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Abstract

The establishment of tree seedlings in primary succession is thought to occur only

after an adequate reserve of nutrients has accumulated in the soil. Individuals of

Pinaceae are sometimes reported to grow on very recently deglaciated substrates.

This study analyzed the colonization of a glacier foreland by Pinus wallichiana.

Physical, chemical, and biotic aspects of potential and observed seedling microsites

were analyzed with regression methods and tests for proportions. Microsites with

intermediate to high moisture levels and alkaline nutrient-poor soils were found to be

conducive to seedling establishment. The most recently deglaciated parts of the

foreland have soils with little nutrients and high pH. There is a linear change in soil

variables from low nutrient content and high pH at the most recently deglaciated

parts to more nutrient-rich and neutral toward the pre-neoglacial moraines.

Surrounding old-growth forests of Pinus wallichiana shed an abundance of seeds

onto the foreland, are able to germinate and grow, and are predominant among the

early pioneers, which makes this species an unusual pioneer of primary succession.

Colonization by P. wallichiana is not restricted to particular safe sites. Even though

individuals look chlorotic and stunted, they grow at near normal rates. Leaf

discoloration of seedlings occurs in soils with high pH and low nitrogen content. P.

wallichiana is also a canopy dominant on some of the oldest terrains and outside the

foreland.

Introduction

Data from Mount St. Helens (del Moral, 1993) have shown

the stochastic nature of plant dispersal and, consequently, the

course of succession. Primary succession is a dispersal-driven

process, where neutral models (cf. Hubbell, 2001), or null models,

contrast the gradual development; organic soil before tree

establishment. Newly exposed substrate lacks a reserve of nitrogen

and organic matter. Seedling establishment typically takes place

after an adequate nutrient reserve has accumulated in the soil

(Marrs and Bradshaw, 1993). However, limited occurrences of late

seral species—like members of the family Pinaceae—have been

reported on recently deglaciated substrates (Cooper, 1923;

Lawrence, 1958, 1979; Reiners et al., 1971; Blundon et al., 1993;

Vetaas, 1994; Helm and Allen, 1995; Jumpponen et al., 1999, 2002;

Niederfriniger-Schlag and Erschbamer, 2000).

Cooper (1923) stated that individuals of Picea sitchensis

(Pinaceae) on young moraines were permanently stunted and

would not survive to become dominant members of the late seral

forests. Lawrence (1979) on the other hand observed seedlings of

a late successional species, Populus trichocarpa (Salicaceae), on

substrates that had been deglaciated as little as 5–10 years. These

shrubs survived as semi-prostrate individuals for decades and

individuals appeared stunted due to nitrogen deficiency. When

nitrogen levels were amended by nitrogen-fixing plants, these

pioneers assumed dominance over the seral community (Lawr-

ence, 1958, 1979).

The field work was done on a Little Ice Age glacier foreland

(central Himalaya), which is surrounded by mature forest of Pinus

wallichiana on large parts of the higher-lying neoglacial (pre–A.D.

1250) moraines on both sides of the foreland. Among the pioneer

species, seedlings and saplings of P. wallichiana have high cover-

abundance. The species increasingly prevails on older phases

originating from the maximum extent of Little Ice Age (approx.

1850; cf. Mayewski and Jeschke, 1979) and older neoglacial

moraines.

Following the rationale behind the stochastic dispersal model,

we aimed to test a hypothesis based on random dispersal from

nearby Pinus wallichiana A.B. Jacks. (Himalayan blue pine)

forests; microsites hosting seedlings are not different from those

without, in terms of the sampled environmental variables.

Materials and Methods

STUDY AREA

The field work took place in the upper Manang district of the

Annapurna region in western Nepal, at 28u379N, 84u009E (Fig. 1).

This district lies in the Trans-Himalayas. The surrounding peaks

rise 7000–8000 m above sea level (m a.s.l.). The trunk valley is

informally called the Manang valley.

The foreland of the Gangapurna North glacier lies in

a tributary valley to the trunk valley of Manang. The Gangapurna

valley (our denomination) has the glacier at its southern end and

opens to the north into the Manang valley (Fig. 2). The

Gangapurna glacier foreland extends a little out of the Gang-

apurna valley and parts of the terminal moraine complex lie north

of the Marsyandi river in the Manang valley. The difference in

elevation from the terminal moraines to the glacier terminus is

approximately 250 m over a distance of 2.5 km. The highest

lateral moraines of the foreland on the sides of the valley lie 200–
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300 m above the valley floor. The parent material of the area

contains quartzites with layers of hematite, slates, and limestone

with clays and marl (Hagen, 1969).

Climatic data were inferred from the nearest climate station,

at Jomsom, which is 30 km to the west and has a similar climate.

The annual precipitation is approximately 400 mm (Anonymous,

1999). Most downpour falls during the monsoon season from June

to September. There is a pronounced dry period in April and May.

The occurrence of salt flats on the foreland indicates that annual

evaporation may exceed precipitation. Interpolated mean January

temperatures range from 0 to 22uC in the altitudinal belt from

3500 to 3800 m a.s.l., respectively. The mean maximum/minimum

temperatures range from 22 to 8uC in winter and 14 to 23uC in

summer in these altitudes (Anonymous, 1999; Bhattarai et al.,

2004). Snow is common during winter.

The plant species of the area derive from the Sino-Japanese and

Central Asian phytogeographic regions. The north-facing mountain

side of the Manang valley is covered with montane conifer forests.

Pinus wallichiana is the predominant species, and its old growth

forests infringe most of the Gangapurna valley along the lateral

moraines. Above 4000 m a.s.l., dominance is shared with Abies

spectabilis and Betula utilis up to the tree line at approximately

4300 m a.s.l. The floor of the trunk valley consists mainly of cultivated

land with scattered Juniperus spp., Berberis spp., and some Rosaceae.

The terminal moraines are bordered by this vegetation. Pinus

wallichiana is conspicuously absent from the vicinity of the village.

There is alpine scrub above the tree line up to approximately

5000 m a.s.l., which consists of species such as Caragana spp.,

Ephedra gerardiana, Juniperus communis, J. squamata, Rosa

sericea, R. webbiana, Ribes glaciale, and Spiraea arcuata.

Since the Manangi people’s livelihood comes from agricul-

ture, pastoralism, and tourism, anthropogenic impacts on the

vegetation are grazing, trampling, litter collection, and wood-

cutting. Grazers are domestic goats, cattle, and yak.

FIELD SAMPLING

Data were collected (24 April to 28 May 2001) from plots in

three different types of terrain on the foreland, where the terrain

was level enough to be accessible and where the vegetation was

sufficiently unperturbed by sliding debris to have a vegetation

development: (1) the terminal moraine complex, (2) the benches of

the eastern lateral moraine, and (3) the screes between these

benches (Fig. 2). Transect lines were allocated parallel to the

glacier margin at the time of material deposition, hence each

transect is within a temporal phase of deglaciation. The transects

were measured and plots of 5 3 10 m were placed systematically

along the line. Two transects with four plots each were located on

the youngest part of the terminal moraine complex which is south

of the river (transects T1 and T2). Five transects (T3 to T7) with

three plots each were located on the older part north of the river.

A section of the lateral moraines include five benches 5–20 m wide

FIGURE 1. Map of Nepal and the Manang district. The Gangapurna glacier foreland is south of the Manang village. Modified from
Bhattarai et al. (2004).
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and up to 170 m long that are relatively intact from landslides.

Transects were drawn through the benches (B-1 to B-5 from lowest

[youngest] to highest) and five plots located at even distances on

each line. The steep screes (ca. 32–37u slope) between the benches

were sampled along four transects, S-1 to S-4 (lowest to highest),

and these have three plots each.

The following variables were sampled in the plots: (1) altitude

(altimeter), (2) aspect and slope (clinometer compass), (3) the

curvature of the ground (classified as convex, flat, shallow

concave, or deep concave), and (4) subjective assessments of

percentage stone cover and vegetation cover, as well as an

estimation of cover-abundance of common taxa. A relative

radiation index (RRI), which is a relative measure of the

substrate’s annual exposure to radiation (Oke, 1987; Vetaas,

1992), was estimated as a function of latitude, aspect, and slope.

The sampling followed a stratified random sampling pro-

cedure where two types of 1 3 1 m quadrats were sampled in each

plot: subplots and microsites. Seven subplots were randomly

allocated in each plot, representing a random sample of potential,

but vacant, microsites (a site on the spatial scale of a seedling,

sensu Titus and del Moral, 1998). Each P. wallichiana seedling

(,40 cm) in a plot marked the center of an (actual) microsite.

There are conspicuously few P. wallichiana north of the river.

On the sampled terrain there were only two individual trees on the

terminal moraine complex (on transect T-6) north of the river. The

old growth forests on top of the lateral moraines most likely shed

an abundance of seeds on to this terrain, as well as on to all other

part of the foreland. The fall speed of P. wallichiana seeds is

1.12 m/s (Lanner, 1998). Therefore, it follows that moderate wind

can easily move seeds from the old growth forests to the terminal

moraine complex that lies less than 1 km away and 200–300 m

lower in elevation.

Data were not sampled from the microsites and the subplots

on transect T-5, nor the scree-transects, because vegetation

development was poor or negligible, and there was high

uniformity of environmental factors. Altogether there were 177

microsites and 315 subplots. The variables sampled in quadrats

(microsites and subplots) were the same as in the plots. Forty-one

seedlings found in subplots were collected. A disc was sampled at

each of the rootnecks of 35 seedlings that were over one year old

to provide data on diameter, age, and growth rate.

All individuals of Pinus wallichiana are divided into four

groups: (1) seedlings ,40 cm, (2) saplings ,137 cm, (3) juveniles

.137 cm without cones, and (4) adults with cones. Height

categories are relatively small because many P. wallichiana had

a stunted growth.

Stress levels or vigor might be revealed by leaf color. The

foliage of each P. wallichiana was put into six subjective color

categories: (0) brown or with marked leaf loss, (1) yellow, (2) more

yellow than green, (3) equally yellow and green, (4) more green

than yellow, and (5) green.

Due to the remoteness of the study area, five days’ walk from

the nearest road, only a limited number of soil samples was

collected: one sample from a randomly chosen subplot of each

plot. All samples were sifted through a 2 mm mesh and analyzed

later for moisture content and loss on ignition (LOI). The pH,

nitrogen, and phosphorus were determined accordingly: pH in

water suspension (1:2), total nitrogen (N) by the Kjeldahl

digestion procedure, and phosphorus (P) by isolation in acetate-

lactate and estimated by spectrophotometer. All methods are

described in Black (1965). Field identifications were carried out in

accordance with Stainton and Polunin (1997) and Stainton (1997).

Nomenclature follows Hara et al. (1978, 1982) and Hara and

Williams (1979).

To get an impression of minimum time since deglaciation of

different phases, increment cores were drilled from the largest

adults of Pinus wallichiana in each plot with a Swedish Mora

increment borer.

NUMERICAL METHODS

Generalized Linear Models (GLMs; McCullagh and Nelder,

1989) were employed to analyze relationships between soil

variables and seedling density. Seedling density was calculated

from counting the number of seedlings in each of the 60 plots;

therefore, a Poisson probability distribution was expected (Quinn

and Keough, 2002).

Generalized Additive Models (GAMs; Hastie and Tibshirani,

1990) were used to model the functional dependence of leaf color

on soil variables. GAMs were chosen because the parametric class

FIGURE 2. Map over the Gangapurna valley and the location of
transects. The Marsyandi River runs toward the East, down the
Manang valley. The glacial lake lies directly south of the terminal
moraine complex with transects T-1 to T-7. The broken line
indicates the approximate position of the glacier terminus in 1952
(from a photo in Hagen, 1969). Bench-transects B-1 to B-5 and
scree-transects S-1 to S-4 are on the least steep section of the eastern
lateral moraine. The broken line near the valley bottom indicates the
approximate position of the terminus in 1980 (from a photo by
Röthlisberger, 1986). The unbroken line is the glacier terminus in
2003. Numbers are altitudes above sea level in meters. Old-growth
forests with P. wallichiana cover most of the area between 3800 and
4000 m a.s.l. (Map was made by Beate Helle Ingvartsen).
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of the response variable (or the residuals) is difficult to assume

when the dependent variable is categorical.

All models were subjected to the F-test because it is more

robust when testing log-linear regressions where the probability

distribution of the response is over-dispersed (Hastie and

Pregibon, 1993). Singular independent variables in Poisson

regression models were assessed by the D2-value (5 [null deviance

– deviance]/null deviance), which is analogous to R2 (Yee and

Mitchell, 1991).

Stepwise selection routines were used to find the most

parsimonious multiple regression models predicting seedling

density and leaf color as functions of soil variables. All possible

predictor terms were tested to the second order of power in GLM,

and four degrees of freedom of the smoothing spline in GAM.

Akaike Information Criteria (AIC-statistics) were calculated for

each resulting model. AIC-statistics provide a means for selecting

the best combination of predictors for a multiple regression model

because it identifies and excludes variables that are redundant due

to high correlation with other variables or to negligible

contribution to the explanatory power of the model (Quinn and

Keough, 2002).

A Chi-square–based test of proportions was used to find

associations between P. wallichiana seedlings and microsite

characteristics like microtopography and facilitation. The test

was employed to find if the proportion of a characteristic in the

random sample of subplots (n 5 315) was different from the

proportion of the same characteristic in the microsites (n 5 177)

hosting seedlings. No association gives approximately equal

proportions. There may be positive and negative associations,

indicating net negative or net positive influence on seedling

establishment. The tests performed were two-sided because the

presence of any characteristic may facilitate as well as inhibit

seedlings (cf. Jumpponen et al., 1998, 1999).

Soil variables except pH were transformed with the Napieran

logarithm (ln 5 loge). All analyses were done using R (R

Development Core Team, 2003).

Results

The tree ring data suggest a relative age sequence for

the following transects, from the youngest to the oldest: B-1 ,

B-2 , T-1 , T-2 , B-3 , B-4 , B-5 (see Fig. 2). Increment

samples from the largest trees indicate that the two highest

benches, B-4 and B-5, were deglaciated before the Little Ice

Age. Although the largest trees had rotten cores with rings

that were not possible to count, they still displayed up to 200

annual increments. Geologists who have worked in the area also

see this part of the terrain as much less recently deglaciated than

the lower parts of the foreland (Hagen, 1969, Röthlisberger, 1986,

Nagaoka, 1990). The age sequence for the remaining transects on

the terminal moraine may be inferred from their spatial

distribution: T-3 , T-4 , T-5 , T-6 , T-7 (see Fig. 2). Likewise,

the sequence including the scree transects on the lateral

moraines should be: B-1 , S-1 , B-2 , S-2 , B-3 , S-3 , B-4

, S-4 , B-5.

Soil variables, vegetation cover, and the basal area of P.

wallichiana were linear functions of inferred relative age of

transects B-1 to B-5 and T-1 and T-2 [Pr(F) , 0.05, n 5 7]. All

soil variables increased toward older terrain except pH-level,

which decreased. Soil variables displayed the same linear trends

toward the older terminal transects, which could not be included

in the inferred relative age sequence, either because tree-ring data

was not present or because it was corrupted by rotten cores.

Vegetation cover and the basal area of P. wallichiana were low on

the older terminal transects north of the river.

The two predominant taxa on the youngest terrains were

Pinus wallichiana and Salix spp. (Figs. 3a, 3b, and 3c). There were

438 P. wallichiana in the sampled terrain; 264 of these were

seedlings, 67 saplings, 61 juveniles, and 46 adults. The oldest

benches had the highest occurrence of adult trees. Nonetheless,

there were three adult trees on T-1, six on T-2, one on each of T-6

and B-2, and nine on B-3.

There were seedlings on every transect that had a P.

wallichiana population, which is to say on every transect south

of the river. The density of seedlings were lower on the terminal

FIGURE 3. Cover-abundance of major taxa as fraction of mean
percent vegetation cover on transects on different types of terrain.
(a) Transects on terminal moraine complex, (b) transects on benches,
and (c) transects on screes. Taxa listed as ‘‘Other’’ are Aster
indamellus, Berberis spp., Cotoneaster spp., Ephedra gerardiana,
Lonicera myrtillus, Potentilla fructicosa, Ribes glaciale, Rosa ssp.,
and Spiraea arcuata.

C. E. MONG AND O. R. VETAAS / 587

Downloaded From: https://bioone.org/journals/Arctic,-Antarctic,-and-Alpine-Research on 25 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



moraines (T-1 [2.5 per plot], T-2 [0.5 per plot]) than on the bench

transects (between 7.4 and 15.2 per plot) and the scree transects

(between 2 and 32 per plot). The sampled environmental variables

did not vary significantly between the terminal moraines and the

benches (two-way ANOVA). The within-site variance was high

both at the terrain type level (terminal or benches) and at the

transect level. Recently deglaciated terrain was alkaline with a low

content of nitrogen, phosphorus, organic soil material, and with

a low ability to hold moisture. Soil variables displayed linear

trends toward the older terrain, where pH decreased and all other

factors increased. The distribution of microsite characteristics

were comparable all over the terrain, but vegetation cover

increased with time elapsed since deglaciation.

Phosphorus and nitrogen are the best predictors of plot

seedling density, but all soil variables yield significant models

(Table 1). When data from screes were omitted, the explanatory

power of some variables changed. This may be caused by the high

occurrence of seedlings in some of the scree plots and the

topographical homogeneity of all the screes—slope and aspect,

and consequently RRI, are very similar on all the screes. In these

analyses moisture is the best predictor of seedling density along

with phosphorus and nitrogen (Figs. 4, 5, and 6).

Phosphorus accounted for more than 20% of the deviance in

seedling density models, whereas moisture, nitrogen, LOI, and

RRI explained between 10% and 20%. The best multiple

regression model for seedling density suggested by the stepwise

selection procedure was a function of moisture and nitrogen. It

had an explained deviance of 36.3%, and the Pr(F)s were less than

0.0001 for both terms. Seedling occurrence was predicted to peak

at intermediate to high moisture values and low soil nitrogen

content.

Pinus wallichiana seedlings are negatively associated with

convex microsites, protruding stones, and nitrogen fixing plants.

FIGURE 4. Seedling density in plots modeled for functional
dependence of phosphorus. Higher seedling densities are predicted
at low phosphorus content in the substrate; n 5 60.

TABLE 1

Plot mean soil and topographical variables modeled individually as
predictors of P. wallichiana seedling density with GLMs. Sample

size n 5 60.

Models Res. df Res. dev. F-value Dev. expl. Pr(F)

ln (moisture) 58 657.6 78.39 10.6% ,0.0001

ln (LOI) 57 660.5 37.76 10.3% ,0.0001

pH 58 722.8 13.19 1.8% ,0.001

ln (nitrogen) 57 612.0 61.99 16.8% ,0.0001

ln (phosphorus) 57 570.1 82.93 22.5% ,0.0001

Vegetation cover (%) 57 686.3 24.84 6.8% ,0.0001

Stone cover (%) 56 72.5 2.82 1.2% ,0.05

Slope 58 661.5 74.45 10.1% ,0.0001

RRI 58 634.3 101.73 13.8% ,0.0001

Note: Res. df: residual degrees of freedom. Res. dev: residual deviance. Dev.

expl.: regression coefficient (D2) * 100. Pr(F): probability of the F-distribution that

H0 is correct. The regression df, or polynomial, is sample size n – 1 – residual df.

FIGURE 5. Seedling density in plots modeled for functional
dependence of nitrogen. Higher seedling densities are predicted at
low nitrogen content in the substrate; n 5 60.

FIGURE 6. Seedling density in plots modeled for functional
dependence of moisture. Higher seedling densities are predicted at
intermediate moisture content in the substrate; n 5 60.
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The only significant positive association is with canopy. There

may be associations (not significant) with shallow concave

(positive) and shrub-nucleation (negative). Deep concave and flat

terrain had observed seedling presence in concordance with what

was expected in relation to the random distribution of micro-

topographical characteristics in the plots, and gave not significant

results in the tests. The tests for proportions are listed in Table 2.

Two seedlings had leaf color type 0, which means they were

probably dead. Thirteen seedlings had leaf color type 1, 58 had 2,

43 had 3, 89 had 4, and 59 had leaf color type 5.

Most individual trees with more yellow than green color in

the foliage were seedlings. Hence, only data from seedlings were

employed in the analyses of leaf color. All the soil variables were

significant predictors (Table 3). Stepwise selection found pH and

nitrogen to be the best explanatory variables in a multiple GAM.

This model explained 49.4% of the deviance with a Pr(F) , 0.001.

Pinus wallichiana seedlings are more likely to have yellow foliage

at high pH-values and low levels of nitrogen. At the intermediate

and lower range of the pH-gradient in nitrogen poor soil, seedlings

sometimes have green leaves.

The growth rate of seedlings that had equally green and

yellow foliage or more green foliage did not have significantly

higher growth rates than seedlings that had more yellow than

green foliage (1.12 mm/ring and 1.05 mm/ring, respectively). None

of the variables sampled in plots were significant predictors of

growth rates of seedlings (p . 0.2), although the sample size was

limited (n 5 35).

Discussion

Pinus wallichiana and Salix spp. have the highest cover-

abundance of the six taxa present in the terrain that has been most

recently deglaciated (Figs. 3a, 3b, 3c). Other studies show that

trees are capable of seedling establishment on newly exposed

terrain in primary succession provided seeds can reach the site

(Blundon et al., 1993; Chapin et al., 1994; Niederfriniger-Schlag

and Erschbamer, 2000). In contrast to other studies, however, the

tree P. wallichiana persists and predominates throughout the

succession on the benches of the Gangapurna North glacier

foreland. Successions where the pioneer community is similar to

a late successional community are mentioned by Matthews and

Whittaker (1987), but thought to occur only in species-poor alpine

habitats above the tree line.

The limited occurrence of P. wallichiana on the terminal

moraines is probably linked to anthropogenic influence, because

the ranges of soil variables and the distribution of microsite

characteristics are comparable between the benches and the

terminal moraines. Domestic animals are kept close to the village

during winter (local people, personal commun.), where they forage

on all available greenery. Goats were observed browsing on P.

wallichiana foliage early in the season.

There are populations of P. wallichiana on the screes as well,

but frequent landslides hinder the succession. The highest

vegetation cover was not on the oldest scree (S-4), but on the

least steep scree (S-3), probably because there are fewer perturba-

tions in less steep terrain.

Seedling density in the plots had a significant relationship

with slope, RRI, and the presence of adult P. wallichiana.

Schickhoff (1996) noted that in the Kaghan valley, North

Pakistan, this species has its main abundance on relatively dry

south-facing slopes. This is in contrast to the Manang valley,

where there is a conspicuous paucity of this species on the south-

facing side, whereas the north-facing side is clad with it. This is

probably attributable to more pronounced aridity in Manang.

Pinus wallichiana seedlings are associated with high pH,

intermediate to high moisture levels, and low phosphorus and

nitrogen values in the plots. This may seem contrary to Schickh-

off’s (1996) observation that P. wallichiana is affiliated with mildly

acidic sites, but according to Scholes and Nowicki (1998), Pinus

spp. are known to colonize moderately alkalic soils in arid

environments. Furthermore, because they acidify soils on which

they grow, they contribute to the subsequent acidification of these

sites. Crocker and Major (1955) found the pH to be virtually

unchanged since deglaciation on unvegetated patches of substrate,

but more acidic under Alnus sp. (Betulaceae) and Picea sitchensis

in the same phases.

Microsites with moderate depressions of the ground (shallow

concave) have near significant higher proportions of seedlings

than other microsites, indicating that a moderate depression may

ameliorate microsites. Many early pioneers often colonize micro-

sites with depressions (Wood and del Moral, 1988; del Moral and

Wood, 1993; Jumpponen et al., 1999; Niederfriniger-Schlag and

Erschbamer, 2000). Jumpponen et al. (1999) suggested that

moderate depressions hold more substrate moisture as well as

slow down the wind speed—and consequently receive more seeds

and reduce wind desiccation of germinants. The results of this

study are not contrary to this, but successful establishment of P.

wallichiana seedlings is not restricted to depressions.

Microsites with convex ground surfaces have a significantly

lower proportion of seedlings than other microsites, suggesting

that this type of ground has negative effects on seedling

establishment.

TABLE 2

Expected proportion of seedling presence in subplots with various
types of potentially facilitating features tested against observed
proportion of microsites with seedling presence. Chi-square test for
proportions. Sample sizes: subplots n 5 315, microsites n 5 264.

Potential

facilitation

Expected

proportion

Observed

proportion p-value

Convex 0.086 0.042 ,0.05

Flat 0.657 0.638 n.s.

Shallow concave 0.200 0.264 0.083

Deep concave 0.057 0.057 n.s.

Stone 0.460 0.268 ,0.001

Shrub 0.289 0.223 0.085

Canopy 0.413 0.528 ,0.01

N-fixer 0.095 0.0 ,0.001

Note: p-value: probability that H0 is correct. Significant p-values have bold

typefaces. n. s.: not significant.

TABLE 3

Plot variables modeled individually as predictors of P. wallichiana
seedling leaf color. GAMs with a quasi-likelihood and 4 degrees of
freedom for the cubic spline smoothers are used. Sample size n 5 264.

Models GCV-score Chi square Dev. expl. t-ratio p-value

ln (moisture) 1.401 47.011 16.3% 48.02 ,0.0001

ln (LOI) 0.833 254.75 50.4% 62.34 ,0.0001

pH 0.799 279.48 52.5% 63.68 ,0.0001

ln (nitrogen) 0.862 238.05 48.6% 61.25 ,0.0001

ln (phosphorus) 1.102 124.65 33.2% 53.97 ,0.0001

slope 1.531 8.82 3.3% 45.3 ,0.01

RRI 1.569 2.25 0.8% 44.75 ,0.0001

Note: Dev. expl.: regression coefficient (D2) * 100. n. s.: not significant. The

regression df, or polynomial, is sample size n – 1 – residual df.
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The presence of a potentially protective stone at a microsite

significantly lowers the probability of seedling establishment. This

may be because seedlings do not need it in terms of protection and

because the stone surface reduces available space for germination in

quadrats. Using a slightly different approach, where the distance to

nearest the rock is measured, other workers have found that stones

on glacier forelands provide important safe sites for several early

colonizers, also members of Pinaceae (Stöcklin and Bäumler, 1996;

Jumpponen et al., 1999; Niederfriniger-Schlag and Erschbamer,

2000). Jumpponen et al. (1999) and Niederfriniger-Schlag and

Erschbamer (2000) conveyed that rocks may protect from

irradiation as well as increase moisture levels. At our study area,

the sun is near zenith during midday—compared to higher latitudes,

rocks may not provide notable protection from irradiation.

Pinus wallichiana seedlings are negatively associated with

presence of shrubs, although not significantly (Table 2), and

seedling density is modeled to peak at 20–40% vegetation cover

(Table 1, Fig. 7). Franco and Nobel (1988) found that competing

plants may inhibit seedlings by shading out photosynthetically

active radiation. Other authors have found that seedlings may

benefit from nucleation because nurse plants ameliorate soil

conditions and surface temperatures (Jacquez and Patten, 1996).

Jumpponen et al. (1998) found evidence for simultaneous canopy

inhibition and soil facilitation of establishment of Pinus contorta

seedlings under Salix spp. shrubs. Niederfriniger-Schlag and

Erschbamer (2000) found that seed germination is facilitated

under the canopy of nurse-shrubs, but subsequent seedling

establishment is inhibited. del Moral et al. (1985) argued that

species in a climatically severe environment of low productivity

will not be sensitive to competition for resources and there will be

no signs of inhibition, whereas in highly productive communities

there will be competitive interactions like inhibition. The first

assumption is supported by Houle (1997), who found no signs of

interspecific interactions in the first stage of a succession in

subarctic coastal dunes.

Microsites under a canopy have a significantly higher

proportion of seedlings than expected. Interpreting this is not

straightforward, because canopy cover on the sampled terrain

consists mostly of P. wallichiana. This means that the seed rain at

these microsites is higher than at other sites. It is also contrary to

the definition of facilitation, i.e. two different species improving

conditions for each other (Connell and Slatyer, 1977; Begon et al.,

1990; Chapin et al., 1994). Because there is a positive association

between seedlings and canopy, there may be a positive effect on

seedlings growing in the litter under conspecific adults. This effect

may be caused by a higher probability of ectomycorrhiza

inoculation or less dense thickets of competing shrubs.

Nitrogen-fixing plants often play an important role in

primary succession (Sprent, 1993), but P. wallichiana seedlings

display a negative association with these according to the results of

this study, although the test for proportions may be subject to

stochastic variance due to the sparse occurrence of nitrogen-fixing

plants on the glacier foreland. Seedling densities are modeled to

peak at the low end of the nitrogen gradient (fig. 5), suggesting

that nitrogen facilitation is not required by the target species.

Although P. wallichiana seedling density peaks at the high

end of the pH gradient and at the low end of the nitrogen gradient,

seedlings tend to display signs of leaf discoloration at such sites.

Lawrence (1958, 1979) observed yellowish foliage on several

species of trees which are normally late successional (e.g.

Pinaceae), but which had established as seedlings on recently

deglaciated moraines. Tree seedlings close to nitrogen sources, e.g.

animal bones or feces, had blue-green foliage. When ammonium

nitrate was applied to seedlings of Populus trichocarpa (Salica-

ceae), their leaves turned green (Lawrence, 1958, 1979). Based on

this it was concluded that yellow leaves are a symptom of nitrogen

deficiency. This is supported by our results, which point out

nitrogen as a good predictor of seedling leaf coloration. Soil pH is

also a good predictor of leaf color. Calcifuge plants growing on

chalky soil often suffer from phosphorus or iron deficiencies. The

symptom of the latter in conifers is yellow leaves. The leaves may

turn yellow because nitrogen mobilization decreases at high

alkalinity (Larcher, 1995). Nitrogen may also be less available to

P. wallichiana in alkaline substrates because nitrogen will pre-

dominantly be in the form of nitrates, which are assimilated less

efficiently by its ectomycorrhizal symbiont (Scholes and Nowicki,

1998). Malagoli et al. (2000) found the net uptake of ammonium

(low pH) to be six times higher than nitrates (high pH) in Pinus

sylvestris.

Jumpponen et al. (2002) found established Abies lasiocarpa

(Pinaceae) on barren terrain deglaciated for 20–23 years. No

traces of symbiont sporocarps were found on these seedlings.

Chapin et al. (1994) and Jumpponen et al. (2002) suggested that

the alkalinity of recently deglaciated substrate may be too high for

growth and/or inoculation of ectomycorrhizae.

There are linear relationships between relative time since

deglaciation and environmental variables (cf. above; Mong, 2003).

Therefore, it is difficult to discern which characteristics are most

important to safe sites on different types of terrain. The microsite

requirements may be different on terrains of different ages, both in

terms of how much a safe site is needed and which characteristics

are required by the seedlings. The optimal soil values for seedling

establishment seem to be those that typically prevail on the

youngest substrates. This seems like an avoidance of terrains with

an advanced soil formation, but is probably a trade-off effect—

that seedlings prefer low nutrient levels, lack of organic matter in

the substrate, and high pH, rather than facing the increased

competition on terrains with more vegetation. Although seedlings

of P. wallichiana prefer some moisture, and possibly also absence

of competition, it is important to note that seedlings did occur in

microsites that were not safe as characterized by the criteria above.

In contrast, Wood and Morris (1990) and del Moral and Wood

(1993) showed that virtually all colonization on the pumice plains

FIGURE 7. Seedling density in plots modeled for functional
dependence of percent vegetation cover. Higher seedling densities
are predicted at intermediate to low vegetation cover; n 5 60.
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of Mount St. Helens took place in safe sites, hence establishment

was limited by the paucity of safe sites rather than by seed

dispersal. Reports from glacier forelands portray a more moderate

role of microsites, where safe sites influence the distribution of

colonizers, but are not, as with the results of this study, a strong

limiting factor (Blundon et al., 1993; Jumpponen et al., 1999;

Niederfriniger-Schlag and Erschbamer, 2000).
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