescentchests), Tyrannidae (flycatchers), Hirundinidae
(swallows), Mimidae (mockingbirds), Thraupidae (seedeaters, “finches”), Emberizidae (sparrows), and Icteridae
(blackbirds). Nearly half of the individual fossils and 8 of the 21 species were icterids, including 3 extinct species (1
previously described, 2 new). The late Pleistocene passerine community at Talara, which was nonanalog to any modern
community, suggests that the site once supported savanna, grasslands, and forests during the last glacial interval,
which are absent near Talara today. Quaternary climate change and the collapse of the community of large mammals
had a major influence on the community composition and the geographic ranges of passerine species in northwestern
Peru.

Keywords: climate change, extinction, Neotropical diversity, passerine fossils, Pleistocene, range dynamics,
Tumbes

Diversidad y distribucion cambiante de aves paseriformes de bosques secos en el noroeste de Pera desde
la altima edad de hielo

RESUMEN

Un foco de investigacion importante ha sido el rol de los intervalos glaciares-interglaciares del Cuaternario como
agentes modeladores de la diversidad y la distribucion de las especies neotropicales. El Neotrdpico sustenta la mas alta
diversidad de paseriformes en la Tierra, pero poco se sabe sobre su biogeografia histérica basada en fésiles. Para
evaluar como las especies de paseriformes fueron afectadas por las fluctuaciones climaticas del Cuaternario,
identificamos 625 fosiles del Pleistoceno tardio (huesos individuales fosilizados) provenientes de Talara Tar Seeps, un
area del noroeste de Perd actualmente drida y depauperada de fauna. De las 21 especies paseriformes identificadas,
solo dos probablemente viven en la actualidad en el sitio; las restantes 19 especies necesitan condiciones mas mésicas.
Las especies identificadas incluyen miembros de los Thamnophilidae, Melanopareiidae, Tyrannidae, Hirundinidae,
Mimidae, Thraupidae, Emberizidae e Icteridae. Cerca de la mitad de los fésiles individuales y 8 de las 21 especies son
ictéridos, incluyendo tres especies extintas (una descrita previamente, dos nuevas). La comunidad de paseriformes del
Pleistoceno tardio de Talara, que no tiene un andlogo con ninguna comunidad moderna, sugiere que el sitio en el
pasado albergd sabanas, pastizales y bosques durante el Gltimo intervalo glaciar, los cuales estdn ausentes cerca de
Talara en el presente. El cambio climatico del Cuaternario y el colapso de la gran comunidad de mamiferos tuvo una
gran influencia en la composicién de la comunidad y en los rangos geograficos de las especies de paseriformes del
noroeste de Peru.

Palabras clave: Cambio climatico, dindmica de rangos, diversidad neotropical, extincion, fésiles paseriformes,
Pleistoceno, Tumbes
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INTRODUCTION

The extraordinary biotic diversity found in the Neotropics
is the result of numerous mechanisms that have acted over
millions of years. The uplift of the Andes throughout the
Cenozoic (past 65 million years) divided the ranges of taxa,
changed soils and the direction of rivers, and led to the
formation of numerous biomes (Graham 2009, Hoorn et
al. 2010). These changes affected the entire South
American continent, even lowland Amazonia, where
plants and animals would have experienced novel atmo-
spheric circulation and new riverine barriers (Rull 2011,
Ribas et al. 2012). Over more recent time scales, the ~22
glacial-interglacial cycles during the Quaternary (2.6-0.0
mya) also have shaped modern diversity and distributions
in the region (Colinvaux et al. 1997, 2000, Hoorn et al.
2010, Cohen and Gibbard 2011, Rull 2011).

Haffer (1969) hypothesized that Neotropical rainforest
birds underwent allopatric speciation in habitat refugia
(isolated areas of humid forest) during Pleistocene glacial
periods, when dry vegetation was believed to have
dominated and subdivided the lowland Amazonian rain-
forest. Allopatric populations of birds diverged and
remained reproductively isolated, even after secondary
contact when rainforest re-expanded during interglacial
periods. However appealing, this hypothesis has received
little support from phylogenetic studies across numerous
taxa, which suggest that many (but not all) Amazonian
plants and vertebrates diversified across both the Neogene
(25.0-2.6 mya) and the Quaternary (Hoorn et al. 2010, Rull
2011).

Numerous lowland rainforest plant genera have been
present in Amazonia since at least the late Miocene
(Colinvaux and Oliveira 2001). Furthermore, pollen
samples from sediment cores do not reveal lowland dry-
habitat indicator plants in Amazonia during glacial
periods, even though some cool-adapted Andean plants
did occur in the western Amazon basin (Colinvaux et al.
1996a, 1996b, 1997, 2000). Nevertheless, pollen data show
evidence of more expansive open habitats near the
southern fringe of the Amazon Basin in glacial times
(van der Hammen 1972, Absy et al. 1991). This presents
the possibility that Quaternary climate fluctuations had a
stronger influence on diversity and distributions in
biogeographical regions outside Amazon Basin rainforests.

Relative to rainforests, Neotropical dry forests sustain
lower diversity, yet greater levels of endemism (Janzen
1988, Stotz et al. 1996, Pennington et al. 2006). Despite
hypotheses regarding the expansion and contraction of
these dry forests and savannas during glacial-interglacial
cycles (Prado and Gibbs 1993, Pennington et al. 2000), the
role of Quaternary climate change on their biotic diversity
and distributions is little studied, except for plants (but see
Smith et al. 2012, Werneck et al. 2012). Determining the
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FIGURE 1. Location of the Talara Tar Seeps (4°39’S, 81°08’'W) in
northwestern Peru. The approximate distribution of Tumbesian
tropical dry forest is shaded in dark gray. The Andes are shaded
in light gray to white.

distributions of characteristic Neotropical dry forest and
savanna organisms during glacial intervals would provide
insight into the historical vs. modern connectivity of these
habitats. Late Pleistocene fossils of Neotropical birds, for
example, are tangible evidence of historical diversity, past
species distributions, and environmental conditions
(Steadman and Mead 2010, Steadman et al. 2015). Small
vertebrate fossils, avian or otherwise, can be excellent
indicators of past fine-scale habitat distributions, and
furthermore often reveal nonanalog paleocommunities, i.e.
sets of species that no longer exist sympatrically today,
even when extinct species are excluded (Steadman et al.
1994, Stafford et al. 1999, Semken et al. 2010).

Songbirds (passerines; Passeriformes) constitute more
than 50% of the world’s living bird species and are
hyperdiverse in the Neotropics (Stotz et al. 1996, Brum-
field 2012), yet have a very limited fossil record. Here, we
report 600+ passerine fossils from the Talara Tar Seeps in
northwestern Peru. Today, the site is arid (desert) with the
nearest dry forest ~50 km away. The passerine fossils from
Talara present a unique opportunity to reconstruct not
only the late Pleistocene songbird community but also the
associated climatic conditions and habitats at the site,
thereby elucidating the role of Quaternary glacial—
interglacial cycles in shaping a distinctive Neotropical bird
community.

METHODS

The Talara Tar Seeps (4°39'S, 81°08’W) are located at
~140 m elevation and ~20 km southeast of the coastal city
of Talara (Figure 1). Today, the area around the site (<30
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c¢m mean annual rainfall) sustains a depauperate flora and
fauna. Dry forests, with considerable biotic diversity and a
remarkable number of endemic taxa, are found northeast,
east, and southeast of Talara at higher elevations ~50 km
inland with higher precipitation (Parker et al. 1995, Stotz
et al. 1996). Talara lies within the Tumbesian Region, which
is an area of high endemism in northwestern Peru and
southwestern Ecuador, characterized by gradients from
coastal deserts to more inland dry and semideciduous
forests.

Based on conventional radiocarbon (**C) dating of
associated pieces of wood, the fossils at Talara are late
Pleistocene in age (last glacial interval; between 13,616 =
600 and 14,418 *+ 500 '*C years before present [BPJ;
Churcher 1966). Using a standard calibration database
(Heaton et al. 2009, Reimer et al. 2009), these two 4
determinations translate to 15,903 * 808 and 17,054 =
816 calendar years (cal) BP (~15,000 to 18,000 cal BP, or at
the close of the last glacial maximum). Because strati-
graphic mixing can occur in tar seeps as trapped animals
sink while struggling in tar of varying viscosity (Shaw and
Quinn 1986, Friscia et al. 2008), we attempted to augment
the chronology of Talara by '*C-dating individual bird
fossils from Talara. We were not successful because
inadequate collagen remained in the bones. The age of
the bird fossils from Talara is confidently late Pleistocene,
centered on ~15,000—18,000 cal BP.

The Talara Tar Seeps fossils that we studied were
excavated by A. G. Edmund and field crew in 1958
(Churcher 1959); they are housed at the Royal Ontario
Museum (ROM), Toronto, Canada. While the nonpasser-
ine fossils from Talara were studied by Campbell (1979),
the passerine fossils were sorted by size categories and
element but not examined further until our study. By
“fossil,” we are referring to individual fossilized bones, e.g.,
humerus, coracoid, rostrum. We compared the fossils
directly with modern skeleton specimens from the Florida
Museum of Natural History, University of Florida (UF),
Louisiana State University Museum of Natural Science
(LSUMNS), and the National Museum of Natural History
(USNM), and with fossils of extinct icterids housed in the
UF Vertebrate Paleontology Division. If available, a series
of skeletons of both males and females was used for
identifications. Specimens listed in the Appendix represent
average osteological characteristics for the specimens
examined. The fossils also were evaluated using original
descriptions of extinct species (Miller 1929, 1932, 1947).
The osteological characters that we used for identification
are given in the Appendix. All ROM catalog numbers are
listed in Supplemental Material Table S12. Osteological
nomenclature follows Baumel et al. (1993), supplemented
by Howard (1929).

Information on habitats and geographic ranges of extant
species is based on Schulenberg et al. (2007), Ridgely and
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Tudor (2009), and our own field observations. We visited
the site twice in November 2011 and observed a very
depauperate bird community (see Results). Because of the
large number (~2,800) of passerine fossils recovered at
Talara, we focused primarily on the most diagnostic
skeletal elements of the skull, bill, shoulder girdle, and
wing.

RESULTS

Based on scored osteological characters, we identified 625
fossils from the Talara Tar Seeps, representing up to 25
taxa (family level and below) and at least 21 species (Table
1; see Appendix Tables 2—11 for character matrices). We
regard 3 of the species (all icterids; see below) as extinct.
Only 2 of the 18 extant passerine species (Long-tailed
Mockingbird [Mimus longicaudatus] and Cinereous Finch
[Piezorina cinereal]) occur at the site today. Three other
extant species recorded as fossils (Sulphur-throated Finch
[Sicalis taczanowskii], Parrot-billed Seedeater [Sporophila
peruvianal], and Tumbes Sparrow [Rhynchospiza stolz-
manni]) may also occur there sporadically, such as during
El Nifio events. The only other species that we recorded at
Talara during our 2 visits was the Necklaced Spinetail
(Synallaxis stictothorax), which we did not find as a fossil.

The remaining 13 extant species certainly are extralocal.
The Yellow-billed Cacique (Amblycercus holosericeus;
Figure 2) shows the greatest range shift. In northwestern
Peru, A. holosericeus lives in semideciduous forests inland
and at higher elevations than Talara. Its habitat preferences
in northwestern Peru differ from populations elsewhere,
which tend to occur in the understory of secondary forest,
bamboo thickets, and fields (Fraga 2011b). The Elegant
Crescentchest (Melanopareia elegans), Collared Antshrike
(Thamnophilus bernardi), Social Flycatcher (Myiozetetes
similis), Baird’s Flycatcher (Myiodynastes bairdii), and
Yellow-tailed Oriole (Icterus mesomelas) also are indicators
of dry, semideciduous, and gallery forests (Table 1,
Appendix Figures 3 and 4). The Peruvian Meadowlark
(Sturnella bellicosa), Scrub Blackbird (Dives warszewiczi),
martin (Progne sp.), Tumbes Swallow (Tachycineta stolz-
manni), Chestnut-collared Swallow (Petrochelidon rufo-
collaris), and Barn Swallow (Hirundo rustica) occupy
grasslands, farms, savannas, and forest edges.

Eight species of icterid were recovered from Talara, 3 of
which are extinct. Six of the 10 most numerous passerine
species identified are icterids (Peruvian Meadowlark, n =
183; Shiny Cowbird [Molothrus bonariensis], n=87; Scrub
Blackbird, n = 41; the extinct Euphagus magnirostris, n =
36; the extinct troupial Icterus icterus s.l., n = 23; and the
extinct Talara cowbird [Molothrus nov. sp.], n = 15). One
of the extinct icterids (E. magnirostris) from Talara was
first described from the Rancho La Brea Tar Seeps in Los
Angeles, California, USA, based on a mandible larger and
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TABLE 1. Passerine fossils identified from the Talara Tar Seeps, northwestern Peru. Modern habitat preferences are from
Schulenberg et al. (2007), Ridgely and Tudor (2009), and our observations. “Tumbesian” refers to the region of arid and semi-arid
habitats in northwestern Peru and southwestern Ecuador, west of the Andes. Taxa in brackets [] are not necessarily different from
those identified with more taxon-specific resolution. If bracketed species are different from identified taxa, then the fossils
represent 24 total species; if they are not different, then 21 species are represented. To be conservative, we assume that the
bracketed species are not different species in the totals row under the “Occurs at site today” column. Extinct species are indicated

by a dagger (). N/A = not applicable (indeterminate).

Total Occurs at or Modern habitat
Family Taxon fossils  near site today preferences Modern range
Thamnophilidae  Thamnophilus bernardi 4 No Arid scrub, dry forest Tumbesian 4+ Marafon
Valley endemic
Melanopareiidae  Melanopareia elegans 1  No Arid scrub, dry forest Tumbesian endemic
Tyrannidae Myiozetetes similis cf. grandis 1 No Second growth, forest Widespread; subspecies
edge endemic to Tumbes
Tyrannidae Myiodynastes bairdii 2 No Arid scrub, dry forest Tumbesian endemic
Hirundinidae Progne sp. 5 No Open to semiopen areas N/A
Hirundinidae Tachycineta stolzmanni 3 No Open to semiopen areas Tumbesian endemic
Hirundinidae Petrochelidon rufocollaris 47  No Towns, farms, open to Tumbesian endemic
semiopen habitats
Hirundinidae Hirundo rustica 3 No Open to semiopen areas Widespread migrant
Hirundinidae [Hirundinidae sp.] 2 N/A N/A N/A
Mimidae Mimus longicaudatus 22 Yes Arid scrub, light Widespread
woodlands, gardens
Thraupidae Piezorina cinerea 1 Yes Desert scrub Tumbesian endemic
Thraupidae [Sicalis sp.] 112 N/A N/A N/A
Thraupidae Sicalis taczanowskii 22 Possible Desert scrub Tumbesian endemic
Thraupidae Sporophila peruviana 1 Possible Arid scrub, agricultural Widespread
areas, grassy habitats
Thraupidae [Sporophila sp.] 1 N/A N/A N/A
Emberizidae Rhynchospiza stolzmanni 2 Possible Dry scrub, dry forest Tumbesian endemic
Icteridae Amblycercus holosericeus 5 No Semideciduous forest Widespread
Icteridae [Icterus sp. (oriole)] 3 No N/A N/A
Icteridae Icterus icterus s.l. T 23 No Extinct species or Unknown
subspecies
Icteridae Icterus mesomelas 3 No Dry forest, scrub Widespread
Icteridae Dives warszewiczi 41 No Arid scrub, fields, Western Peru +
gardens, towns Maranon Valley
endemic
Icteridae Euphagus magnirostris * 36 No Extinct Extinct
Icteridae Molothrus bonariensis 87 No Agricultural fields, forest ~ Widespread
edges
Icteridae Molothrus sp. nov. ' 15 No Extinct Extinct
Icteridae Sturnella bellicosa 183 No Cultivated areas, scrub, Widespread
grassy areas
Total fossils 625 2 Yes, 3 Possible,
Total species 21-24 16 No

more robust than in either extant species of Euphagus
(Miller 1929, Steadman et al. 2015). From Talara, we
identified E. magnirostris mandibles and postcranial
material sharing qualitative osteological characters with
extant E. carolinus (Rusty Blackbird) and E. cyanocephalus
(Brewer’s Blackbird; Figure 5, Appendix Table 5). The
extinct cowbird (Molothrus nov. sp.) is known thus far only
from the fossils that we identified from Talara (Figures 6,
7). It is intermediate in size between the large Giant
Cowbird (M. oryzivorus), a widespread species that occurs
only in humid forests in the Tumbesian region, and the
much smaller Shiny Cowbird, another widespread species

known from the Tumbesian region, both living and fossil.
The troupial fossils at Talara represent a new species or
subspecies of Icterus icterus s.l. (Figure 8). The species and
subspecies of troupial vary considerably in body size
(Jaramillo and Burke 1999, Remsen et al. 2014) and
osteological characters. The Talara troupial is larger than
the Orange-backed Troupial (I croconotus) found east of
the Andes in Peru and Bolivia (I ¢. croconotus and I c.
strictifrons) and is more similar in size to the Venezuelan
Troupial (L icterus) of Venezuela and Colombia. The 3
extant troupial species prefer dry habitats and gallery
forests in the Amazonian lowlands in Peru and Bolivia,
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FIGURE 2. The humerus (above) and coracoid (below) of fossil (left) and modern (right) specimens of blackbirds (Icteridae). (A) Dives
warszewiczi fossil humerus ROM 70065, coracoid ROM 70085, modern LSUMZ 157416. (B) Sturnella bellicosa fossil humerus ROM
70238, coracoid ROM 70307, modern UF 47467. (C) Amblycercus holosericeus fossil humerus ROM 69934, coracoid ROM 69930,
modern UF 33277 (old PB catalogue number 29362). PB = collection of Pierce Brodkorb; now in UF (Florida Museum of Natural
History, University of Florida) collection. ROM = Royal Ontario Museum; LSUMZ = Louisiana State University Museum of Natural

Science. Scale bars = 10 mm.

northern Venezuela, northeastern Colombia, and eastern
Brazil (Ridgely and Tudor 2009).

The remaining passerine fossils at Talara represent
various species of Thamnophilidae, Melanopareiidae,
Tyrannidae, Hirundinidae, Mimidae, Thraupidae, and
Emberizidae (Table 1). Numerous cranial elements repre-
sent either a new species of Sicalis (Thraupidae) or a
slightly larger-billed variety of Sulphur-throated Finch (S.
taczanowskii; Appendix Figure 9). Interspecific plasticity in
shape and size of the bill is famously exemplified within
related genera of thraupid finches and cardinalids such as
Geospiza, Sporophila, and Passerina (Steadman 1982,
Steadman and McKitrick 1982, Grant 1985). Pending
successful extraction of DNA from tar seep fossils (Gold et
al. 2014), it will be difficult to evaluate the species-level
systematics of these Sicalis fossils, especially given that
Sicalis species have extraordinarily similar postcranial

osteological features (Appendix Table 6, Appendix Figure
9). Most of the postcranial fossils that have Sicalis
characteristics are larger than modern S. taczanowskii,
but overlap in size with S. flaveola (Saffron Finch).
Therefore, we were able to identify these elements only
to genus. A few postcranial fossils (n = 22) are probably S.
taczanowskii. The Parrot-billed Seedeater (Sporophila
pervuiana) also was found at Talara (a single fragmentary
fossil rostrum; Appendix Figure 9). This species forages
primarily on grass seeds (Jaramillo 2011) and is further
evidence of the presence of grassy habitats at the site in the
late Pleistocene.

Three species of martin (Progne; Hirundinidae) occur in
northwestern Peru today. Each can be found near lakes,
rivers, agricultural fields, and towns (Ridgely and Tudor
2009). We could not identify the Progne fossils to the
species level because of a lack of comparative material
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FIGURE 5. The humerus (A-C, upper), coracoid (A-C, lower), and mandible (D-F) of 3 species of Euphagus. (A, D) The extinct
Euphagus magnirostris ROM catalog numbers 70107 (humerus), 70129 (coracoid), 70104 (mandible). (B, E) Euphagus carolinus UF
31110 (old PB catalogue number 26432). (C, F) Euphagus cyanocephalus UF 31114 (old PB catalogue number 38079). Scale bars =10

mm.

from the region. Two species of swallow are represented as
fossils at Talara, the Tumbes Swallow (Tachycineta
stolzmanni) and the Chestnut-collared Swallow (Petroche-
lidon rufocollaris; Appendix Table 8, Appendix Figure 10).
As with the martins, the modern habitat preferences of
these 2 swallows are fairly ubiquitous and generalized. The
Barn Swallow (Hirundo rustica) is a migratory species that
breeds in North America and winters across Central and
South America (Appendix Figure 10).

DISCUSSION

Late Pleistocene Climate and Habitats

The transition from the last glacial interval of the late
Pleistocene to the modern interglacial interval (Holocene)
dramatically changed the landscape of northwest Peru.
Our findings from passerine bird fossils supplement the
substantial information from sediments, archaeological
remains, nonpasserine fossils, and megamammal fossils
that argues for more diversity and more mesic climatic
conditions in the region in the past (Lemon and Churcher
1961, Campbell 1976, 1979, 1982, Richardson 1978,
Sandweiss 2003). Sedimentary evidence from 10 km east
of the fossil site suggests the presence of permanent to
semipermanent streams in this currently waterless region

during the late Pleistocene (Lemon and Churcher 1961,
Campbell 1979). A large number of the 6,200 nonpasserine
bird fossils identified from the Talara Tar Seeps are from
freshwater species, including grebes, herons, cormorants,
ducks, geese, sandpipers, and plovers, not to mention other
identified aquatic taxa such as amphibians, turtles,
crocodilians, and mollusks (Campbell 1979). While other
nonpasserine species found as fossils are characteristic of
grassland or savanna (Black-chested Buzzard-Eagle [Ger-
anoaetus melanoleucus], Short-eared Owl [Asio flam-
meus)), 2 species suggest dry forest at the site in the past
(Pale-browed Tinamou [Crypturellus transfasciatus] and
Crested Guan [Penelope purpurascens]). Also present at
Talara in the late Pleistocene were large mammals
characteristic of grassland, savanna, and dry forest, such
as edentates (Scelidodon, Holmesina, Eremotherium), deer
(Odocoileus, Mazama), proboscideans (Stegomastodon),
dire wolves (Canis dirus), large jaguars (Panthera onca
s.l.), and saber-toothed cats (Smilodon fatalis; Churcher
1959, Campbell 1979, Seymour 1983, Berta 1985). These
findings led Lemon and Churcher (1961) and Campbell
(1982) to propose that during the late Pleistocene the area
near the site was predominantly grassland or savanna. Our
results provide independent evidence to support this
proposal, although the passerine fossils also argue for the
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FIGURE 6. The humerus (above) and coracoid (below) of extinct
and extant cowbird species. (A) Pandanaris convexa fossil
(extinct; UF/PB 4221), Florida, USA. (B) Molothrus bonariensis
fossil ROM 69963, Talara, Peru. (C) Molothrus bonariensis modern,
LSUMZ 114332. (D) Molothrus nov. sp., fossil ROM 70030, Talara.
(E) Molothrus oryzivorus modern, USNM (National Museum of
Natural History) 344300. Scale bars = 10 mm.

past existence of dry forest and gallery forest. The late
Pleistocene habitat matrix at or near the site probably did
not include desert, which exists at Talara now.

The climatic mechanism(s) responsible for more mesic
conditions and more diverse habitats at Talara during the
late Pleistocene are unknown. On average, the Earth
(including the tropics) was cooler and drier during glacial
than interglacial intervals (Bush 1994, Peterson et al. 2000,
Bromley et al. 2009). It is unlikely that meltwater from the
Andes fueled the more mesic communities near Talara as
there are few high peaks east of the site in the western
Andean cordillera that would have sustained alpine
glaciers during glacial intervals (Campbell 1979). Sea levels
during the last glacial maximum (~25 to 18 ka) were ~120
m lower than they are today and reached modern levels by
6 ka (Clark et al. 2009). Given the steep continental shelf
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off the coast of Peru, the Pacific Ocean would have been
only several tens of km farther from Talara during glacial
times. Nevertheless, the lower sea levels and more distant
coastline may have buffered Talara from the drying effects
of the Humboldt Current during the late Pleistocene.

The Humboldt Current, found off the coast from
southern Chile to northern Peru, fuels the nutrient-rich,
cold upwelling that cools offshore air, which in turn causes
the modern aridity of coastal Peru. Changes in trade winds
and atmospheric pressure lead to a reduced temperature
differential between the western and eastern Pacific Ocean
that results in El Nino—Southern Oscillation (ENSO)
events, which tend to occur on a 7-10 year cycle in
modern times (Tudhope et al. 2001). During ENSO events,
the upwelling ceases and surface waters warm, leading to a
remarkable increase in precipitation that turns the desert
of coastal northwestern Peru into an ephemeral shrubby
grassland (Richter 2005, Muenchow et al. 2013). Perhaps
longer-term, stronger, more frequent, or more persistent
ENSO conditions resulted in the richer glacial-age floral
and faunal communities in northwestern Peru in the past.
It has been difficult, however, to reconstruct the periodicity
and severity of ENSO events through time because
different paleoclimate proxies yield different results. Sea
surface temperature differentials have been stable since the
Miocene (Zhang et al. 1998), which would have resulted in
periodic ENSO cycles over the past 18 million years,
although Wara et al. (2005) argue for permanent El Nifio
conditions during the Pliocene. Growth rings from corals
in the western Pacific suggest that ENSO events have
occurred since 130 ka, even during glacial periods,
although the amplitude and duration of the events may
have been more variable than in modern times (Zhang et
al. 1998).

Icterids

At Talara, 296 of 625 (47%) of the passerine fossils are of
icterids, with 3 of the 8 species being extinct. The fact that
icterids are so common as late Pleistocene fossils may be
due to their preference to form communal roosts near
water (Oswald and Steadman 2011). These freshwater
wetlands, whether more permanent lakes and marshes or
more ephemeral ones lying on tar seeps after rains, would
also serve as water sources for large mammals, thus
augmenting their attractiveness to icterids. Four extinct
species of Icteridae have been described from Ilate
Pleistocene sites in North America: Euphagus magnirostris
(Miller 1929); Pyelorhamphus molothroides (Miller 1932);
Pandanaris convexa (Miller 1947, Oswald and Steadman
2011); and Cremaster tytthus (Brodkorb 1959). The late
Pleistocene extinctions of icterids included even very
widespread species, such as Pandanaris convexa and
Euphagus magnirostris (Oswald and Steadman 2011,
Steadman et al. 2015). The losses were especially dramatic
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FIGURE 7. The rostrum of extinct and extant cowbirds in dorsal (A-D) and lateral (E-H) aspects. (A, E) Molothrus oryzivorus modern,
USNM 344300. (B, F) Molothrus bonariensis modern, LSUMZ 114332. (C, G) Molothrus nov. sp., Talara fossil, ROM 70031. (D, H)

Pandanaris convexa fossil, UF/PB 294. Scale bars = 10 mm.

among large-billed, cowbird-like forms such as Pyelo-
rhampus, Pandanaris, Molothrus nov. sp., and perhaps
Cremaster. The extinction of multiple species with a
unifying morphological trait (a large bill) suggests the loss
of foraging niches that existed across the Americas during
the Pleistocene.

In addition, icterids are unique among New World
passerines in that many species have commensal relation-
ships with large mammals such as horses, cows, and bison
(Lowther 1993, Martin 2002). In Africa, extant mega-
mammals such as elephants and zebras are “ecosystem
engineers” that help to maintain the savannas and
grasslands upon which many bird species depend (Laws
1970); it is likely that Pleistocene megamammals played
comparable roles in maintaining habitats favorable to
icterids in the Americas (Steadman and Martin 1984,
Oswald and Steadman 2011). While both climate change
and human impacts fueled the Pleistocene-to-Holocene
faunal changes in the region, the loss of biotic interactions
also may have played a significant role for icterids when

their large mammal associates were lost. All extant
cowbird species also are brood parasites of other songbird
species. The host of the large, extinct Pleistocene species of
Molothrus at Talara may have been the now-extirpated
Yellow-billed Cacique or the extinct species of troupial.
The modern distribution of Euphagus is restricted to
North America; both extant species (Rusty Blackbird [E.
carolinus] and Brewer’s Blackbird [E. cyanocephalus]) are
migratory. Therefore, the E. magnirostris fossils discovered
in northwestern Peru (and in the Inciarte Tar Seeps in
northwestern Venezuela; Steadman et al. 2015) may
represent migratory individuals. Alternatively, perhaps
especially if E. magnirostris was a megamammal commen-
sal, this species may have had an extensive resident
distribution in both North and South America, alongside
the various edentates, artiodactyls, equids, and probosci-
deans that were lost at the end of the Pleistocene
(Anderson 1984). The only modern resident passerine
birds with ranges that extend from the southern United
States into South America are the Vermilion Flycatcher

The Auk: Ornithological Advances 132:836-862, © 2015 American Ornithologists’ Union

Downloaded From: https://bioone.org/journals/The-Auk on 13 May 2024
Terms of Use: https://bioone.org/terms-of-use



844 Late Pleistocene passerine fossils from northwestern Peru

FIGURE 8. The humerus (above) and coracoid (below) of
troupial (Icterus spp.) taxa. (A) Talara fossil Icterus icterus s.l.
humerus ROM 70056, coracoid ROM 70042. (B) Modern Icterus
icterus ridgwayi (male, Colombia) UF 30896 (old PB catalogue
number 20737). (C) Modern Icterus croconotus strictifrons (male,
Bolivia) LSUMZ 126183. (D) Modern Icterus croconotus crocono-
tus (female, Peru) LSUMZ 49015. Scale bars = 10 mm.

(Pyrocephalus rubinus; Farnsworth and Lebbin 2004) and
Eastern Meadowlark (Sturnella magna; Fraga 2011a).

Nonanalog Bird Communities and Species’ Responses
to Change

Many Pleistocene biotic communities across the Americas
are nonanalog compared with modern communities. In
North America, for example, late Pleistocene rodent
communities were composed of species that are allopatric
today (Stafford et al. 1999, Blois et al. 2010, Semken et al.
2010). Pollen cores show that Andean plants once lived
alongside tropical, lowland plant taxa in the Amazon Basin
(Bush 1994, Colinvaux et al. 2000). Late Pleistocene
nonanalog bird communities of the Americas reflect in
part the loss of megafauna, which led to the loss of species
or populations of large scavenging and predatory nonpas-
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serine birds (vultures, condors, eagles, caracaras, etc.;
Steadman and Martin 1984, Steadman et al. 2015). The
nonanalog late Pleistocene passerine community that we
discovered at Talara is what we might expect under a
different climatic regime and with a very different
community of large mammals. Considering that we could
not radiocarbon-date the bird fossils themselves, we have
no definitive evidence that all of the species identified in
this study were contemporaneous. Nevertheless, in the late
Quaternary sites with analog bird or mammal communi-
ties and a rigorous radiocarbon chronology, the time spans
of the fossil deposits are measured in decades or at most a
few centuries, rather than millennia (Stafford et al. 1999,
Steadman et al. 2002, Semken et al. 2010). If the changing
climatic conditions across the late Pleistocene to Holocene
resulted in habitat changes and range shifts that led to high
turnover of bird species composition at Talara, this
suggests that biotic communities, whether birds or
otherwise, may be continually in a state of flux, with the
rate of change governed by the severity of the climatic (or
anthropogenic) change. Because species have responded
idiosyncratically to historical abiotic and biotic changes,
the search for a single mechanism driving the changing
diversity and distributions of tropical species may be futile.

Modern tropical dry forests in South America have a
fragmented distribution in Andean valleys, on the Pacific
slope of southwestern Ecuador and northwestern Peru
(Tumbesian Region), and in a discontinuous ring around
the Amazon Basin (Pennington et al. 2006, Sirkinen et al.
2011). Very few species of bird are shared among these
regions (Stotz et al. 1996). Our fossil evidence indicates
that dry forest species had wider distributions in the past.
The dearth of shared species among modern dry forest
communities might reflect, in part, population extirpation
since the last ice age. This hypothesis can be tested
through more paleontological research.
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APPENDIX. COMPARATIVE OSTEOLOGY

Osteological characters used to identify the Talara Tar
Seep, Peru, passerine fossils. Royal Ontario Museum
(ROM) catalog numbers for each identified fossil are
found in Supplemental Material Table S12. All characters
were scored relative to the character state of the reference
skeletons. All specimens at table column headings are male
unless otherwise noted, although female specimens (if
available) also were included in osteological comparisons.
Comparisons included more than 1 specimen (typically 5
to 8) per species. At the level of family or genus, a few of
these characters are modified from those in Hamon (1964).

-
APPENDIX FIGURE 3. Skulls and mandibles of Melanopareia
elegans. The fossil (ROM 69700; A, D, G) has the cranium and
mandible still articulated. The modern (UF 49342) cranium (B, E,
H) and mandible (C, F, 1) are shown below the fossil in different
aspects (A-C, cranial; D-F, ventral; G-I, lateral). Scale bars = 10
mm.
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APPENDIX FIGURE 4. Postcranial elements of suboscines. For each pair, fossils are on the left, modern specimens on the right. (A)
Fossil (ROM 69707) and modern (UF 49489) humerus of Myiodynastes bairdii. (B) Fossil (ROM 69701) and modern (UF 49356) humerus
of Thamnophilus bernardi. (C) Fossil (ROM 69705) and modern coracoid of Myiozetetes similis (modern: M. s. columbianus, UF 46254).
The fossil is likely M. s. grandis (see Appendix Table 10). Scale bar = 10 mm.
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APPENDIX FIGURE 9. Rostra and humeri of seedeaters. (A, B) Sicalis flaveola (UF 49190) in lateral and dorsal aspects. (C, D) Sicalis
taczanowskii in lateral and dorsal aspects, with modern specimen (UF 49526) on left and fossil (ROM 69904) on right. (E, F) Sporophila
peruviana in lateral and dorsal aspects, with modern specimen (LSUMZ 157412) on left and fossil (ROM 69926) on right. Humeri (G-I)
of Sicalis species. (G) Sicalis flaveola modern, UF 49190. (H) Sicalis sp. fossil, Talara, ROM 69792. (l) Sicalis taczanowskii modern, UF
49526. Scale bars =10 mm.
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APPENDIX TABLE 5. Characters used to identify fossils in the genus Euphagus.

J. A. Oswald and D. W. Steadman

UF 31110, Euphagus

UF 31114, Euphagus

ROM 70107-70113, Fossil:

Element Character carolinus cyanocephalus Euphagus cf. magnirostris
Humerus Length of the ectepicondylar long intermediate short
prominence
Shape of the curvature of the  intermediate wide narrow
ectepicondylar prominence
away from the shaft
Depth of the curvature of the  deep shallow shallow
ectepicondylar prominence
Symmetry of the curvature of ~ symmetrical symmetrical asymmetrical
the ectepicondylar
prominence away from the
shaft
Extension of the external 0 0 0
tricipital groove visible in
the palmar view (1: visible;
0: not visible; 0.5: partially
visible)
Length and width of the very short, very wide short, very wide very short, very wide
additional process on
ectepicondylar prominence
Shape of the attachment of rounded “D” shaped “D” shaped
the pronator brevis
Depth of the attachment of intermediate shallow deep
the pronator brevis
Curvature of the bicipital curved slight curve N/A
surface away from the shaft
Presence of continuous incomplete nearly complete N/A
bicipital crest
Shape of internal tuberosity ridge present ridge present N/A
UF 31110, Euphagus UF 31114, Euphagus ROM 70114-70139, Fossil:
carolinus cyanocephalus Euphagus cf. magnirostris
Coracoid Depth of the curvature of the  shallow shallow shallow
brachial tuberosity away
from the shaft
Shape of the tip of the intermediate width, wide, slightly hooked wide, hooked
brachial tuberosity hooked
Shape of the curvature of the  wide wide wide
brachial tuberosity away
from the shaft
Length of brachial tuberosity intermediate short short
Shape of the procoracoid intermediate intermediate pointed
Length of procoracoid long long long
(measured from shaft)
UF 31110, Euphagus UF 31114, Euphagus ROM 70104-70106, Fossil:
carolinus cyanocephalus Euphagus cf. magnirostris
Rostrum Shape of narial bar narrow, hourglass narrow, hourglass N/A
Narial bar (mm, male) 1.18 1.20 N/A
Narial bar (mm, female) 1.07 1.18 N/A
Mandible tip Posterior margin of intermediate-thin intermediate missing
mandibular symphysis in
dorsal-lateral aspect
Width and depth of medial narrow, intermediate narrow, intermediate N/A
ventral trough
Length of retroarticular absent absent N/A
process
Shape of mandibular fenestra elongated ellipse elongated ellipse N/A
Shape and depth of the angle  rounded, intermediate  rounded, intermediate missing

of the mandibular
symphysis in lateral aspect
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APPENDIX TABLE 6. Osteological characters used to identify “seedeater” (Thraupidae) fossils. Referenced Talara fossil material:
ROM catalog numbers 69791-69929.

UF 49526, UF 49190, LSUMZ 157412, UF 49371, LSUMZ 157397,
Sicalis Sicalis Sporophila Rhynchospiza Piezorina
Element Character taczanowskii flaveola peruviana stolzmanni cinerea
Humerus  Length of the long long short intermediate long
(distal) ectepicondylar
prominence
Shape of the curvature rounded rounded rounded rounded rounded
of the ectepicondylar
prominence away
from the shaft
Depth of the curvature deep deep shallow intermediate deep
of the ectepicondylar
prominence
Symmetry of the symmetrical symmetrical symmetrical symmetrical symmetrical
curvature of the
ectepicondylar
prominence away
from the shaft
Shape of the attachment  “D” shaped “D” shaped “D” shaped rounded “D” shaped
of the pronator brevis
Depth of the deep deep deep intermediate deep
attachment of the
pronator brevis
Curvature of rostrum in deeply angled rounded, rounded, rounded, gentle slope
lateral aspect gentle gentle gentle
curve curve curve
Rostrum Shape of narial bar hourglass hourglass very thick, rectangular thick,
hourglass hourglass
Narial bar (mm, male) 1.41 1.22 2.32 1.63 2.72
Shape of os nares circular noncircular circular circular noncircular
Shape of mandibular medium ellipse large ellipse tear shaped pill shaped ellipse
fenestra
Mandible  Shape and depth of the rounded, deep elliptical, angled, rounded rounded
angle of the mandible deep deep square, point
(where the intermediate
intermediate part of
the mandible attaches
to the symphyseal
part) in lateral aspect
Length of the short long intermediate intermediate long

intermediate part of
the ramus
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APPENDIX TABLE 7. Osteological characters used to identify martin (Hirundinidae) fossils.

UF 27837, UF 27853, ROM 69708-69710,
Element Character Progne tapera Progne chalybea Fossils: Progne sp.
Humerus Length of the ectepicondylar long intermediate long
prominence
Shape of the curvature of the rounded, rounded, narrow round, intermediate
ectepicondylar prominence intermediate
away from the shaft
Depth of the curvature of the deep intermediate intermediate
ectepicondylar prominence
Symmetry of the curvature of symmetrical symmetrical symmetrical
the ectepicondylar
prominence away from the
shaft
Extension of the external none none none
tricipital groove visible in
the palmar view
Shape of the additional absent rounded, minute absent
process on ectepicondylar
prominence
Shape of the attachment of rounded “D” shaped rounded
the pronator brevis
Depth of the attachment of
the pronator brevis shallow intermediate intermediate
ROM 69711-69712,
Element Character Fossils: Progne sp.
Coracoid Depth of the curvature of the shallow intermediate intermediate

brachial tuberosity away
from the shaft

Shape of the tip of the
brachial tuberosity

Shape of curvature of the
brachial tuberosity away
from the shaft

Length of brachial tuberosity

Shape of the procoracoid

Length of procoracoid
(measured from shaft)

rounded, wide
very wide
short

rounded, long
shallow

squared, wide
wide
short

rounded, long
shallow

squared, wide
wide
intermediate

rounded, long
very shallow
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APPENDIX TABLE 8. Osteological characters used to identify swallow (Hirundinidae) fossils.

Element

Character

ROM 69713-69715, Fossil:
Tachycineta stolzmanni

LSUMZ 90118, Tachycineta
stolzmanni (Sex = U)

UF 27878,

Tachycineta bicolor

Humerus

Length of the
ectepicondylar
prominence

Shape of the curvature
of the ectepicondylar
prominence away the
from shaft

Depth of the curvature
of the ectepicondylar
prominence

Symmetry of the
curvature of the
ectepicondylar
prominence away
from the shaft

Extension of the external
tricipital groove
visible in the palmar
view

Shape of the additional
process on the
ectepicondylar
prominence

short-intermediate

rounded, intermediate

shallow

asymmetrical

none

rounded, minute

short-intermediate

rounded, intermediate

shallow

asymmetrical

none

rounded, minute

long

rounded, wide

intermediate

symmetrical

none

pointed, large

Shape of the attachment “D” shaped “D” shaped “D” shaped
of the pronator brevis
Depth of the deep deep shallow

attachment of the
pronator brevis
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APPENDIX TABLE 8. Extended.

J. A. Oswald and D. W. Steadman

UF 27855, UF 27893, UF 27863, ROM 69716-69742, Fossil: ~ LSUMZ 100541, UF 27803,
Riparia Hirundo Stelgidopteryx Petrochelidon Petrochelidon Petrochelidon
riparia rustica ruficollis rufocollaris rufocollaris pyrrhonota

long long intermediate short short short
intermediate, rounded, rounded, narrow rounded, wide rounded, wide rounded, wide

intermediate

intermediate

symmetrical

none

rounded, minute

rounded

intermediate

intermediate

shallow

asymmetrical

none

pointed, minute

“D” shaped

shallow

deep

symmetrical

none

absent

absent

shallow

asymmetrical

none

pointed, minute

rounded

intermediate

shallow

asymmetrical

none

pointed, minute

rounded

intermediate

shallow

asymmetrical

none

rounded, minute

“D” shaped

intermediate

very shallow-absent

APPENDIX TABLE 9. Osteological characters used to identify Myiodynastes bairdii fossils using flycatcher species of similar size for
comparison.

ROM 69706-69707, UF 49306, UF 13678, UF 33887,
Fossil: Myiodynastes Pitangus Myiarchus
Element Character Myiodynastes bairdii bairdii sulphuratus tyrannulus
Humerus Length of the ectepicondylar short short short intermediate
prominence
Shape of the curvature of the narrow narrow wide wide
ectepicondylar prominence
away from the shaft
Depth of the curvature of the shallow shallow very shallow intermediate
ectepicondylar prominence
Symmetry of the curvature of symmetrical symmetrical asymmetrical asymmetrical
the ectepicondylar
prominence away from the
shaft
Extension of the external absent absent absent absent

tricipital groove visible in
the palmar view

Shape of the additional very shallow, very shallow, very shallow, nearly absent

process on ectepicondylar rounded rounded rounded
prominence

Shape of the attachment of round round round round
the pronator brevis

Depth of the attachment of very shallow very shallow very shallow shallow

the pronator brevis
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APPENDIX TABLE 10. Coracoid measurements of Myiozetetes S
similis subspecies and related flycatchers of comparable size as S
the Myiozetetes cf. similis fossil from Talara. g
Sex (M = Male, Coracoid 3 %
F = Female, length g s £
Taxa (UF) U = Unknown) (mm) Q| & = §
IS T [J] T T
. S| < Q=2 I Q0=
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=l 255 E555%
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APPENDIX FIGURE 10. Postcranial elements of martins and swallows. (A) Humeri (top) and coracoids (bottom) of Progne species,
with Talara fossil (Progne sp. fossil; humerus: ROM 69712; coracoid: ROM 69708) on left, and modern Progne tapera tapera (UF 27837;
old catalogue number 26568, Suriname) on right. (B) Humeri (top) and coracoids (bottom) of Petrochelidon species, with Talara fossil
(Petrochelidon rufocollaris; humerus: ROM 69716; coracoid: ROM 69743) on left, modern Petrochelidon rufocollaris (LSUMZ 100541) at
center, and modern Petrochelidon pyrrhonota pyrrhonota (UF 27803; old PB catalogue number 21812, New Brunswick) on right. (C)
Humeri of Tachycineta species with Talara fossil (Tachycineta stolzmanni; ROM 69715) on left, modern Tachycineta stolzmanni (LSUMZ
90118) at center, and modern Tachycineta bicolor (UF 27878; old PB catalogue number 30242, Florida) on right. (D) Humeri of
Hirundo rustica, with Talara fossil (ROM 69763) on left, and modern specimen (UF 27893; old PB catalogue number 29601, Indiana) on
right. (E) Carpometacarpi of Petrochelidon species, with Talara fossil P. rufocollaris (ROM 69755) on left, modern P. rufocollaris (LSUMZ
100541) at center, and modern P. pyrrhonota pyrrhonota (UF 27803; old PB number 21812, New Brunswick) on right. PB = collection
of Pierce Brodkorb; now in UF collection. Scale bars =10 mm.
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