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Abstract

In order to follow the uptake and allocation of N in different plant functional types and

microbes in two tundra ecosystems differing in nutrient availability, we performed a 15N-

labeling experiment with three N forms and followed the partitioning of 15N label

among plants, microorganisms and soil organic matter. At both sites the deciduous

dwarf shrub Betula nana and the evergreen Empetrum hermaphroditum absorbed added
15N at rates in the order: NH4

+ . NO3
2 . glycine, in contrast to the graminoid Carex

species which took up added 15N at rates in the order NO3
2 . NH4

+ . glycine. Carex

transported a high proportion of 15N to aboveground parts, whereas the dwarf shrubs

allocated most 15N to underground storage. Enhanced 13C in Betula nana roots

represents the first field evidence of uptake of intact glycine by this important

circumpolar plant. Plant and microbial uptake of label was complementary as plants

took up more inorganic than organic N, while microbes preferred organic N. Microbes

initially took up a large part of the added label, but over the following four weeks

microbial 15N decreased by 50% and most 15N was recovered in soil organic matter,

while a smaller but slowly increasing proportion was retained in plant biomass.

DOI: 10.1657/1523-0430(06-114)[SORENSEN]2.0.CO;2

Introduction

In arctic ecosystems, low nitrogen (N) availability often limits

plant production (Chapin and Shaver, 1996; Jonasson and Shaver,

1999; Jonasson et al., 1999) and microbial turnover of soil organic

matter (SOM) (Weintraub and Schimel, 2003; Mack et al., 2004).

Microbes take up both inorganic and organic N forms, while the

common assumption had been that plants take up N only in

inorganic form. The plants therefore are dependent on either

release of N to the soil through microbial mineralization or on

supply of N via mycorrhizal symbionts. However, for some years,

it has been known that mycorrhizal as well as nonmycorrhizal

plants also take up organic N (Chapin et al., 1993; Kielland, 1994;

Näsholm et al., 1998; Nordin et al., 2004). Thus, plants are able to

compete with free-living microorganisms for organic N without

need for prior mineralization.

At relatively nutrient-rich tundra sites, deciduous shrubs,

graminoids, and forbs dominate the vegetation, whereas at

relatively nutrient-poor tundra sites, evergreen shrubs typically

are more abundant (Monk, 1966; Miller, 1982). The availability of

different N forms may vary among sites with different vegetation

types. Some studies have shown that sites with one dominant N

form in the soil are dominated by species with a high uptake

capacity for this particular N form (McKane et al., 2002; Weigelt

et al., 2005). Consequently, uptake of different chemical N forms

among co-existing species has been suggested as an important

factor determining plant competition and dominance patterns and

vegetation dynamics (McKane et al., 2002; Weigelt et al., 2005).

However, other studies have reported that uptake preferences for

either NH4
+, NO3

2 or glycine are unrelated to N-form prevalence

in the soil N pool (Nordin et al., 2001; Bardgett et al., 2003; Miller

and Bowman, 2003; Nordin et al., 2004).

Plants take up N in competition with microorganisms

(Schimel and Chapin, 1996; Kaye and Hart, 1997; Hodge et al.,

2000). Plants and microbes may take up different N forms with

complementary preferences, and thus reduce the competitive

pressure between plants and microorganisms (Lipson and

Näsholm, 2001).

Short-term 15N-labeling studies (hours to days) in arctic

(Nordin et al., 2004; Grogan and Jonasson, 2005) and in

temperate (McFarland et al., 2002; Bardgett et al., 2003)

ecosystems show that the microorganisms absorb a large part of

the added label, whereas the uptake rate by plants is much lower.

However, only a few studies in arctic and alpine ecosystems have

followed the partitioning of added label in plants and micro-

organisms during periods of weeks to years. The overall

conclusion from these studies is that plant proportion of added

N increases with time (Marion et al., 1982; McFarland et al.,

2002), mainly because of plant sequestration of N that continu-

ously is released from the microbes with much shorter turnover

time (Kaye and Hart, 1997).

In this study, we used in situ injections of 15N-labeled NH4
+

and NO3
2 and 15N-13C-labeled glycine in mixed solutions to

follow the uptake and allocation of the N forms in plants and

microorganisms. The 13C labeling of glycine was included to

examine whether glycine was taken up as intact amino acid by

plants in these ecosystems, as shown for a limited number of

species in other field experiments (Näsholm et al., 1998; Henry and

Jefferies, 2003b; Nordin et al., 2004).

The study had three objectives: The first was to test if the plant

uptake of NH4
+, NO3

2 and glycine varied among plant functional

types and/or between two sites of different nutrient availability.

Second, we wanted to follow the label in different plant compart-

ments (fine roots, woody tissues and leaves) to test for effects of
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between-ecosystem differences in soil nutrient status and plant

functional type on the allocation of N within the plants. The third

objective was to follow the short-term (days) and longer-term

(weeks) partitioning of label between plants and microorganisms.

Materials and Methods

SITE DESCRIPTION

The experiment was conducted near the Abisko Scientific

Research Station in Northern Sweden (68u199N, 18u519E). The

climate is subarctic with an average July temperature of 11uC, and

an annual mean temperature of 20.5uC (Royal Swedish Academy

of Sciences, Abisko Scientific Research Station, www.ans.kiruna.

se/ans.htm). We worked at two communities with differences in

vegetation height and species composition that indicated different

levels of nutrient availability and plant productivity.

One community was a low-productive, dry heath dominated

by prostrate-growing Empetrum hermaphroditum. Empetrum

hermaphroditum grew together with the subdominant deciduous

and low-growing Betula nana and Vaccinium uliginosum, the

evergreen dwarf shrub Andromeda polifolia and the sedges Carex

vaginata and Carex distica. The vegetation canopy was open, less

than 15 cm high, and underlain by mosses. The organic horizon

had a depth of about 10 cm and a well-defined transition to the

underlying mineral soil.

The other community was a shrub tundra with a canopy

height of 40 to 50 cm dominated by Betula nana. Carex paralella

made up the understorey together with mosses. Other common

species were E. hermaphroditum, V. uliginosum, Equisetum arvense,

A. polifolia, and Salix myrsinites. The organic horizon was 15 to

50 cm deep, moist and more mixed with the underlying mineral

soil than at the heath. Hereafter the two communities are

designated the heath tundra and the shrub tundra, respectively.

EXPERIMENTAL DESIGN

In each community, 48 0.2 3 0.2 m plots were laid out in six

replicate blocks, i.e. with eight plots per block. The plots were

selected so that there were at least one rooted individual of E.

hermaphroditum and B. nana plus either C. vaginata (heath) or C.

paralella (shrub tundra) in each of them. The labeling took place

on 18 July 2003 at the heath tundra and on 22 July at the shrub

tundra. NH4
+, NO3

2 and glycine were mixed so that the three N-

forms made up equal proportions of N in the solution. In each

solution, one N-form was labeled, either as 15N-NH4Cl, 15N-

KNO3
2 or, 15N-2(13C)-glycine (15N 96–99 atom%, 13C 98 atom%,

Cambridge Isotope Laboratory). Within each community, we

dispensed 100 mL of each solution evenly into the top 5 cm of two

plots in each block, leaving two plots as untreated controls. The

added amount corresponded to 136 mg 15N m22.

SOIL CHEMICAL ANALYSIS

The content of NH4
+-N, NO3

2-N, microbial extractable N,

dissolved organic N (DON), total amino acid N, and glycine N

was analyzed in soils of the control plots sampled at both sites on

18 July and at the heath and shrub tundra on 21 and 23 August,

respectively. In the same samples, we determined the soil water

content gravimetrically and the soil organic matter content (SOM)

by combustion of dry soil at 660uC for 6 h.

Microbial extractable N was determined after CHCl3
fumigation of 10 g of fresh soil per sample for 24 h followed by

extraction for 1 h in 50 mL 0.1 M K2SO4 (Anderson and Domsch,

1977; Brookes et al., 1985; Hobbie, 1992; Cheng and Virginia,

1992; Greenfield, 1995). Another 10 g fresh soil was treated as

above, but without fumigation to extract soil NH4
+, NO3

2, and

DON. Amino acids were extracted with 50 mL demineralized

water in an additional 10 g soil. The extracts were filtered through

Whatman GF-D filters and frozen until analysis.

NO3
2-N and NH4

+-N were analyzed in the extracts from the

unfumigated soils using an auto analyzer (Fiastar 5000, Foss

Tecator, SE). K2SO4-extracts of fumigated and unfumigated soils

were digested with persulfate to oxidise the organic N fractions to

inorganic N (Zhou et al., 2003) followed by analyses as above.

DON was determined as the N content in digested, unfumigated

extracts after subtraction of the inorganic N fraction, and the

extractable microbial N was calculated by subtracting the N in the

digested, unfumigated extracts from the content in the digested,

fumigated extracts (Brookes et al., 1985).

The analyses of amino acids were done by HPLC using a gold

amperometry cell and the analytical column AminoPac PA10,

with separation of arginine, alanine, asparagine, glutamic acid,

glutamine, glycine, histidine, isoleucine, leucine, lysine, methio-

nine, phenylalanine, proline, serine, valine, tryptophan, and

tyrosine. Their concentrations were summed to a measure of total

soil amino acid N concentration.
15N uptake by micro-organisms was determined using the

acid-trap diffusion technique (Stark and Hart, 1996). Five

milliliters of digested, fumigated extract and 10 ml of unfumigated

extracts spiked with 70 mg N (as NaNO3 with d15N 5 20.38 %)

were placed in 60 ml HDPE flasks. The spiking of the

unfumigated extracts was necessary to obtain enough N of 50 to

150 mg for optimal sensitivity of the isotope-ratio measurements.

Devardas alloy was added to reduce any NO3
2/NO2 to NH4

+, and

KCl was added to increase the ionic strength of the solution.

Immediately before sealing the flasks with lids, 1 mL 5 M NaOH

was added in order to raise the pH to .13 and convert the NH4
+

to NH3. An acidified (15 mL 1.5 M H2SO4) Millipore quartz filter

of 0.8 cm diameter was attached inside the lids to trap the NH3 as

(NH4)2SO4. The flasks were gently shaken for four days on

a shaking table at 50 rpm, after which the filters with the trapped

N were removed, dried and analyzed for their 15N/14N isotope

ratios. In order to calculate the microbial 15N recovery, we used

the microbial N pools measured with the auto analyzer, because

the N spiking of the unfumigated samples decreased the precision

of the total N analysis in diffused samples. Recovery of 15N in

dissolved total N (DTN) is reported as the total recovery of 15N in

digested unfumigated extracts, i.e. soluble organic 15N plus

inorganic 15N.

SAMPLING AND PREPARATION OF PLANTS AND SOIL

FOR ISOTOPE ANALYSIS

Two and 26 days after labeling, we harvested six plots from

each treatment by excavating the whole labeled 20 3 20 cm soil

column, including attached plants, to a depth of 10 cm on the heath

and to 15 cm on the shrub tundra. The samples were brought to the

Abisko Scientific Research Station, kept at 2uC and sorted in order

to detect differences in uptake patterns among plants of different

functional type. Three ‘‘target species’’ from each site were selected

for analysis of isotope ratios viz. the deciduous B. nana, the

evergreen E. hermaphroditum, and the sedges C. vaginata (heath

tundra) or C. paralella (shrub tundra), while all other species were

pooled into one fraction of ‘‘mixed species.’’ The target species were

carefully separated from the soil with as much as possible of the root
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system attached. The two sedges were subsequently separated into

roots and leaves + rhizomes, while Betula and Empetrum were

separated into leaves, fine roots (,0.5 mm diameter) and woody

tissues (coarse roots + above- and belowground stems). The mixed

species were separated into roots (i.e. all belowground) and leaves +
stems (i.e. all aboveground). The soil was cut into cubes of about 2

3 2 3 2 cm and mixed, after which roots and rhizomes were sorted

from randomly chosen cubes and processed further as for above-

ground plant parts before drying, and the remaining soil was used

for soil chemical analysis.

Samples for analyses of 15N and 13C natural abundance were

collected from the control plots on 21 August (heath tundra) and

on 23 August (shrub tundra) and fractionated as the labeled

samples. The aboveground plant parts were sorted into the target

species, and the mixed species were sorted into growth forms of

deciduous shrubs, evergreen shrubs, graminoids, forbs, mosses,

and lichens. The root biomass of each growth form was estimated

by assuming the same proportions of root mass among growth

forms as measured in the aboveground biomass.

All plant material was washed several times in 0.5 mM CaCl2
to remove any label adhering to the surface. All plant and soil

samples were dried at 70uC for 48 h, weighed and milled, and

stored in darkness until further processing.

The 15N/14N and 13C/12C isotope ratios, total N and C

contents of about 5 mg of the plant and soil samples were

analyzed with a Eurovector CN analyzer coupled to an Isoprime

isotope ratio mass spectrometer (IRMS) (Micromass-GV Instru-

ments). Natural abundance of isotopes is expressed in the

d notation relative to international standards: dXsample (%) 5

1000 3 [(Rsample/Rstandard) 2 1] where R is the molar ratio of
heavyX/lightX. The C standard Vienna Pee Dee Belemnite has

a 13C/12C ratio of 0.011237 and the N standard atmospheric N2

has a 15N/14N ratio of 0.003676. Atom-percentages of 15N in

samples from control plots (natural abundance) were subtracted

from atom-percentages of the treated samples. The recovery of
15N in bulk soil (soil + microorganisms) was determined as the

average recoveries in the two separately processed samples from

each plot, i.e. the dried subsample of sorted soil used in the

extractions and the dried bulk soil sample remaining after sorting.

The amount of 15N in the extractable microbial biomass plus 15N

in the DTN pool was subtracted from the bulk soil to give the

reported 15N recovery in the SOM fraction.

STATISTICAL ANALYSIS

The statistical analyses were performed using SAS statistical

package (SAS Institute v8.02, 2001). Soil variables were tested

separately for the July and August harvests using one-factor

ANOVAs with site as main factor. Three-factor ANOVAs were

used to test for differences in 15N recovery in the different plant

compartments separately including site, treatment and harvest

time as main factors and with biomass included as covariate. Since

there were significant differences between sites in the 15N recovery

in many plant species and compartments, we increased the

resolution of the test by analyzing the treatment and harvest

effects by two-factor ANOVAs for each plant species and each site

separately, followed by Tukey’s test to compare means of each

treatment. Total 15N recoveries in microorganisms were tested

with two-factor ANOVAs as above, but with the N pool included

as covariate. Block was included in the models whenever the block

effect was significant at P , 0.10. Prior to the ANOVA tests, all

data were tested for homogeneity of variances with Levene’s test

and, if necessary, transformed.

Results

PLANT BIOMASS, SOIL WATER AND ECOSYSTEM

NITROGEN POOLS

The total plant biomass (Table 1) was about 1800 g m22 at

the heath tundra, with deciduous and evergreen shrubs each

making up about one-third of the biomass. B. nana, E.

hermaphroditum, and C. vaginata, i.e. the ‘‘target species’’, made

up 9, 14, and 2%, respectively, of the total plant biomass. At the

shrub tundra, with an estimated biomass of about 2400 g m22,

deciduous shrubs dominated and made up 63% of the plant

biomass. B. nana, E. hermaphroditum, and C. paralella made up

31, 6, and 5%, respectively, of the biomass.

There were no differences in plant N pools among treatments

or harvest dates. We therefore pooled the data over the different

treatments and present the N distribution among plant groups and

plant fractions at the July harvest where the biomass peaked

(Fig. 1). The N pools of Betula, Carex, and the mixed species were

larger at the shrub tundra than at the heath tundra (Fig. 1a, c, d),

while the N pools of Empetrum, particularly in stems and roots,

were largest at the heath tundra (Fig. 1b). Generally, the root

biomass made up a higher proportion of the total biomass at the

heath than at the shrub tundra. For instance, the pool in roots of

Carex made up 37% of the total N pool at the heath but only 15%

at the shrub tundra (Fig. 1a), and N in fine roots of Empetrum

made up 12% at the heath and 8% at the shrub tundra. The pools

in fine roots of Betula, however, made up an equal proportion of

about 9% of the total Betula N pool at both sites.

In July, the soil water content and the concentrations of

NH4
+, DON, extractable microbial N, and amino acid N were

significantly higher at the shrub tundra than at the heath tundra

(Table 2), while in August only the soil water content and DON

concentration were higher at the shrub tundra (Table 2). In

contrast, the NO3
2 concentration was significantly higher at the

heath tundra in July but nonsignificantly lower in August. At both

sites, the NH4
+ concentration increased significantly from July to

August and the extractable microbial N concentration at the shrub

tundra decreased.

Among the three N forms used in the labeling experiment,

NH4
+ dominated at both sites. At the heath tundra, the

concentration was 30 (July) to 250 (August) times higher than

the concentration of NO3
2 and about 3 to 4 times higher than the

concentration of amino acid N (Table 2). At the shrub tundra, the

NH4
+ concentration was 150 to 230 times higher than the

concentration of NO3
2 and 3.5 times higher than the amino acid

N concentration. Amino acid N made up about 1% of the DON at

both sites (Table 2).

TABLE 1

Biomass (means 6 1 SE, n = 6) of different growth forms at the
heath and shrub tundra.

Plant growth form

Biomass (g dw m22)

Heath tundra Shrub tundra

Deciduous shrubs 738 6 235 1565 6 284

Evergreen shrubs 558 6 111 340 6 52.2

Graminoids 143 6 42.7 123 6 13.8

Forbs 212 6 52.2 204 6 52.0

Mosses 131 6 60.1 170 6 35.4

Lichens 23.8 6 8.6 0 6 0

Total biomass 1806 6 222 2402 6 270
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The total N content of the soil at the heath was high,

exceeding the plant N pool 7- to 10-fold, while the content was

lower at the shrub tundra, but yet exceeded the plant N pool 2- to

4-fold. The N content in the extractable microbial biomass made

up between 2 and 7% of the bulk soil N pool corresponding to

about 1/5–1/8 of the plant N pool (Fig. 2).

15N UPTAKE AND ALLOCATION IN PLANTS

Due to the low concentrations of inorganic and glycine N in

the soil solution, the added 15N-NH4
+, 15N-glycine, and 15N-NO3

2

made up 92.3, 99.7, and 99.7% of the respective soil solution pools

at the heath and 89.6, 99.6, and 99.9 % at the shrub tundra

immediately after labeling. However, at both harvests, 15N

recovery in DTN was low (0.08–0.24% of the added label) at the

heath tundra and slightly, but significantly (P , 0.001) higher

(0.30–0.46%) at the shrub tundra, indicating that virtually all

added 15N was incorporated into either microbes, plants or the

insoluble soil organic matter pool.

The plants took up 15N label from all added N forms. The
15N concentration in plants was generally higher in Carex than in

Betula and Empetrum, and higher at the shrub than at the heath

tundra except in Carex, which had significantly higher concentra-

tions at the heath.

Across the sites, the 15N recovery in plants generally increased

from day 2 to day 26 (Table 3). Also, the 15N plant recovery differed

between sites and between the different 15N treatments (Table 3). At

the shrub tundra, the 15N recovery in both roots and leaves of Carex

were significantly higher in the 15NO3
2 treatment than in the other

treatments (P , 0.001 and P , 0.0001 for roots and leaves,

respectively; one-way ANOVA), and at the heath tundra we found

the same treatment effect in both Carex roots (P , 0.001) and leaves

(P , 0.0001) separately, and also for total Carex recovery (Fig. 3a). In

Empetrum at the shrub site after 2 d, the 15N recovery was similar in

the NH4
+ and NO3

2 treatment and near significantly lower in the

glycine treatment (Fig. 3b) (P 5 0.052, total Empetrum recovery).

Betula took up more 15NH4
+ than 15NO3

2 and 15N-glycine at the

heath tundra, and this preference pattern was also evident at the shrub

tundra, but only after 26 d. At the shrub tundra there was

a proportionally higher uptake of 15NO3
2 than 15N-glycine, compared

to the heath site, although this was not significant (Fig. 3c). In the

mixed species, tested across the harvest occasions, there were

significant effects of treatments at both sites, with lower uptake of
15N-glycine than of the inorganic N-forms and lower recovery of 15N-

glycine than of 15NH4
+ at the shrub tundra (Table 3, Fig. 3d).

The different species and growth forms allocated 15N into the

various plant compartments in different manners. However, there

were no significant differences in the relative 15N allocation

patterns of the three N types into plant compartments within

species (two-way ANOVAs). Already 2 d after labeling, Carex had

allocated a large part of the absorbed 15N to the aboveground

parts (Fig. 3a), and 26 d after labelling, the distribution of 15N

had approached that of the total Carex N pool (Fig. 1a). In

Empetrum and Betula, the fine roots contained 30 to 70% of the

total absorbed 15N 2 d after labeling and this proportion

decreased only slightly with time (Fig. 3b-c). At both sites, the

fraction of 15N allocated to Betula leaves had doubled after 26 d,

although it made up only about 12% of the total 15N uptake, while

the N fraction in Betula leaves was about 25% of the total N pool

(Fig. 1c). Empetrum shows a similar pattern with only about 20%

of the absorbed 15N allocated to the leaves (Fig. 3b), while 40% of

the total Empetrum N pool was in the leaves (Fig. 1b).

Based on the data on 15N-glycine uptake 2 d after labeling, we

calculated the d13C values that the plant root theoretically would

obtain if uptake of glycine was in intact form. These d13C values

were compared with the natural d13C values from the control plots

and the d13C values measured in the 15N-2(13C)-glycine treated plots

(Table 4). Only in fine roots of Betula at the heath tundra we

identified a significantly higher d13C value in the 15N-2(13C)-glycine

treatment than in the control plots. Here we found a 13C:15N-ratio

of 1.78 6 0.38. However, there was a clear tendency for all plants to

be more enriched with 13C in treated than in control plots.

RECOVERY OF 15N AMONG PLANTS, MICROBES

AND SOM

At both the heath and the shrub tundra, there were significant

effects of treatment on incorporation of label into plants (Fig. 4).

FIGURE 1. Pools of N in July at the heath and the shrub tundra
in plant fractions of a) Carex, b) Empetrum, c) Betula, and d) Mixed
species. Data are means 61 SE, n = 36. The effects of site were
analyzed with one-way ANOVAs for each fraction separately:
** P , 0.01, *** P , 0.001
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Two days after labeling, the plants had incorporated about 6% of

the added 15NO3
2 and 15NH4

+ at the heath and about 10% at the

shrub tundra but only about 3 and 4% of the 15N-glycine at the

two tundra types. After 26 d, the proportion recovered in the

plants at the heath had increased significantly to 9, 7, and 4% in

the 15NH4
+, 15NO3

2 and 15N-glycine treated plots while there was

no significant change at the shrub tundra.

Most of the recovered label was incorporated in the soil

organic matter, with no significant change of the recovery between

the early and late harvest. There was, however, a significant

treatment effect at the shrub tundra of more recovered 15N in

SOM of 15NH4
+ than 15NO3

2 and 15N-glycine treated plots 26 d

after labeling. Two days after label addition, a large part of the
15N was recovered in the extractable microbial biomass, but the

proportion had decreased significantly by about 50% at day 26.

While there was no significant treatment effect at the heath, less
15N was recovered in the extractable microbial biomass in the
15NO3

2 than in the 15NH4
+ and 15N-glycine treatments at the

shrub tundra. Despite the reduced proportion recovered in the

extractable microbial biomass between day 2 and 26, the 15N

recovery in microbes in 15NH4
+ and 15N-glycine treated plots

exceeded the 15N recovery in plants also at day 26, while the

microbial recovery of 15N in 15NO3
2 treated plots did not exceed

the 15N recovery in plants.

Discussion

N UPTAKE, ALLOCATION, AND UPTAKE PREFERENCES

RELATED TO PLANT SPECIES AND SITE CONDITIONS

Within 2 d after labeling, the plants had absorbed N from all

added sources, i.e. also from the organic glycine source as direct

glycine uptake and/or as mineralized N. The difficulties in

detecting uptake of organic N is well known and is due to large

dilution of an expected and proportionally small uptake in

comparison with the large 13C pool already present in the tissues

(Näsholm and Persson, 2001), as also observed in the present

experiment (Table 4). Despite the dilution, we yet detected

a significant difference between d13C in Betula roots from controls

and glycine treated plots at the heath tundra (Table 4), which is

the first field evidence of uptake of intact glycine by the important

circumpolar arctic dwarf shrub Betula nana. The 13C:15N-ratio of

1.78 6 0.38 in Betula roots from the heath site 2 d after glycine

addition is close to the 13C:15N-ratio of 2 in the added glycine,

which points to a high degree of intact glycine uptake. In addition,

the trend towards higher d13C-values in roots from glycine treated

than from control plots for all species at both sites indicates

uptake of intact glycine also among the other species. The uptake

of glycine-derived 15N 2 d after labeling, and the fast exhaustion of
15N from the dissolved soil N pools in all treatments, also shows

that the plants are able to take up glycine-N either directly in

competition with free-living microorganisms or after fast micro-

bial mineralization taking place within a short time after the

glycine is supplied. However, at both sites the plants generally had

lower initial recovery of 15N in the glycine treatment than in the

inorganic 15N treatments (Fig. 3). In the only other field study of

N form preferences after injections of mixed N forms to an arctic

ecosystem that we are aware of, the uptake of amino acid-N

sources also was lower than uptake of added inorganic N sources

(Nordin et al., 2004)

There was a tendency for Carex to take up more NO3
2 than

NH4
+, while both Betula and the mixed species generally showed

increased preference in the order NH4
+ $ NO3

2 $ glycine. Other

labeling studies in northern ecosystems also have shown

preference for uptake of NO3
2 over uptake of NH4

+ and glycine

among graminoids, e.g. Carex bigelowii in an Alaskan tussock

tundra (McKane et al., 2002), Eriophorum vaginatum in an acidic

tussock tundra (Nordin et al., 2004) and Deschampsia flexuosa in

a boreal forest (Persson et al., 2003). One explanation to the

observed high graminoid NO3
2 uptake could be that at our study

sites as in the studies cited above, the biomass of graminoids was

low compared to the biomass of dominant deciduous and

evergreen shrubs. The graminoids may therefore have taken up

NO3
2 because the dominant shrubs tend to acquire NO3

2 at

slower rates resulting in a relative increase of the NO3
2 available

for uptake (McKane et al., 2002). However, in our experiment,

virtually all the added label was taken up within the first 2 d after

labeling, and the availability of all N forms therefore should be

equally high even shortly after labeling. Furthermore, graminoids

are most often dominant in relatively nutrient-rich sites where

availability of NO3
2 is high, and observations of high nitrate

reductase activity in arctic graminoid species compared to other

FIGURE 2. Total pools of N (g m22) in plants, microbes, and soil
at the heath tundra and the shrub tundra. Data are pooled across
treatments and harvests, means 61 SE, n = 36.

TABLE 2

Soil characteristics of heath and shrub tundra (means 6 1 SE, n = 6). Monthly means between sites that do not share the same letters are
significantly different (P # 0.05; Tukey’s test).

Soil variable

July August

Heath Shrub Heath Shrub

SOM (% of dry matter) 88.0 6 1.0 91.2 6 0.6 90.4 6 1.2 91.4 6 1.3

H2O (% of dry matter) 241 6 19b 503 6 43a 194 6 9 b 525 6 37 a

NH4
+-N (mg N g21 SOM) 1.61 6 0.32b 3.48 6 0.31a 3.74 6 0.49 4.89 6 0.49

NO3
2-N (mg N g21 SOM) 0.054 6 0.014a 0.015 6 0.007b 0.015 6 0.015 0.033 6 0.012

DON (mg N g21 SOM) 59.8 6 8.5b 99.8 6 9.0a 56.0 6 4.6b 92.9 6 5.2a

Amino acid N (mg N g21 SOM) 0.411 6 0.125b 1.007 6 0.185a 1.398 6 0.351 1.505 6 0.248

Glycine N (mg N g21 SOM) 0.066 6 0.036 0.105 6 0.055 0.064 6 0.032 0.132 6 0.047

Microbial N (mg N g21 SOM) 361 6 118 b 551 6 32 a 402 6 53 446 6 27
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plant growth forms (Michelsen et al., 1996) point to high uptake

capacity for NO3
2.

Compared to the initial uptake rate of label into the plant

pool during the 2 d following the addition, the rate during the

following 24 d declined (Figs. 3, 4). In Alaskan tussock tundra,

Schimel and Chapin (1996) found the highest uptake rate within

5 d after labeling, followed by slight increases in the plant 15N

recovery during the following 25 d. Likewise, Grogan and

Jonasson (2003) found some incorporation of label into evergreen

plants 4 to 7 d after labeling in October, followed by no uptake

during the winter, but a subsequent high uptake by all plant

growth forms from May to July the following year. There can be

at least two explanations for this pattern of uptake rates. First, the

uptake rate in our study was high immediately after label addition

because of the pulse of available N, but decreased rapidly as most

of the added N was efficiently incorporated in the extractable

microbial biomass and the SOM pool within a few days. Thus, the
15N released from microbial biomass over the following 24 d was

diluted by the N pool already contained in microbial biomass and

by the native N pool processed by the microbes over this period.

This would lead to a substantial pool dilution of the available soil
15N pool and to underestimated plant N uptake based on 15N

uptake alone. Second, the plants take up N mainly in the

beginning and middle of the growing season, and not late in the

season (August). For instance, McKane et al. (2002) observed that

most plant species took up more N after injection of label in June

than after injection of label in August. However, Betula nana took

up more label in August than in June (McKane et al., 2002),

a pattern also found in our study, as the 15N recovery in Betula at

the shrub tundra, but not at the heath tundra, had doubled from

the first to the second harvest.

Despite the differences in vegetation type and plant biomass,

and therefore assumed differences in nutrient supply rates between

the two sites, we did not find any differences between the relative

availability of three N forms at the two sites (Table 2), contrary to

reported differences along a nutrient gradient of a boreal forest

(Nordin et al., 2001). However, reports on fast turnover of soil

nutrients in arctic soils (hours to a few days) (Jackson et al., 1989;

Jones and Kielland 2002) suggest that nutrient concentrations are

poorly related to nutrient availability, which may depend more on

nutrient fluxes. Because of the apparent lack of difference in

relative supply of the different N forms between the two sites, we

assumed that the uptake preferences would not differ between

sites. However, we did find a tendency of higher preference

for NO3
2 uptake in Betula at the shrub tundra than at the

heath tundra. Also, at our sites, the leaf natural abundance

of d15N in Betula was 26.24 6 0.56 % at the heath and

higher, 24.10 6 0.52 %, at the shrub tundra. Hobbie et al.

(2000) found that plant foliar d15N was lower at sites with

low N availability than at sites with high N availability over

a range of sites at Glacier Bay, Alaska, mainly owing to higher

dependency on N supply from mycorrhiza at sites with low N

availability. Furthermore, ectomycorrhizal fungi seem to discrim-

inate against uptake of NO3
2 (Finlay et al., 1992; Gessler et al.,

2005). Therefore, the higher d15N values and higher Betula

preference for NO3
2 at the shrub than at the heath tundra could

be caused by a combination of higher inorganic nutrient

availability and lower relative N supply via mycorrhiza at the

wet shrub tundra than at the drier heath, as the nutrient

availability was higher at this site.

The two Carex species translocated a much larger part of the

acquired 15N to the leaves than the dwarf shrubs already two days

after label addition, and after 26 d, more than half of the 15N in

Carex was recovered in the leaves (Fig. 3a). Other field (Schimel

and Chapin, 1996; Grogan and Jonasson, 2003) and mesocosm

(Grogan et al., 2004) studies of 15N uptake and allocation also

showed high allocation of recently acquired 15N to leaves in

graminoids and low allocation to leaves of shrubs. High growth

rates and thereby a demand for high photosynthetic rate in Carex

may drive the fast allocation to leaves, while Betula and Empetrum

give priority to long-term N storage.

15N PARTITIONING AMONG MICROBES, PLANTS, AND

SOIL ORGANIC MATTER

At the shrub tundra, the microbes showed a preference for

glycine over the other N forms, opposed to the plants, which took

up more of the inorganic N-forms. These results support the

theory on complementary N-form preferences by microbes and

plants (Lipson and Näsholm, 2001). The microbes probably take

up glycine at higher rates than the inorganic N-forms as it acts as

a source of C for the generally substrate-limited microbes

(Jonasson et al., 1996; Schmidt et al., 1997).

The proportion of added 15N taken up by plants was low

compared with the microbial uptake, and of the same order of

magnitude as in reports from other arctic ecosystems (Schimel and

Chapin, 1996; McFarland et al., 2002; Grogan and Jonasson,

2003). In the extractable microbial biomass, we observed a high

initial 15N uptake (Fig. 4), which confirms that retention of

nutrients in microbes play a crucial role in the control of N cycling

in arctic ecosystems (Schimel and Chapin, 1996; McFarland et al.,

2002; Grogan and Jonasson, 2003; Henry and Jefferies, 2003a;

TABLE 3

P-values from three-factor ANOVA of recovery of 15N in different plant fractions sampled at the heath tundra and the shrub tundra 2 (July)
and 26 (August) days after labeling. P-values are for main factor effects: Site (S), Treatment (T) and Harvest (H) and interactions between

main effects. Only significant (P # 0.05) or near-significant (P # 0.1) values are included; n.s. not significant (P . 0.1).

Fraction Site Treatment Harvest S 3 T S 3 H T 3 H

Carex, roots n.s. 0.007 n.s. n.s. n.s. n.s.

Carex, leaves 0.0011 ,0.0001 0.0027 n.s. 0.0042 0.0267

Empetrum, fine roots n.s. 0.0384 n.s. n.s. n.s. n.s.

Empetrum, leaves 0.0185 n.s. 0.0083 n.s. n.s. n.s.

Empetrum, coarse roots+stems 0.0009 n.s. 0.0137 n.s 0.0526 n.s.

Betula, fine roots ,0.0001 0.0097 0.0051 n.s. 0.0058 n.s.

Betula, leaves n.s. 0.0009 0.0827 n.s. n.s. n.s.

Betula, coarse roots+stems n.s. 0.0017 ,0.0001 n.s. ,0.0001 0.0177

Mixed species, roots n.s. 0.0009 0.0827 n.s. n.s. n.s.

Mixed species, leaves+stems 0.0009 n.s. 0.0031 n.s. n.s. n.s.
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FIGURE 3. Distribution of 15N enrichment in percent recovery of added 15N, 2 and 26 d after labeling with 15NH4
+, 15N-glycine, or 15NO3

2 at
the heath and the shrub tundra in plant fractions of a) Carex, b) Empetrum, c) Betula, and d) Mixed species. The effects of treatment and time of
harvest and their interactions were analyzed with two-factor ANOVAs for each fraction separately: * P , 0.05, ** P , 0.01, *** P , 0.001.
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Nordin et al., 2004). However, after 26 d, the extractable

microbial 15N pool was reduced to half the size it had after two

days. Furthermore, the proportion of 15N incorporated in the soil

organic matter pool strongly increased (Fig. 4), a pattern that

agrees with findings in other labelling studies (Marion et al., 1982;

McFarland et al., 2002; Grogan et al., 2004). Some of the decline

in the microbial 15N pool could be a result of methodological

overestimation of initial 15N uptake in microbes, as the 15N

incorporated in the microorganisms after 2 d may be more

chloroform labile and, hence, with higher extractability than the

microbial 15N 26 d after label addition. Also, a high proportion of

fungal derived microbial biomass in the soil may lead to an

underestimation of the microbial biomass, as fungi in some cases

seem to be less extractable by the chloroform fumigation than

bacteria (Ingham et al., 1991; Wallander et al., 2003). This could

explain part of the high incorporation of 15N into the SOM pool.

However, most of the change in the microbial 15N pool is probably

a consequence of rapid microbial turnover of 15N and subsequent

incorporation into a more recalcitrant SOM pool, eventually

approaching the same proportion of a few percent of the bulk soil

N incorporated in the microbes (Fig. 2). Because we observed little

plant 15N uptake between day two and 26 after label addition, it

appears that the label once it is incorporated in the bulk soil is

only slowly released to plant available forms.

Conclusions

Our study has shown, first, that all co-existing plant species did

take up all added N-forms but all species generally showed higher

preference for the inorganic forms, either NH4
+ or NO3

2, than for

N from the glycine source. The shrub species Betula preferentially

absorbed NH4
+ while Carex preferred NO3

2. Second, we found

a tendency for higher preference for NO3
2 than for NH4

+ at the

shrub tundra compared to the heath in Betula, probably caused by

lower dependency of uptake via mycorrhiza than at the nutrient-

poor heath tundra. Third, the Carex species translocated a higher

proportion of the absorbed 15N to the aboveground parts than the

shrubs, supposedly for immediate photosynthetic use, while the

shrubs gave priority to longer-term N storage. Fourth, the microbes

showed a preference for the organic N form while the plants

preferentially took up inorganic N, which could release the

competition for resources between plants and microbes. Fifth, we

found that microbial 15N immobilization was high immediately

after the label addition, whereas after 26 d, the 15N recovered in the

microbes was reduced to half of the amount found 2 d after label

addition, and most of the label was recovered in the nonmicrobial

part of the soil. During the same period, the plant 15N uptake rate

decreased strongly compared with the rate within the 2 d following

label addition, and the 15N recovery was, hence, similar (NO3
2) or

TABLE 4

d13C-values in roots of control plots, of glycine treated plots two days after labeling and the theoretically d13C-values calculated under the
assumption of 100% uptake of intact glycine. Species means that do not share the same letters are significantly different (P # 0.05;

Tukey’s test).

Site Plant species

d13C

Control Glycine treated Theoretical

Heath tundra Carex 227.10 6 0.05 226.69 6 0.42 224.85 6 1.23

Empetrum 227.78 6 0.22 227.63 6 0.26 227.32 6 0.10

Betula 229.59 6 0.11b 228.69 6 0.30a 228.70 6 0.27ab

Mixed species 228.03 6 0.01 b 227.47 6 0.24 ab 226.70 6 0.32 a

Shrub tundra Carex 227.44 6 0.31 b 227.09 6 0.25 ab 226.20 6 0.25 a

Empetrum 228.36 6 0.23 b 228.04 6 0.26 ab 227.29 6 0.22 a

Betula 229.44 6 0.24 b 228.82 6 0.17 ab 228.40 6 0.11 a

Mixed species 228.97 6 0.17 b 228.91 6 0.16 ab 228.33 6 0.10 a

FIGURE 4. Distribution of 15N enrichment in percent recovery of added 15N in plants, extractable microbial biomass, and SOM, 2 and 26 d
after labeling with 15NH4

+, 15N-glycine, or 15NO3
2 at the heath and the shrub tundra. Data are means 61SE, n = 6. The effects of treatment

and time of harvest and their interactions were analyzed with two-factor ANOVAs for each fraction separately: * P , 0.05,
** P , 0.01.
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lower (NH4
+ and glycine) in plants than in microbes 4 wk after N

addition.

Acknowledgments

Abisko Scientific Research Station (ANS) provided excellent
facilities and logistic support. Pia Lund Nielsen, Jane Kongstad
Pedersen, Jette Brandt, Anders Tesgaard, Kasper Andersen, and
Peter Lindberg Jannerup assisted in the field, and Karin Larsen
and Esben Vedel Nielsen assisted with the laboratory analyses.
Inger Kappel Schmidt kindly provided advice on the 15N-diffusion
technique. We would like to thank two anonymous reviewers for
constructive comments to the manuscript. The research was
funded by ANS, The Faculty of Science, University of Copenha-
gen and The Danish Natural Science Research Council.

References Cited

Anderson, J. P. E., and Domsch, K. H., 1977: Mineralization of
bacteria and fungi in chloroform-fumigated soils. Soil Biology

and Biochemistry, 10: 207–213.

Bardgett, R. D., Streeter, T., and Bol, R. A., 2003: Soil microbes
compete effectively with plants for organic-nitrogen inputs to
temperate grasslands. Ecology, 84: 1277–1287.

Brookes, P. C., Landman, A., Pruden, G., and Jenkinson, D. S.,
1985: Chloroform fumigation and the release of soil nitrogen: A
rapid direct extraction method to measure microbial biomass
nitrogen in soil. Soil Biology and Biochemistry, 17: 837–842.

Chapin, F. S., III, Moilanen, L., and Kielland, K., 1993:
Preferential use of organic nitrogen for growth by a non-
mycorrhizal arctic sedge. Nature, 361: 150–153.

Chapin, F. S., III, and Shaver, G. R., 1996: Physiological and
growth responses of arctic plants to a field experiment
simulating climatic change. Ecology, 77: 822–840.

Cheng, W., and Virginia, R. A., 1992: Measurement of microbial
biomass in arctic tundra soils using fumigation-extraction and
substrate-induced respiration procedures. Soil Biology and

Biochemistry, 25: 135–141.
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