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Abstract
The McMurdo Dry Valleys is the largest of the ice-free areas in Antarctica. Pre-
cipitation events in excess of 1 cm of snow accumulation are rare. During the
winter, snow is transported by strong katabatic winds blowing from the polar
plateau, and deposited into the lee of topographic features (e.g., stream channels
and other topographic depressions). At the start of the austral summer (early
October), as much as 10% of the valley soils may be covered by distributed snow
patches. Because liquid water is the primary driver of biological, physical, and
chemical processes in this polar desert, quantifying fluxes of water from snow
patches is important to understanding the influence of hydrology on soil biology
and nutrient cycling. During the austral summer of 1999–2000, four snow patches
that had developed during the previous winter in Taylor Valley were studied. We
measured snow-patch area, depth, and snow water equivalent, as well as subnivian
(under snow) and nearby exposed (control) soil temperature, light intensity, soil
moisture, invertebrate abundance, soil organic matter content, and 95-d labile
pools of C and N. Subnivian soils differed from exposed soils being as much as
26.88C colder than exposed soils; average soil moisture ranging from 6.9 to 13.6%
compared to 0.4% in exposed soils; soil invertebrate populations exceeding 7900
individuals kg21 dry soil versus less than 1200 individuals kg21 dry soil in ex-
posed soils; and soil invertebrate species richness values greater than 2 taxa,
compared to 1.3 taxa in exposed soils. The results of this study show that these
seasonal, sparse snow patches may be an important source of moisture and control
habitat of soil ecosystems in this extreme environment.

Introduction

The Dry Valleys are an ice-free polar desert region near
the Ross Sea (Fig. 1). The Dry Valleys range in elevation from
sea level to 800 m a.s.l. and are bordered by mountain ranges,
up to nearly 2000 m a.s.l. During the austral summer, light
intensity and climate vary with elevation and solar aspect, with
north-facing ground receiving more solar energy than southern-
aspect ground. Because precipitation is so low (approximately
10 cm water equivalent annually: Keys, 1980) and most ac-
cumulation of snow generally ablates within a few hours after
a summer snowfall (Campbell et al., 1998), the soils of the Dry
Valleys typically receive little moisture. During the austral win-
ter, snow is transported from the polar plateau during strong

katabatic events that generally blow downvalley. The wind-
blown snow accumulates across the landscape in topographic
depressions, leeward of the prevailing wind or along glacier
faces. These snow patches ablate (sublimate and/or melt) slow-
ly during the austral summer and may provide a source of
moisture for a limited duration to the soils and biota beneath.
While ablation rates are quantified for glaciers (10 to 15 cm
yr21: Fountain et al., 1998; Lewis et al., 1998), and for the
permanent ice covers on the lakes (30 to 35 cm yr21: Clow et
al., 1988; Chinn, 1993), ablation and melt rates have not been
quantified for snow patches on the soils. However, if snowmelt
provides moisture to the underlying (subnivian) soils, soil wa-
ter is not present for very long. Campbell et al. (1998) moni-
tored gravimetric soil water in the surface soils (0–5 cm) and
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FIGURE 1. Map of Taylor
Valley, with stars showing lo-
cations of experimental snow
patches. Antarctic location map
denotes location of some ice
shelves and Taylor Valley.

reported moisture losses from 12 to 5% in 4 d and 5 to ,1%
over the next 10 d.

The availability and duration of soil moisture in antarctic
soils effects a range of processes: material transport (eolian de-
position of marine aerosols, including nutrients), physico-chem-
ical soil weathering, distribution of soil invertebrate communi-
ties, and for microbes, nutrient cycling. Transport of soil organic
matter vertically within soil layers, by microscopic organisms,
percolation, or runoff, is common in temperate soils with abun-
dant soil moisture. In the Dry Valleys, the low moisture avail-
ability and rapid sublimation rates of soil moisture limits vertical
material transport within soil layers (Claridge et al., 1999). Eo-
lian distribution of organic material is thought to be an important
mechanism for material transport in the dry climate of the Dry
Valleys (Friedmann et al., 1993; Moorhead et al., 1999; Fritsen
et al., 2000; Lancaster, 2002) facilitated perhaps by katabatic
events.

Previous studies in alpine and northern high-latitude tundra
regions have found that the temporal and spatial distribution of
snow controls biogeochemical processes in soils because snow
acts as a physical barrier, insulator, and source of water (Wil-
liams et al., 1998; Brooks and Williams, 1999; Walker et al.,
1999). Snow can also be a source of inorganic nitrogen (Bow-
man, 1992). Further, snowpack distribution has also been shown
to control subnivian terrestrial plant communities (Seastedt and
Vaccaro, 2001). The Dry Valleys lack aboveground terrestrial
plants, which is a clear contrast to the alpine and high-latitude
tundra sites of these previous experiments. Nonetheless, snow
cover on any landscape insulates underlying soils from dry at-
mospheric deposition of nutrients and salts, and from direct heat
exchange with the atmosphere. Snow cover may have a similar
function in Dry Valley soils.

The distribution of soil organisms in Antarctica is influ-
enced by soil water availability (Kennedy, 1993), but in the dri-
est soils of the Dry Valleys, a combination of salinity, soil or-
ganic carbon, and to a lesser degree, soil moisture, controls the
distribution of biotic communities (Freckman and Virginia,
1998; Virginia and Wall, 1999; Courtright et al., 2001) and bio-
geochemical cycling (Treonis et al., 1999; Barrett et al., 2002).

Therefore, the distribution of seasonal snow patches may be im-
portant for predicting controls on soil biodiversity and ecosystem
functioning, as snow patches may provide moisture, insulate
soils, and hinder the deposition of marine aerosols.

Studies of soil and rock weathering in the Dry Valleys have
found that weathering is generally slow, except in locations that
are in contact with water (Lyons and Mayewski, 1993; Matsu-
oka, 1995; Gooseff et al., 2002). Moisture provided by snow
patches may cause dissolution of salts in underlying minerals in
soils, providing additional nutrients to the soil habitat (e.g., or-
thophosphate). Soils of the Dry Valleys occur on poorly devel-
oped glacial tills, typically composed of 95 to 99% sand, with
high salt concentrations, and pH, and low organic matter content
(0.01–0.03% organic C by weight, Campbell and Claridge, 1987;
Burkins et al., 2000; Fritsen et al., 2000). In particular, the Taylor
Valley soils studied here are classified as Pergelic Cryorthents
(Campbell and Claridge, 1987) and more recently under the Gel-
isol order as mixed Nitric Anhyturbels and mixed Glacic An-
hyturbels (Bockheim, 1997; Beyer et al., 1999).

We hypothesized that snow-cover distribution controls the
aspects of the soil environment (moisture, temperature, chemis-
try) which determine the distribution of soil invertebrates. We
examined the physical characteristics of accumulated snow
patches across the landscape, soil biogeochemical conditions,
and invertebrate populations in soils underneath and adjacent to
snow patches. These characteristics were analyzed in relation to
snow-patch morphology; that is, samples were collected along
the expected snow-patch depositional gradient. We then com-
pared soil habitat conditions and biodiversity underneath snow
patches to soils that are not covered by snow for more than a
day. Throughout this paper, we refer to soil sample sites under-
neath the snow patches as subnivian, even after the snow patch
has disappeared. Soil sample sites outside the snow patches (as
a control) will be referred to as exposed.

Methods
FIELD LOCATION AND SAMPLING

This study was conducted in Taylor Valley (778409S,
1638E), site of the U.S. National Science Foundation McMurdo

Downloaded From: https://bioone.org/journals/Arctic,-Antarctic,-and-Alpine-Research on 20 Sep 2024
Terms of Use: https://bioone.org/terms-of-use



M. N. GOOSEFF ET AL. / 93

TABLE 1

Sampling and measurement schedule at the experimental snow patches for 1999–2000 summer

Date

Sampling or Measurement Made

Snow core

sample taken

Soil samples

taken

Snow depth

measurements

Snow-patch

outline flagged

27 October 1999

28 October 1999

29 October 1999

02 November 1999

NLH

NLF

SLH

SLF

NLH

NLF

SLH

SLF

NLH

NLF

SLH

SLF

NLH

NLF

SLH

SLF

13 November 1999

19 November 1999

22 November 1999

23 November 1999

27 November 1999

28 November 1999

08 December 1999

SLH

NLH

NLF, SLF

NLH, SLH

SLH

NLH

NLF

SLF

NLH, SLH

SLH

NLH

NLF

SLF

NLH, SLH

NLH, SLH

NLF

SLH

NLH

NLF

SLF

NLH, SLH

14 December 1999

20 December 1999

25 December 1999

04 January 2000

NLF

SLF

NLF

NLH, SLH

SLF

NLF

NLH, SLHa

NLHa

SLF

NLF

NLH

05 January 2000

13 January 2000

25 January 2000

NLF

SLFa

NLF

a Represents first observation of complete absence of snow. See text for explanation of site abbreviations.

Dry Valleys Long-Term Ecological Research project. The valley
is approximately 30 km long, with 105 km2 of the land surface
as soil (Burkins et al., 2001). During the 1999–2000 austral sum-
mer, we selected four snow-patch locations representing varying
light intensities throughout a 24-h period: North Shore of Lake
Hoare (162852.39E, 77837.69S) (NLH), South Shore of Lake
Hoare (162854.19E, 77837.99S) (SLH), Von Guerard Stream bank
(163815.29E, 77836.79S) on the south side of Lake Fryxell (SLF),
and Huey Creek stream bank (163807.49E, 77836.29S) on the
north side of Lake Fryxell (NLF) (Fig. 1). NLH receives daily
topographic shading during the afternoon and evening hours,
whereas SLH has a northerly aspect and receives very little to-
pographic shading until late at night, from mid-October to Feb-
ruary (Dana et al., 1998). These two sites are at roughly the
same elevation and experience approximately the same climate
variability (e.g., wind and air temperature). The SLF site has a
northeast aspect on the broad western bank of Von Guerard
Stream and receives no topographic shading during the austral
summer. The NLF site had a southeast aspect and was situated
away from large topographic shading sources.

In late October 1999, two Onset HOBO H8 Pro Series tem-
perature data loggers (Onset Computer Corp., Pocasset, MA)
with external thermistors (60.48C) were placed at each of the
four snow-patch sites to monitor soil temperature. At each snow
patch, one temperature sensor was placed underneath the sub-
nivian soil, and the other was placed in nearby exposed soil,
each to a depth of ,1 cm. At NLH and SLH, two light intensity
(LI) data loggers (Onset Stowaway model SLA08) were also
deployed. At each of the two snow patches, one LI data logger
was placed under the snow patch, and one was placed outside
the snow patch. The LI data loggers recorded data from the first
visit to the snow patch sites (27 October 1999 at NLH and 29
October 1999 at SLH) to 23 January 2000. In addition, a variety
of physical and biological parameters were measured for each
snow patch on an irregular schedule (Table 1).

SNOW SAMPLING

One method of detecting snowmelt is to measure changing
snow water equivalent (SWE) and changing snow depth. De-
creases in snow depth that are occur faster than decreases in
SWE at the same point (thus snow density increases) would sug-
gest some liquid snowmelt becoming incorporated into the snow
patch. At each snow patch, one core of the entire snow-patch
thickness was taken prior to excavation of snow for soil sam-
pling. The snow cores were collected by vertically pushing a
4.5-cm-diameter lexan tube into the snow. The depth of uncom-
pressed snow immediately surrounding the tube was measured
and the extracted snow placed in large sterile Whirl-Pakt (NAS-
CO Inc., Fort Atkinson, WI) polyethylene bags for slow, room-
temperature (approximately 158C) melting in a field camp lab-
oratory following collection. Snow density was calculated from
the quotient of the mass of melted snow and the volume of snow
extracted. Snow depths were consistently measured at 9 to 12
points across the snow patch. The area covered by the snow
patch was estimated at each visit by placing flags around the
perimeter and comparing to the perimeter at the previous visit.
During the final visit all flags were surveyed using a Wild Tach-
ymat total station model 1010 (Leica Geosystems, Switzerland).
Survey data were later entered into a geographical information
system software package (ArcView v.3.2, ESRI, Redlands, CA)
to compute accurate snow-patch area changes. With the excep-
tion of the NLF snow patch, all snow patches disappeared by
the end of the study in late January.

INVERTEBRATE ANALYSES

At each snow-patch site, four sampling sites along a linear
transect across the snow patch were established, from upvalley
to downvalley (in the direction of the snow-depositing winter
katabatic winds): one control site that was approximately 1 m
from the edge of the snow patch, upvalley of the lee (exposed),
and three subnivian sites (subnivian 1, 2, and 3). We expected
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FIGURE 2. Exposed and subnivian (A) soil temperature, and
(B) light intensity at NLH snow patch.

differences in snow ablation rates and underlying soil moisture
based on the location within the snow patch. Beginning in late
October (time 0), soil samples were collected with a small trowel
to a depth of approximately 5 cm. For each soil sample, trowels
that had been previously rinsed with deionized water and dried
were used. Subnivian soil samples were obtained by digging
through the snow from the top of the snow patch. An articulating
ladder (made of three sections capable of locking in various an-
gles) was used to access the middle of the snow patch, with
minimal disturbance to the snow. The overlying snow that had
been removed was retained so that it could be replaced after the
soil samples were collected. Soil samples were placed in sterile
polyethylene (Whirl-Packt) bags and transported to the lab fro-
zen at approximately 228C. Samples were later thawed at 48C
and immediately processed. Subsamples of 100 g were used for
soil invertebrate extractions by the modified sugar flotation
method (Freckman and Virginia, 1993), and an additional 30-g
subsample was oven dried at 1058C for 24 h for gravimetric soil
moisture determination (Gardner, 1986). Soil invertebrates were
identified and enumerated, life stage determined, and presented
per kg dry weight of soil. Because of insufficient amount of soil
from one of the subnivian NLF soil sites (subnivian 3), on 28
October 1999 only 70 g of soil was used for invertebrate ex-
traction.

Invertebrate data were log (x11) transformed, and subjected
to analysis of variance within snow patches as replications (4),
location within each snow patch (4), and time of sampling (3)
as main factors. Correlation analysis was used to determine pres-
ence of relationships between nematode and soil variables.

SOIL ANALYSIS AND INCUBATIONS

We estimated soil salinity by measuring the electrical con-
ductivity of a 1:5 soil solution of sieved (2-mm sieve) soil in
deionized water (Rhoades, 1982). Electrical conductivity was
measured using a Corning 311 conductivity meter. Soil pH was
measured in a saturated paste (1:2 soil in deionized water) with
an Orion model 720A pH meter (McLean, 1982). A 15-g sub-
sample was used to determine initial soil NO3

2-N and NH4
1-N

concentrations from a 2.0 M KCl extract on a Lachat Autoana-
lyzer (Keeney and Nelson, 1982). A subsample of each soil was
analyzed for organic C and total N content with a Carlo Erba
1500 elemental analyzer (Carlo Erba, Milan, Italy) (Nelson and
Sommers, 1982).

We conducted laboratory incubations of exposed and sub-
nivian soils to estimate pools of mineralizable C and N in order
to assess differences in the amount of potentially active organic
matter among the landscape positions (i.e., exposed or subnivi-
an). For each soil sample, approximately 100 g of oven-dried
soil was placed in a 300-mL glass jar with screw-top lid and
brought up to 10% soil moisture content. A hole was drilled in
each jar lid and a CO2 impermeable rubber septum was sealed
onto the lid with silicon sealant. Soils were stored at 208C for
95 d. Each incubation vessel was sealed 48 h prior to sampling
of the headspace gas. Gas samples (10 mL) were collected from
the mason jar headspace above the soils with a gas-tight glass
syringe at t 5 3, 9, 18, 29, 39, 54, 65, and 95 d and injected
into a LI-COR 6200 Portable Photosynthesis System/Infra red
gas analyzer (LI-COR Inc., Lincoln, NE) modified to measure
CO2 concentrations of small gas volumes. Headspace CO2 con-
centrations were blank corrected and expressed as mg C g soil21

d21 according to ideal gas behavior (Robertson et al., 1999). At
the end of the incubations (day 95), approximately 20 g of oven-
dry weight equivalent soil was extracted in 2 M KCl and ana-

lyzed for inorganic N as described above, to determine potential
net N mineralization and nitrification. Net N mineralization and
nitrification were calculated as the difference between day 95
and initial concentrations of inorganic N (ammonium 1 nitrate)
and nitrate, respectively.

Results
SNOW PROPERTIES AND SOIL TEMPERATURES

Snow patches had a significant influence over soil micro-
climate and physical properties during the 1999 austral summer.
Temperature and light intensity results for NLH are shown in
Figure 2; data from other sites are summarized in Table 2. Sub-
nivian soil temperatures were generally colder than exposed soil
temperatures and did not exhibit much diel fluctuation compared
to exposed soil temperatures prior to overlying snow ablation.
As the snow patch ablated at all four sites, a diel pattern of soil
temperatures appeared, resulting from the decreased insulating
effects of the snow. Overall, NLH exposed soil temperatures
exhibited lower peaks than SLH (23.28C and 29.28C, respective-
ly), and were colder on average than SLH (1.6 6 8.08C and 2.9
6 9.08C, respectively). Prior to snow-patch disappearance, there
were substantial temperature differences between the exposed
and subnivian sites, while after disappearance, little difference
existed. Soil temperatures were generally higher in the exposed
sites than the subnivian sites because the relatively high albedo
of the snow greatly reduces solar heating compared to snow-free
soils. All soil temperatures generally follow the seasonal air tem-
perature increase from October to December.

Light intensity (LI) was less than 1 to 2 lm m22 at the
subnivian snow sensor at the NLH and SLH sites early in the
season (Fig. 2). The NLH exposed LI data reflected the seasonal
variation of sunlight exposure at that site with increasing LI to
a peak around the winter solstice. During the increasing portion
of that trend, in mid-December, the subnivian LI meter became
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TABLE 2

Summary of soil temperature and light intensity data for snow patches studied

NLH SLH NLF SLF

Minimum, Mean, and Maximum exposed

soil temperature, [std. dev.], (8C)

224.9, 1.6,

23.2, [8.0]

223.5, 2.9,

29.2, [9.0]

N/A 220.2, 1.2,

14.8, [5.7]

Minimum, Mean, and Maximum subnivi-

an soil temperature, [std. dev.], (8C)

221.8, 26.5,

16.5, [8.5]

N/A 222.9, 26.4,

10.9, [7.6]

221.0, 23.5,

15.7, [8.6]

Minimum, Mean, and Maximum exposed

light intensity, [std. dev.], (lm m22)

0.6, 14.3,

64.4, [10.1]

0.5, 13.5,

45.5, [7.7]

N/A N/A

Minimum, Mean, and Maximum subnivi-

an light intensity, [std. dev.], (lm m22)

0.0, 5.5,

56.5, [8.0]

0.0, 11.5,

64.4, [11.2]

N/A N/A

FIGURE 3. (A) Snow-depth data is reported as a mean of 9
to 12 measurements for a particular date, error bars 61 stan-
dard deviation from the mean, and (B) snow water equivalent
(SWE) data from point measurements.

TABLE 3

Snow-patch area loss rates

Location/Date Area (m2)

Rate of Loss

(m2 d21)

NLH

27 October 1999

13 November 1999

23 November 1999

08 December 1999

25 December 1999

67.85

56.8

48.9

30.5

0.46

0.65

0.79

1.23

1.77

SLH

29 October 1999

13 November 1999

23 November 1999

08 December 1999

126.11

103.04

82.37

33.64

1.54

2.07

3.25

NLF

28 October 1999

27 November 1999

20 December 1999

05 January 2000

25 January 2000

164.7

157.81

140.37

90.52

60.01

0.23

0.76

3.12

1.53

SLF

02 November 1999

28 November 1999

14 December 1999

192.16

98.3

13.31

3.61

5.31

uncovered and tracked the exposed meter closely. The SLH sub-
nivian LI meter is uncovered about 20 d prior to the NLH sub-
nivian LI sensor. The SLH subnivian LI meter recorded a trend
similar to that recorded by the exposed SLH LI meter, but with
a much larger diel LI cycle. Subnivian LI values were lower on
average than exposed LI values (Table 2).

Snow-depth data are presented in Figure 3A as mean and
standard deviation. Mean snow depths at the beginning of the
study ranged from 0.2 to 0.6 m. Snow depths were quite vari-
able, as standard deviations ranged from under 0.1 to 0.3 m.
Snow depths showed a decreasing trend with time, and snow
patches disappeared completely at NLH by 4 January 2000, at
SLH by 25 December 1999, and at SLF by 13 January 2000

(Table 1). At the NLF snow patch, complete ablation did not
occur.

Figure 3B presents the SWE data for each of the snow
patches throughout the season. Snow water equivalent values
generally decreased throughout the season for all but the NLH
snow patch, and snow density generally increased (data not
shown). This result suggests that some melt may have occurred
within or at the top of the snow patch. Of course, snow density
and SWE data are dependent on the exact location of the snow
sample, which was in the same vicinity within the snow patch
for each snow core sample. Table 3 presents the loss of snow-
patch area throughout the season. It appears that the fastest rates
of loss occurring at the north-facing snow patches, SLF and
SLH.

SOIL BIOGEOCHEMICAL PROPERTIES

Soil moisture results are presented here as a mean of each
sampling location for each of the four snow patches (Table 4).
Soil moisture content varied markedly, from less than 1% up to
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TABLE 4

Mean biogeochemical properties of soils collected at an exposed site and three subnivian sites in Taylor Valley, Antarctica

Variable Exposed

Sampling Position

Subnivian 1 Subnivian 2 Subnivian 3

pH

Electrical conductivity (mS cm21)

Average soil moisture (%)

Soil organic carbon (mg C g21 soil)

Total soil nitrogen (mg N g21 soil)

Potential net N mineralization (mg N g21 soil d21)

Potential nitrification (mg N g21 soil d21)

Potential C mineralization (mg C g soil21 d21)

95-d C turnover (d21)

9.4

116

0.4a

0.41

0.059

0.069a

0.072a

1.31

0.31a

9.3

61

6.9b

0.41

0.053

20.020b

20.011b

0.89

0.11b

9.4

44

13.6b

0.68

0.091

20.011b

0.022b

0.52

0.10b

9.4

57

7.7b

0.40

0.055

0.007b

0.0010b

0.47

0.11b

a,b Different letters denote significant differences in soil properties among sampling positions at a 5 0.05.

FIGURE 4. Scatter plots of (A) potential net N mineralization
vs. potential C mineralization and (B) net N mineralization vs.
proportion of C mineralized.

FIGURE 5. Plot of 95-d potential C mineralization in soils
collected from exposed and subnivian (1, 2, and 3) soil sample
sites at the four experimental snow patches in Taylor Valley,
Antarctica. Error bars are 61 standard error of the mean.

14% by weight (Table 4). Soil moisture was significantly lower
in the exposed sites (mean 5 0.42%) than the subnivian sites
(mean 5 9.38%) (P , 0.01). In November, while snow patches
were present, subnivian soil moisture was higher than exposed
soil moisture content, and decreased significantly from a mean
of 9.65% to 4.63% during the period of study (P , 0.05).

Although the mean electrical conductivity of exposed soils
was higher than that for subnivian soils (Table 4), this trend was
not statistically significant. Similarly, no significant differences
in soil pH among positions sampled were observed (Table 4).

Soil organic matter concentrations from subnivian and ex-
posed soils were comparable (Table 4), but the potentially mi-
neralizeable pool of N was significantly greater in exposed soils
(P , 0.01). Potential C turnover in exposed soils was three times

that of subnivian soils (Table 4) and potential nitrification and
net mineralization in exposed soil sites were 3 to 10 times great-
er than levels of nitrification or net mineralization estimated for
subnivian soils (Table 4). Standing pools of KCl-extractable soil
nitrate concentrations were universally greater than ammonium
concentrations (data not shown), and nitrification represented
greater than 90% of the total net N mineralization in all soils
(Table 4). C mineralization accounted for 24% of the variance
in estimates of potential net N mineralization (Fig. 4A), and
potential C turnover accounted for 52% of the variance in po-
tential net N mineralization (Fig. 4B).

Potential C mineralization did not exhibit first order kinetics
(constant proportional mass loss per unit time) over the 95-d soil
incubations (Fig. 5). However, after 20 d of laboratory incuba-
tion, C mineralization from exposed soils could be reasonably
described by a zero order model (constant loss of mass per unit
time). There was a marked difference in the shape of the C
mineralization curves and the amount of C mineralized between
exposed and subnivian soils, reflecting much greater levels of
labile C in exposed soils (Fig. 5).

SOIL INVERTEBRATES

Generally, subnivian soils maintained significantly more di-
verse soil communities, averaging 2.7 invertebrate taxa com-
pared to 1.3 taxa in exposed soils. Invertebrate communities of
exposed soils were composed of rotifers and the endemic nem-
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TABLE 5

Abundance (mean numbers per kg dry soil) and richness (mean
number of taxa) of soil invertebrates collected at one exposed
and three subnivian sites for all snow patches (4) in Taylor

Valley, Antarctica, over all sampling dates (3, thus n 5 12)

Variable Exposed Subnivian 1 Subnivian 2 Subnivian 3

Scottnema lindsayae

Living

Dead

Total

1057

49

1113

779

242

1021

1392

415

1816

2007

395

2411

Eudorylaimus antarcticus

Living

Dead

Total

0a

0a

0a

50b

20b

60b

45b

28b

61b

48b

21b

54b

Plectus antarcticus

Living

Dead

Total

0a

0a

0a

199b

17b

256b

0a

0a

0a

0a

11b

11b

Total nematodes

Rotifers

Tardigrades

Richness

1105

85

0a

1.3

1194

49

0a

2.9

1879

6079

41b

2.4

1873

78

72b

2.8

a,b Different letters denote significant differences in soil properties among

sampling positions at a 5 0.05.

FIGURE 6. Plot of average nematode abundance vs. soil elec-
trical conductivity. Exponential model fitted to live nematode
abundance.

atode species Scottnema lindsayae, but Eudorylaimus and Plec-
tus nematode species and tardigrades were not found (Table 5).
Subnivian soils had higher numbers of rotifers and tardigrades,
compared to exposed soils, as well as populations of Scottnema,
Eudorylaimus, and Plectus (Table 5). Total nematode abundance,
and specifically Scottnema abundance, was greatest in subnivian
soils, but this trend was not statistically significant (Table 5).
While the abundance of the omnivorous-predaceous nematode
Eudorylaimus was significantly greater in soils collected from
beneath snow patches than in soils collected from outside the
snow patch (Table 5), significantly higher densities of Plectus
were present at subnivian sites 1 and 3 than exposed and sub-
nivian site 2. Living nematodes were more abundant than dead
nematodes at all sample sites, with the exception of 11 dead
Plectus individuals found in subnivian 3 samples, but no live
individuals. Invertebrate densities were not influenced by time
as no significant differences between invertebrate abundances
from one sampling to the next were observed.

There were no relationships between Scottnema and Eu-
dorylaimus abundances and soil moisture in subnivian and ex-
posed soils, and only a marginally significant relationship be-
tween soil moisture and Plectus densities. Electrical conductivity
of the soil accounted for almost 80% of the variance in total
nematode abundance (Fig. 6). Additionally, there were no ap-
parent relationships among invertebrate abundance and soil or-
ganic matter content or between invertebrate abundance and es-
timates of potential C and N mineralization (P . 0.1).

Discussion
As expected, snow cover insulated subnivian soils from di-

rect atmospheric heat transfer and light (Fig. 2, Table 2). Sub-
nivian soil temperatures were generally lower than exposed soil
temperatures until snow ablation occurred, and were insulated
from the diurnal swings in air temperature and solar radiation.
This is not surprising, considering permafrost is generally found

40 to 50 cm below the ground surface. Early in the summer,
snow temperatures at the base of the snow patches are much
lower than 08C, while exposed soil temperatures and air tem-
peratures may be warmer than 08C. As a result, any melt or
sublimation must have occurred at the edges of the snow patch,
or at the surface. This is a clear contrast to temperate snow
packs, which may melt continually, though slowly, throughout
the winter, with snow-pack base temperatures usually at or near
08C. The 20-d lag between the SLH and NLH subnivian LI data
is not surprising given the afternoon topographic shading for the
NLH site, which reduced the total solar radiation working to
ablate the snow patch. However, we cannot rule out the possi-
bility that the different depths at which the under-snow-patch LI
sensors were placed contributed to the time lag.

Also as expected, subnivian soil moisture was significantly
higher than exposed soil moisture. This is likely due to a small
amount of melt that must be occurring at the bottom of the snow
patch just before complete ablation, and the overlying snow
patch preventing evaporative losses from the soil. Similar to the
findings of Campbell et al. (1998), once the snow patches di-
minish in December, greater evaporation from the soils would
be expected and soil moisture declines.

There were no differences in total organic matter content
between soils collected from beneath and outside the snow patch-
es. However, laboratory incubations indicate that there were con-
siderable differences in the C and N mineralization potentials of
these soils. Soils outside the snow patch contained high concen-
trations of labile C and N relative to soils beneath the snow patch,
yet subnivian soils hosted relatively abundant and diverse biotic
communities. This difference in the kinetic properties of the soil
organic matter and invertebrate communities suggests that ex-
posed soil biota are limited by water availability, while subnivian
soil biota may be more limited by nutrient availability. For ex-
ample, under laboratory conditions, labile C that is unavailable to
soil biota because of water and physiological limitations in the
field may be more readily utilized by soil microbes or inverte-
brates. Under field conditions, in contrast, subnivian soils maintain
more favorable water availability and host higher invertebrate
abundance which drives greater competition among soil biota for
C substrate and soil resources in an environment where C inputs
are limited by darkness.

Exposed soils may have a less favorable environment and
lower invertebrate diversity (Table 5) but presumably have a
positive, albeit low, C balance due to inputs of eolian-derived
organic material (Moorhead et al., 1999) and direct C inputs
through photosynthesis of soil algae. Reported estimates of C
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fixation by soil cryptoendolithic algae are low, ,1.0 g C m22

yr21 (Johnston and Vestal, 1991; Friedmann et al., 1993), but
production by these similar types of communities in the soil may
represent an important source of organic matter to microbial and
invertebrate food webs. These differences in microclimate, or-
ganic matter availability and biodiversity between subnivian and
exposed soils underscore the challenges to soil biota in this en-
vironment and identify some of the most relevant questions to
Dry Valleys biogeochemistry, e.g., what sources of organic mat-
ter support contemporary soil food webs and how important are
legacy sources of organic matter in structuring complex inver-
tebrate communities?

SOIL INVERTEBRATES

Of the three species of nematodes that are widely spread
across the Dry Valleys, Scottnema is the most abundant, and
typically dominates soil communities (Freckman and Virginia,
1998; Virginia and Wall, 1999; Porazinska et al., 2002). The
distribution of nematodes in the subnivian and exposed soils
presented here is similar to the pattern found in previous studies,
which established that the three nematode species have different
soil habitat preferences (Freckman and Virginia, 1998; Porazin-
ska et al., 2002). Scottnema does not appear to occur in wet
soils, while Eudorylaimus and Plectus tend to be more abundant
in wetter soils (Powers et al., 1998; Treonis et al., 1999; Freck-
man and Virginia, 1998; Courtright et al., 2001). We expected a
strong relationship of nematode species distribution with mois-
ture gradients as noted by Treonis et al. (1999) that Eudorylai-
mus and Plectus would be absent or few in drier exposed soils,
and more abundant in moist subnivian soils. The results pre-
sented here for Eudorylaimus and Plectus abundances in subni-
vian and exposed soils are consistent with our expectations. That
Scottnema abundance was not significantly different in moist and
dry soils as noted by others (Powers et al., 1995) is further ev-
idence of the greater tolerance of Scottnema to wider moisture
ranges (Porazinska et al., 2002).

Considering that life cycles of antarctic nematodes are gen-
erally very long (years to decades: Overhoff et al., 1993; Pora-
zinska et al., 2002), the consistently higher abundance of Eu-
dorylaimus under the snow patches suggests that the snow patch-
es accumulate more or less from year to year in same locations.
This result may also indicate that Eudorylaimus is consistently
deposited by wind during strong katabatic events in these same
locations/habitats throughout the year. The subnivian densities
of Eudorylaimus were representative of other soil habitats across
the Dry Valleys (Freckman and Virginia, 1997; Porazinska et al.,
2002). Because dry soil habitats in the Dry Valleys are generally
void of Eudorylaimus (Powers et al., 1998; Courtright et al.,
2001), it is not surprising to observe higher densities of this
nematode under, rather than outside, the snow patches. This re-
sult, as well as the general trend of lower invertebrate abundance
in soils with higher electrical conductivity (Fig. 6), agrees with
previous results of Treonis et al. (1999), Virginia and Wall
(1999), and Courtright et al. (2001).

Conclusions
These data show that the distribution of snow patches has a

distinct influence on the biogeochemical conditions in underlying
soil, and presence of invertebrate distributions. Snow cover is a
source of water to the soil directly underneath it. Further, these
data suggest that there is a higher proportion of labile C in ex-
posed soils than subnivian soils. One cause of this is that the snow

patch acts as a physical barrier, keeping recently fixed C and/or
eolian sources of organic matter out of the subnivian soils.

The soil biogeochemical conditions, in turn, directly affect
the habitat for soil invertebrates. Greater abundance of Plectus
and Eudorylaimus in subnivian soils compared to exposed soils
suggests that the subnivian soils provide a more favorable hab-
itat, and possibly, that the physical control of the wind-break,
which causes snow to accumulate may contribute to maintenance
of soil diversity.
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