Megalurothrips distalis (Thysanoptera: Thripidae) Breeding in the Flowers of Kudzu in Florida

Authors: Tyler-Julian, Kara, Funderburk, Joe, and Mound, Laurence

Source: Florida Entomologist, 97(2) : 835-840
Published By: Florida Entomological Society
URL: https://doi.org/10.1653/024.097.0273

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

[^0]
MEGALUROTHRIPS DISTALIS (THYSANOPTERA: THRIPIDAE) BREEDING IN THE FLOWERS OF KUDZU IN FLORIDA

Kara Tyler-Julian ${ }^{1,2}$, Joe Funderburk ${ }^{1, *}$ and Laurence Mound ${ }^{3}$
${ }^{1}$ University of Florida, 155 Research Road, Quincy, Florida 32351, USA

${ }^{2}$ Present address: Glades Crop Care, Inc., 1120 Bari Street E, Lehigh Acres, Florida 33874, USA
${ }^{3}$ CSIRO Ecosystem Sciences, Clunies Ross Street, Black Mountain ACT 2601 Australia
*Corresponding author; E-mail: jef@ufl.edu

Two Oriental species of Thripidae are reported here from Florida breeding on the widespread cover-crop, kudzu, Pueraria lobata (Fabaceae), turned highly invasive. Salpingothrips aimotofus Kudo was described originally from Japan on Pueraria, but is reported more recently from Georgia (Braman et al. 1993). In contrast, Megalurothrips distalis (Karny), a species widespread in eastern Asia, is here identified from North America for the first time. Megalurothrips is an Old World genus associated with the flowers of Fabaceae, with one species from Africa and 12 from Southeast Asia. The African species, M. sjostedti (Trybom) and two of the Asian species, M. usitatus (Bagnall) and M. distalis, are known as pests of legume crops that sometimes require insecticidal control (Kooner et al. 2007). The identification here of M. distalis from Florida therefore has significance for crop production in this country.

The only previous record of Megalurothrips in USA was based solely on females, collected in Alabama, Florida, Georgia, South Carolina, and Tennessee (Diffie et al. 2008). These females were provisionally identified as M. тисиnae Priesner, based on females in museum collections in Washington and Canberra. However, most species in this genus can be distinguished satisfactorily only in the male sex, because females all look very similar to each other (Palmer 1987). The males of two species, including M. distalis, are easily recognized by an array of short, spear-shaped setae ventrally on the abdomen (Fig. 1). A further problem is recognition of the plant species on which these thrips can maintain a population. These thrips are highly vagile, and the females that predominate in all populations land on many plants on which they cannot breed (Mound 2013).

Thrips were sampled during Jun, Jul, and Aug 2012 by beating kudzu plants over a plate at locations in Gadsden and Leon counties (N $30^{\circ} 32^{\prime} 52^{\prime \prime} \mathrm{W}-84^{\circ} 35^{\prime} 36^{\prime \prime}$ and N $30^{\circ} 28^{\prime} 37^{\prime \prime} \mathrm{W}$ $-84^{\circ} 21^{\prime} 30^{\prime \prime}$, respectively). Thrips were transferred to $2-\mathrm{mL}$ containers containing 70% ethyl
alcohol using a small paint brush before being placed onto microscope slides for identification. The adult thrips were identified to species by the keys contained in Mound \& Marullo (1996) and Palmer (1987). Other species of thrips were Thrips hawaiiensis (Morgan), Frankliniella tritici (Fitch), F. bispinosa (Morgan), Haplothrips gowdeyi Franklin, and Leptothrips mali (Fitch). Voucher specimens were deposited in the Florida State Collection of Arthropods, Florida Department of Agriculture and Consumer Services, Gainesville; in the Australian National Insect Collection, CSIRO, Canberra; and at the North Florida Research and Education Center, Quincy.

Six samples of 10 mature and 10 young leaves, 10 shoots, and 3 inflorescences (when available) were randomly collected on 11 dates in 2013 from the previous Gadsden County location. Samples were placed in $100-\mathrm{mL}$ vials containing 70% ethyl alcohol. The numbers of adult and larval thrips of each species and the numbers of adult and nymphal Orius insidiosus (Say) (Hemiptera: Anthocoridae) were determined under a stereomicroscope at 17 to 230X magnification. Mean numbers on each plant part were compared using analysis of variance for a completely randomized design and the least significant difference at $P=0.05$ using un-transformed data (PROC ANOVA, SAS Institute 2008). Because reliable morphological keys were not available to identify the thrips larvae, additional samples were taken to verify the species of larvae by rearing them to adulthood. Randomly selected flowers and shoots were clipped from the kudzu on 26 Aug and 7 Sep 2013, and the extracted larvae were placed individually in $30-\mathrm{mL}$ plastic cups each containing a $2-\mathrm{cm}$ section of green bean pod, Phaseolus vulgaris L. (Fabaceae). Male and female adults of M. distalis and S. aimotofus developed from the collected larvae. The morphology of first and second instars of M. distalis and S. aimotofus was distinctive from each other and from the larvae of the other species. Ratios of lar-

Fig. 1. The unique spear-shaped sternal discal setae of adult male Megalurothrips distalis that were collected from Pueraria lobata in northern Florida in 2012 and 2013.
vae per adult female of each thrips species of less than and greater than one were considered indicative of declining and increasing populations, respectively (Northfield et al. 2008).

The adults and larvae of S. aimotofus were highly aggregated in the kudzu shoots with a ratio of larvae to adult females of 2.6 (Table 1). In contrast, the adults and larvae of M. distalis were found only in the inflorescences. The mean number of adult and larval M. distalis and S. aimotofus per leaf, shoot, and inflorescence on sample dates during the flowering period are shown in Table 1. The ratio of larvae to adult females over all sample dates was 1.5 , indicating an increasing population of M. distalis on kudzu. The total number of nymphs and adult O. insidiosus over all dates and plant parts was 15 and 22 , respectively. This predator is capable of suppressing natural populations of Frankliniella species in Florida (Funderburk et al. 2000). Moreover, Viswanathan and Ananthakrishnan (1974) reported that the Asian anthocorid O.
minutus L. is an effective predator of M. distalis and that predation is density-dependent.

The identity of the females of Megalurothrips reported by Diffie et al. (2008) remains in doubt due to the problems in identifying females in this genus. However, these females cannot be distinguished from those here identified as M. distalis through the presence of males, and it seems likely that this species is widely established across the southeastern USA.

SUMMARY

Two Asian species of Thripidae are reported breeding in northern Florida on kudzu (Pueraria lobata), Salpingothrips aimotofus Kudo in the shoots, and Megalurothrips distalis Karny in the flowers, the latter being a new record for North America.

Key Words: aggregated distributed, host-plant dependencies, Pueraria lobata, larvae to adult ratio
Table 1. The mean number (SEM) on eleven 2013 sample dates of adult female, adult male, and larval Megalurothrips distalis and Salpingothrips aIMOTOFUS PER PUERARIA LOBATA PLANT PART IN GADSDEN COUNTY, FLORIDA (N FOR SHOOTS, MATURE LEAVES, AND YOUNG LEAVES $=6$ SAMPLES OF 10 PLANT PARTS AND N FOR INFLORESCENCES $=6$ SAMPLES OF 3 INFLORESCENCES, WHEN AVALLABLE). F - AND P-VALUES ARE FROM ANALYSES OF VARIANCE TO COMPARE MEAN NUMBERS ON DIFFERENT PLANT PARTS
Mean Number of Thrips per Plant Part (SEM)

Plant Structure	Megalurothrips distalis			Salpingothrips aimotofus		
	Females	Males	Larvae	Females	Males	Larvae
3 Jun						
Shoot	0	0	0	$4.1 \mathrm{a}(1.6)$	0.1(0.1)	$6.6 \mathrm{a}(2.4)$
Mature Leaf	0	0	0	0 b	0	0 b
Young Leaf	0	0	0	0 b	0	0 b
Flower	-	-	-	-	-	-
$F_{2,15}$	0	0	0	6.1	1.0	7.4
$\mathrm{P}^{(15}$	0.99	0.99	0.99	0.01	0.39	0.0006
10 Jun						
Shoot	0	0	0	$6.7 \mathrm{a}(2.2)$	$0.2 \mathrm{a}(0.1)$	22.0 a (8.3)
Mature Leaf	0	0	0	0 b	0 b	0 b
Young Leaf	0	0	0	0 b	0 b	0 b
Flower	-	-	-	-	-	-
$F_{2,15}$	0	0	0	9.3	8.9	7.0
P	0.99	0.99	0.99	0.002	0.003	0.007
17 Jun						
Shoot	0	0	0	$11.2 \mathrm{a}(4.9)$	$0.3 \mathrm{a}(0.1)$	$25.2 \mathrm{a}(8.0)$
Mature Leaf	0	0	0	0 b	0 b	0 b
Young Leaf	0	0	0	0 b	0 b	$0.1 \mathrm{~b}(0.1)$
Flower	-	-	-	-	-	-
$F_{2,15}$	0	0	0	5.2	4.4	9.9
P	0.99	0.99	0.99	0.02	0.03	0.002
24 Jun						
Shoot	0	0	0	$9.9 \mathrm{a}(2.8)$	$0.1 \mathrm{a}(0.1)$	$30.0 \mathrm{a}(7.2)$
Mature Leaf	0	0	0	0 b	0 b	0 b
Young Leaf	0	0	0	0 b	0 b	0 b
Flower	-	-	-	-	-	-
$F_{2,15}$	0	0	0	13.0	3.8	17.2
P	0.99	0.99	0.99	0.0005	0.05	0.0001

Mean numbers in each column of the same sample date are not significantly different at $P=0.05$ according to the least significant difference.
Table 1. (Continued) The mean number (SEM) on eleven 2013 sample dates of adult female, adult male, and larval Megalurothrips distalis and Salpingothrips aimotofus per Pueraria lobata plant part in Gadsden County, Florida (n For shoots, mature leaves, and young leaves = 6 Samples OF 10 PLANT PARTS AND N FOR INFLORESCENCES $=6$ SAMPLES OF 3 INFLORESCENCES, WHEN AVAILABLE). F - AND P-VALUES ARE FROM ANALYSES OF VARIANCE TO COMPARE MEAN NUMBERS ON DIFFERENT PLANT PARTS
Mean Number of Thrips per Plant Part (SEM)

Plant Structure	Mean Number of Thrips per Plant Part (SEM)					
	Megalurothrips distalis			Salpingothrips aimotofus		
	Females	Males	Larvae	Females	Males	Larvae
1 Jul						
Shoot	0	0	0	$15.3 \mathrm{a}(5.0)$	$0.2 \mathrm{a}(0.1)$	37.4 a(13.5)
Mature Leaf	0	0	0	0 b	0 b	$0.1 \mathrm{~b}(0.1)$
Young Leaf	0	0	0	0 b	0 b	$0.2 \mathrm{~b}(0.1)$
Flower	0.3(0.3)	0	0	0 b	0 b	0 b
$F_{3,15}$	0.1	0	0	6.5	6.5	5.2
P	0.99	0.99	0.99	0.005	0.005	0.01
8 Jul						
Shoot	0	0	0	$13.8 \mathrm{a}(2.6)$	$0.2 \mathrm{a}(0.1)$	$37.6 \mathrm{a}(8.0)$
Mature Leaf	0	0	0	0 b	0 b	$0.1 \mathrm{~b}(0.1)$
Young Leaf	0	0	0	0 b	0 b	$0.6 \mathrm{~b}(0.2)$
Flower	0	0	0	0 b	0 b	$0.1 \mathrm{~b}(0.1)$
$F_{3,15}$	0	0	0	19.5	10.3	14.7
P	0.99	0.99	0.99	0.0001	0.0006	0.0001
15 Jul						
Shoot	0	0	0	$10.8 \mathrm{a}(4.7)$	$0.1 \mathrm{a}(0.0)$	$37.2 \mathrm{a}(4.7)$
Mature Leaf	0	0	0	0 b	0 b	0 b
Young Leaf	0	0	0	0 b	0 b	$0.5 \mathrm{~b}(0.2)$
Flower	0	0	0.1(0.1)	0 b	0 b	0 b
$F_{3,17}$	0	0	2.4	35.2	13.0	50.1
\underline{P}	0.99	0.99	0.10	0.0001	0.0001	0.0001
23 Jul						
Shoot	0	0	0	$4.3 \mathrm{a}(1.6)$	0	$12.2 \mathrm{a}(6.0)$
Mature Leaf	0	0	0	0 b	0	0 b
Young Leaf	0	0	0	0 b	0.2(0.2)	$0.2 \mathrm{~b}(0.2)$
Flower	0	0	0.3(0.3)	0 b	0	0 b
$F_{3,18}$	0	0	0.9	6.6	2.2	3.5
P	0.99	0.99	0.5	0.003	0.13	0.04

Mean numbers in each column of the same sample date are not significantly different at $P=0.05$ according to the least significant difference.
Table 1. (Continued) The mean number (SEM) on eleven 2013 sample dates of adult female, adult male, and larval Megalurothrips distalis and SalOF 10 PLANT PARTS AND N FOR INFLORESCENCES $=6$ SAMPLES OF 3 INFLORESCENCES, WHEN AVALLABLE). F - AND P-VALUES ARE FROM ANALYSES OF VARIANCE TO COMPARE MEAN NUMBERS ON DIFFERENT PLANT PARTS
Mean Number of Thrips per Plant Part (SEM)
Megalurothrips distalis

Plant Structure	Megalurothrips distalis			Salpingothrips aimotofus		
	Females	Males	Larvae	Females	Males	Larvae
29 Jul						
Shoot	0	0	0	$2.4 \mathrm{a}(1.1)$	$3.5 \mathrm{a}(2.2)$	$3.2 \mathrm{a}(1.9)$
Mature Leaf	0	0	0	0 b	0 b	0 b
Young Leaf	0	0	0	0 b	0 b	$0.1 \mathrm{~b}(0.1)$
Flower	0.2(0.2)	0	0.5(0.4)	0 b	0 b	0 b
$F_{2,14}$	1.6	0	2.6	3.8	2.1	2.3
P	0.23	0.99	0.11	0.05	0.17	0.14
5 Aug						
Shoot	0	0	0 b	$2.9 \mathrm{a}(0.9)$	0	$0.8 \mathrm{a}(0.2)$
Mature Leaf	0	0	0 b	0 b	0	0b
Young Leaf	0	0	0 b	0 b	0	$1.3 \mathrm{a}(0.5)$
Flower	0.4(0.4)	0.1(0.1)	$1.0 \mathrm{a}(0.7)$	0 b	0	0 b
$F_{3,17}$	2.4	2.4	5.1	9.1	0	4.6
P	0.10	0.10	0.01	0.0008	0.99	0.02
29 Aug						
Shoot	-	-	-	-	-	-
Mature Leaf	0 b	0 b	0 b	0	0	0.1(0.1)
Young Leaf	-	-	-	-	-	-
Flower	$1.7 \mathrm{a}(0.2)$	$0.7 \mathrm{a}(0.1)$	$2.5 \mathrm{a}(0.7)$	0	0	0
$F_{1,8}$	106.7	37.5	19.2	0	0	0.6
P	0.0001	0.0003	0.002	0.99	0.99	0.44

Mean numbers in each column of the same sample date are not significantly different at $P=0.05$ according to the least significant difference.

Resumen

Adultos y larvas de Megalurothrips distalis Karny fueron encontrados agregados en flores de Pueraria lobata (Wildenow) Ohwi en el norte de la Florida. Este es un nuevo registro para América del Norte.

Palabras Clave: agregados distribuidos, dependencia de la planta hospedera, Pueraria loba$t a$, proporción de larvas y adultos

References Cited

Braman, S. K., Beshear, R. J., and McPherson, R. M. 1993. Additions to the thrips (Thysanoptera: Thripidae: Phlaeothripidae) fauna of Georgia. J. Entomol. Sci. 28: 278-282.
Diffie, S., Funderburk, J., Goldarazena, A., and Mound, L. 2008. New North American records for two Oriental thrips (Thysanoptera) species. J. Entomol. Sci. 43: 128-132.
Funderburk, J., Stavisky, J., and Olson, S. 2000. Predation of Frankliniella occidentalis (Thysanoptera: Thripidae) in field peppers by Orius insidiosus (Hemiptera:Anthocoridae). Environ. Entomol. 29: 376-382.

Kooner, B. S., Cheema, H. K., and TAGGar, G. K. 2007. Efficacy of different insecticides as foliar sprays against bean thrips, Megalurothrips distalis (Karny) in mungbean. Acta Hort. 752: 531-534.
Mound, L. A. 2013. Homologies and host-plant specificity: Recurrent problems in the study of thrips. Florida Entomol. 96: 318-322.
Mound, L. A., and Marullo, R. 1996. The thrips of Central and South America: An introduction. Memoirs on Entomology, International 6: 1-488.
Northfield, T. D., Paini, D. R., Funderburk, J. E., and Reitz, S. R. 2008. Annual cycles of Frankliniella spp. (Thysanoptera: Thripidae) thrips abundance in north Florida uncultivated reproductive hosts: Predicting possible sources of pest outbreaks. Ann. Entomol. Soc. Am. 101: 769-778.
Palmer, J. 1987. Megalurothrips in the flowers of tropical legumes: a morphometric study, pp. 480-495 In J. Holman, J. Pelikan, A. F. G. Dixon and L. Weismann [eds.], Population Structure, Genetics and Taxonomy of Aphids and Thysanoptera, SPB Academic Publishing, Amsterdam, The Netherlands.
SAS Institute Inc. 2008. SAS/STAT® 9.2 User's Guide, Cary, North Carolina.
Viswanathan, T. R., and Ananthakrishnan, T. N. 1974. Population fluctuations of three species of anthophilous Thysanoptera in relation to the numerical response of their predator, Orius minutus L. (Anthocoridae: Hemiptera). Curr. Sci. 43: 19-20.

[^0]: BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

