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Terrestrially Derived n-Alkane �D Evidence of Shifting
Holocene Paleohydrology in Highland Costa Rica

AbstractChad S. Lane* and
A previous study of carbon isotopes in the sediments of a glacial lake in Costa Rica ledSally P. Horn†
to the hypothesis that changes in the migration of the intertropical convergence zone
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rounding high-elevation páramo ecosystem. This hypothesis was based on millennial-scaleNorth Carolina Wilmington, Wilmington,
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and confirm that the effects of millennial-scale ITCZ dynamics in the circum-Caribbean
region were not restricted to tropical lowlands. In southern Central America, these dynam-
ics may have played a fundamental role in millennial-scale fire dynamics in high-elevation
páramo ecosystems.
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Introduction

Stable oxygen isotope analyses of carbonates preserved in
lacustrine sedimentary sequences have provided a wealth of infor-
mation regarding paleoclimate variability over a variety of time
scales. The development of compound-specific hydrogen isotope
(�D) analysis of biomarkers has widened opportunities to develop
paleohydrological records based on lake sediment archives where
carbonates are absent or poorly preserved. A widely used class of
biomarkers of terrestrial vegetation present in lake sediments
are long-chain (�C27) n-alkanes with odd carbon number chain
lengths, which predominantly originate from epicuticular leaf
waxes (Eglinton and Hamilton, 1967). Multiple studies have docu-
mented the close relationship between terrestrially derived n-alkane
and meteoric water �D values along latitudinal (Sachse et al., 2006)
and elevational (Bai et al., 2011) transects in modern ecosystems.
Furthermore, these studies and others have shown a significant
evapotranspiration influence on terrestrial vegetation biomarker �D
values. Over a wide range of modern ecosystems, Sachse et al.
(2006) and Polissar and Freeman (2010) documented a consistent
enrichment, or apparent fractionation (�a), in terrestrial n-alkane
�D values over values expected based on meteoric water �D values
alone. They attributed this enrichment to soil water evaporation
prior to uptake by terrestrial vegetation and biosynthesis into leaf
waxes. Transpiration, in contrast, appears to play a minimal role
in isotopic enrichment in n-alkane �D values, particularly in grasses
(McInerney et al., 2011). Sachse et al. (2006) identified this evapo-
rative enrichment of meteoric waters prior to biosynthesis by terres-
trial organisms as a potential proxy for ecosystem evapotranspira-
tion, and Tierny et al. (2008) and Niedermeyer et al. (2010) sub-
sequently employed it as an indicator of paleohydrologic variability
on millennial timescales in tropical Africa.

Lane et al. (2011) presented bulk and compound-specific sta-
ble carbon isotope (�13C) data spanning the Holocene from Lago
de las Morrenas 1 (LM1), a glacial lake in highland Costa Rica.
The general pattern of high �13C values during the early Holocene,
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shifting to more negative �13C values during the middle Holocene,
and then returning to relatively higher �13C values during the late
Holocene, led Lane et al. to speculate that the �13C n-alkane record
reflected drought stress in vegetation surrounding the lake and thus
may track millennial-scale changes in circum-Caribbean precipita-
tion. In this study, we test this interpretation by analyzing the more
direct terrestrial n-alkane �D proxy of ecosystem evapotranspira-
tion in samples from the same LM1 sediment core.

We also compare millennial-scale variations in the LM1 com-
pound-specific �D values to a high-resolution macroscopic char-
coal record from the same lake (League and Horn, 2000) to assess
the potential role that precipitation variability may play in fire re-
gimes of high-elevation ecosystems of the neotropics. League and
Horn (2000) proposed that millennial-scale variations in charcoal
deposition were related to increasing anthropogenic activities and/
or precipitation variability over the Holocene. More specifically,
League and Horn hypothesized that notably low charcoal influx
during the middle Holocene might indicate greater precipitation
(lower evaporation/precipitation ratios) between �7000 and 4000
cal yr B.P. However, this hypothesis was speculative because at
the time no reliable proxies of precipitation had been established
for the LM1 sediment record. Our analysis of the compound-spe-
cific �D proxy, one of the few precipitation proxies that can be
extracted from non-carbonate bearing sedimentary records, should
provide a test for this hypothesis.

Study Site
LM1 (3477 m, 9�29′40�N, 83�29′14�W) is located on the north

flank of Cerro Chirripó (3819 m; Fig. 1), the highest peak in the
Cordillera de Talamanca and in all of Costa Rica. The lake is
one of several dozen glacial lakes on the Chirripó massif and is
surrounded by some 5000 ha of neotropical páramo vegetation
(Kappelle and Horn, 2005). The Chirripó páramo is dominated by
the dwarf bamboo Chusquea subtessellata Hitchc., which reaches
cover values of 60% or higher over wide areas (Kappelle, 1991)
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FIGURE 1. Location of the Chirripó massif (‘‘study area’’) in the
Cordillera de Talamanca of southern Costa Rica, site of Lago de
las Morrenas 1.

and is represented in nearly all terrestrial plant communities other
than those developed on rock (Chaverri and Cleef, 2005). Precipita-
tion around LM1 is highly seasonal, with the majority of precipita-
tion (�90%) falling between May and November, when the inter-
tropical convergence zone (ITCZ) is positioned over the Central
American isthmus. The presence of the ITCZ intensifies convective
activity along the slopes of the Cordillera de Talamanca and causes
a weakening and rise in altitude of the trade wind inversion (TWI),
which can sit well below LM1, especially during the boreal winter
(Dohrenwend, 1972; Hastenrath, 1991).

Methods
SEDIMENT CORING AND PREVIOUS PROXY ANALYSES

Parallel sediment cores (core 1 and core 2) were collected
from LM1 in 1989 from an anchored platform using a square-rod
piston corer for the deeper sediments (�1 m) and a PVC pipe fitted
with a rubber piston for the near-surface sediments. The sediments
of core 1 are the focus of this study and of the bulk and compound-
specific carbon isotope analyses carried out by Lane et al. (2011).
All other proxy analyses, including pollen, microscopic charcoal,
macroscopic charcoal, diatom, and basic geochemical analyses,
were conducted using sediments from core 2 (Horn, 1993; Ha-
beryan and Horn, 1999; League and Horn, 2000). The chronology
for LM1 core 1 is based on six AMS radiocarbon dates on bulk
sediment (Lane et al., 2011). Radiocarbon dates were converted to
calibrated years B.P. (where P. � A.D. 1950) using the CALIB
6.0 computer program (Stuiver and Reimer, 1993) and the data set
of Reimer et al. (2004). Sedimentation rates were calculated using
the weighted means of the probability distributions of the calibrated
ages (Telford et al., 2004), and used to linearly interpolate ages
for lake sediment horizons located between the positions of radi-
ocarbon-dated materials.
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n-ALKANE EXTRACTION AND ISOTOPIC ANALYSIS

Alkanes were extracted from LM1 core 1 sediment samples
(1–16 g dry weight) using an ASE 300 accelerated solvent extrac-
tion system (ASE 300, Dionex, California, U.S.A.). Samples were
flushed with a mixture of 50% dichloromethane and 50% methanol
at 125 �C at a pressure of 1500 psi for 10 min. This procedure was
repeated three times, yielding a total organic extract that was dried
under high purity nitrogen. The aliphatic fraction was then isolated
from the total organic extract by solid phase extraction through a
silica-gel column with hexane. Straight chain monomers were fur-
ther isolated from branched and cyclic compounds using urea ad-
duction.

Compound-specific hydrogen isotope analyses were performed
on a continuous flow Finnigan MAT Delta-plus XL mass spectrom-
eter interfaced with an Agilent 6890 GC fitted with a DB5-MS
silica column (60 m, 0.25 mm i.d., 0.25 �m film thickness) via a
Finnigan GC/C III interface equipped with a pyrolysis reactor at
1430 �C. Injection temperatures were 300 �C and the oven tempera-
ture program was 60 �C isothermal for 2 min, 15 �C/min to 170
�C, 4 �C/min to 320 �C, and 320 �C isothermal for 30 min. Hydrogen
gas and alkane mixtures (provided by A. Schimmelmann, Indiana
University) with known hydrogen isotope compositions were used
as standards. The Indiana University n-alkane mixture was injected
following every fourth sample to monitor precision of the instru-
ment. The standard deviation of these standard analyses over the
course of this study was less than 5‰. 3H factors were calculated
daily using the Isodat software with pulses of increasing reference
gas amount. All samples were run in duplicate. Hydrogen isotopic
compositions are reported in standard �-per mil notation relative
to Vienna Standard Mean Ocean Water (VSMOW) where:

�D � 1000 [(Rsample/Rstandard) – 1], (1)

where R � 2H/1H.

Results
All n-alkanes typically attributed to terrestrial vegetation were

present in quantities suitable for compound-specific �D analysis
in all but the uppermost sample analyzed (Fig. 2). In this sample,
C31 and C33 hydrogen peaks were small and co-eluting with uniden-
tified compounds preventing accurate measurement of the �D com-
positions (Fig. 2). Shorter-chain alkanes typically attributed to
algae (e.g. C17) were insufficiently represented in many samples.
The �D values of the C25 and C27 n-alkanes show a similar pattern
through the sedimentary profile with relatively high �D values at
the base of the profile (�425 cm; �7700 cal yr B.P.) that generally
decrease towards the middle of the profile (�425–225 cm; �7700 –
4200 cal yr B.P.), and then increase at the top of the profile (�225
cm; �4200 cal yr B.P.), with the exception of a slight negative
excursion at �65 cm (�940 cal yr B.P.; Fig. 2; Appendix). The
uppermost sample displayed anomalously high �D values for the
C25, C27, and C29 n-alkanes. The �D values of the C29, C31, and
C33 n-alkanes show corresponding patterns through the profile, but
differ from the C25 and C27 n-alkane �D patterns. The C29, C31,
and C33 n-alkanes display a general pattern of relatively low �D
values at the base of the profile (�545 cm; greater than an interpo-
lated age of 11,388 cal yr B.P.), followed by an increase in �D
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FIGURE 2. Terrestrial n-alkane �D data for Lago de las Morrenas 1 core 1. Error bars for the n-alkane isotope data represent one
standard deviation based on replicate analyses (n � 2). VSMOW � Vienna Standard Mean Ocean Water.

values, particularly for the C33 n-alkane (�440 cm; �7700 cal yr
B.P.). The C29, C31, and C33 n-alkane �D values then display a
slight decline upcore until �190 cm (�3800 cal yr B.P.), above
which the values stabilize until �65 cm (940 cal yr B.P.).

Discussion
n-ALKANE SOURCE AND �D INTERPRETATION

While the C29, C31, and C33 n-alkanes are typically interpreted
as the most reliable biomarkers for terrestrial vegetation, analyses
of the n-alkane distribution of leaf waxes in modern specimens of
Chusquea bamboos in the Colombian Andes indicated a dispropor-
tionate predominance of C25 and C27 n-alkanes (Boom et al., 2002).
This finding, together with the close correspondence of C25 and
C27 �D values through the LM1 sediment profile, lead us to con-
sider that these two n-alkanes are originating from the same source
and should be representative of the páramo environment surround-
ing LM1, where Chusquea subtessellata dominates in both cover
and biomass. The comparatively different �D pattern observed for
the longer-chain C29, C31, and C33 n-alkanes in the LM1 sediments,
and their relatively high abundance despite the dominance of
C. subtessellata in the LM1 watershed (Lane et al., 2011) suggests
that these alkanes reflect a different vegetation source. We conjec-
ture that they may derive from montane forest ecosystems at lower
elevations, where the waxes are abrasively removed by winds and
transported upslope (Schefu� et al., 2003).

Our original interpretation, based on carbon isotopes, was that
upslope transport was likely an insignificant source of n-alkanes
to the LM1 sediments, and probably did not strongly affect stable
isotope data (Lane et al., 2011). However, the opposite trends in
�D values of the shorter-chain (C25 and C27) and longer-chain (C29,
C31, and C33) n-alkanes in our new data set indicate that the plants
producing these biomarkers are not accessing the same water

344 / ARCTIC, ANTARCTIC, AND ALPINE RESEARCH

sources or originating from the same locale. Garcin et al. (2012)
found a similar discrepancy in �D values of sedimentary C29 and
C31 alkanes collected along an elevational and latitudinal transect
in Cameroon. Garcin et al. were unable to definitively explain this
discrepancy, but proposed the possibility that plants producing an
abundance of C31 alkanes were accessing evaporated lake waters
while plants producing an abundance of C29 alkanes were more
directly accessing meteoric water prior to significant evaporation.

We similarly consider the most parsimonious explanation for
the diverging temporal trends in LM1 �D data to be that plants are
accessing water of differing �D composition, especially during the
early to middle Holocene. However, it is unlikely that such diver-
gent trends in �D values could be produced wholly within the
páramo ecosystem surrounding LM1 because of the predominance
of shallow, poorly developed soils and high daily solar radiation
under cloud-free conditions, which combine to make the high-
altitude páramo ecosystem particularly prone to soil water evapora-
tion prior to incorporation by plants (Polissar and Freeman, 2010).
Thus, we propose that the differing trends in �D values of shorter-
chain and longer-chain n-alkanes are the result of significant eleva-
tional differences in precipitation and subsequent evaporative
enrichment of these meteoric waters prior to uptake by plants. We
propose that it is these elevational differences that ultimately pro-
duced differing �D temporal trends of n-alkanes sourced from
lower-elevation forest communities versus those produced in the
high-elevation páramo ecosystem. With this in mind, we consider
temporal variations in the �D of C25 and C27 n-alkanes isolated
from the sediments of LM1 to primarily reflect either changes in the
�D composition of meteoric waters entering the Chirripó páramo
ecosystem or variations in soil water evaporation in the páramo.
Conversely, the �D values of C29, C31, and C33 n-alkanes more
likely represent the �D composition of meteoric waters entering
lower-elevation montane forests and any subsequent evaporative
enrichment of deuterium prior to uptake by vegetation.
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Prior studies have established an important life form effect on
ecosystem n-alkane �D signatures (Liu et al., 2006; Smith and
Freeman, 2006; Polissar and Freeman, 2010), but available paleo-
ecological data indicate that the páramo ecosystem surrounding
LM1 was established soon after deglaciation of the valley �10,000
cal yr B.P. (Horn, 1993), making life form an unlikely driver of
the millennial-scale �D dynamics. Compound-specific �13C data
from LM1 indicate a potentially higher predominance of C4 photo-
synthetic plants in the late Pleistocene and early Holocene, but the
Chirripó páramo ecosystem likely included C. subtessellata as a
significant component of the landscape at that time and throughout
the postglacial period (Horn, 1993; Lane et al., 2011).

The most likely causes of millennial-scale variations in the
�D composition of meteoric waters entering the Chirripó páramo
ecosystem prior to soil water evaporation are amount or altitude
effects. The amount effect has been documented as the primary
driver of meteoric water isotopic composition along the Central
American isthmus, with higher rainfall totals yielding more nega-
tive �18O and �D values (Dansgaard, 1964; Lachniet and Patterson,
2002). �D values of meteoric waters also show an inverse relation-
ship with elevation (Lachniet and Patterson, 2002), a phenomenon
primarily driven by changes in atmospheric temperature. While we
can assume no significant change in the elevation of LM1 over
the time span of this study, we must consider the possibility that
isotherms may have shifted up- or downslope in the Cordillera
de Talamanca during the Holocene. Available paleoclimate data
indicate temperature depressions of 7–8 �C during the Last Glacial
Maximum in the highlands of Costa Rica (Hooghiemstra et al.,
1992; Orvis and Horn, 2000), but similar reconstructions have not
been possible during the Holocene due to a lack of suitable sites and
proxies. �D values display a positive relationship with temperature
change, with decreasing temperatures causing a decrease in �D
values of meteoric waters and vice versa (Dansgaard, 1964). Fossil
pollen data from LM1 show no clear evidence of shifting treelines
during the Holocene (Horn, 1993), leading us to assume that any
temperature effects on the �D composition of precipitation are rela-
tively minor through the Holocene.

Evaporative enrichment of deuterium in soils is considered to
be the primary driver of variations in the apparent fractionation (�a)
between meteoric water �D and terrestrial n-alkane �D in páramo
ecosystems (Polissar and Freeman, 2010). The term �a accounts
for the fractionation effects on meteoric waters during biosynthesis
and soil water evapotranspiration. Thus, �a increases significantly
with increased aridity as soil water is evaporatively enriched in
deuterium pushing it closer to the �D composition of meteoric
waters (Polissar and Freeman, 2010). Polissar and Freeman (2010)
reported �a values from approximately �90 to �110‰ in modern
páramo ecosystems in Venezuela. Discounting the anomalous �D
value of the uppermost sample in the LM1 record, and assuming
an average C27 �D value of �175‰ for C27 n-alkanes in the LM1
profile (Fig. 2; Appendix) and a meteoric water �D composition
of about �90‰ (Lachniet and Patterson, 2002), our estimated �a

(�85‰) falls close to the high end of this range. With these vari-
ables in mind, we consider the most likely drivers of Holocene
variation in C25 and C27 �D in the LM1 record to be amount effects
and/or evaporative enrichment of soil water that increase �a values.
In either case, increased aridity should increase C25 and C27 �D
values, while an increase in precipitation should decrease C25 and
C27 �D values.
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THE LM1 TERRESTRIAL n-ALKANE �D RECORD

The anomalously high �D values in all of the measured
n-alkanes in the uppermost sample are difficult to explain (Fig. 2).
We find it unlikely that such a high �D value could have resulted
from hydrological changes alone, as no other proxies indicate such
severe shifts. Lichtfouse et al. (1994) documented the potential
algal origin of some long-chain alkanes following low-temperature
diagenesis in sedimentary systems that could explain this anomaly
if algal organisms were imparting a very different fractionation on
meteoric waters. A wide range of fractionation factors has been
reported for algae under similar growth conditions (Zhang and
Sachs, 2007). Alternatively, low-temperature diagenetic processes
could explain the decreased relative abundance of C31 and C33

n-alkanes in the uppermost sample, although we find it puzzling
that this effect would only be obvious in our uppermost sample, when
the older sediments have had more time to undergo diagenesis.

Discounting the anomalous upper sample, the pattern of C25

and C27 �D variability through the Holocene corresponds well with
the terrestrial n-alkane �13C record presented by Lane et al. (2011;
Fig. 3). This result supports the hypothesis that the observed varia-
tions in terrestrial n-alkane �13C are a signal of shifting ecosystem
drought stress during the Holocene. The overall pattern of relatively
high �D values during the early Holocene, trending toward more
negative values during the middle Holocene, and back to more
positive values during the late Holocene, indicates millennial-scale
shifts in Holocene aridity around LM1—specifically, relatively
arid conditions during the early and late Holocene, interrupted by a
relatively moist middle Holocene. Our reconstruction from isotopic
analyses of the LM1 sediments shows similarities to the Holocene
titanium record from Cariaco Basin sediments, which reflects pre-
cipitation in adjacent northern South America (Fig. 3) and has been
interpreted as a record of millennial-scale ITCZ dynamics in re-
sponse to the orbital precession cycle (Haug et al., 2001). The
Cariaco Basin titanium record indicates a more rapid transition to
mesic conditions during the early Holocene than the LM1 �D
record, but the general trend toward more mesic conditions during
the middle Holocene is apparent in both records. The slower re-
sponse of the LM1 record to changes in ITCZ dynamics may be
related to more rapid early Holocene warming of northern South
America (Cariaco Basin sediment source area) compared to the
Central American isthmus, which is surrounded by large water
bodies. The high thermal inertia of the Pacific Ocean and the
Caribbean Sea relative to the South American landmass may have
restricted migration of the ITCZ over the isthmus until sea surface
temperatures warmed sufficiently. Similar restrictions in northward
ITCZ mobility occur today during El Niño events due to relatively
cool sea surface temperatures near the Central American isthmus
(Giannini et al., 2001). The tight linkage between modern ITCZ
migration and precipitation around LM1 supports the hypothesis
that shifting ITCZ migrational dynamics are the primary mecha-
nism responsible for shifting paleohydrology in the circum-Carib-
bean region during the Holocene.

On Cerro Chirripó, precipitation is tightly linked to ITCZ dy-
namics via the trade wind inversion (TWI; Lane et al., 2011). When
the ITCZ is displaced southwards, convective activity in the region
decreases, and the TWI intensifies and lowers, often to an elevation
below the highest peaks of the Cordillera de Talamanca (Dohren-
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FIGURE 3. Comparison of Lago de las Morrenas 1 core 1 stable isotope data (bulk sedimentary �13C, C27 n-alkane �13C, and C27

n-alkane �D) to Lago de las Morrenas 1 core 2 macroscopic charcoal influx data (League and Horn, 2000), and the Cariaco Basin titanium
record (Ocean Drilling Program Site 1002; Haug et al., 2001). The age model for the Cariaco Basin data has been adjusted slightly such
that B.P. refers to years before A.D. 1950. Dates extrapolated from the lowest date (11,230 cal yr B.P.) are italicized and marked with
asterisks; these should be regarded as estimates for graphing purposes only (see Lane et al., 2011). V-PDB � Vienna–Peedee Belemnite,
VSMOW � Vienna Standard Mean Ocean Water.

wend, 1972; Stadtmüller, 1987; Hastenrath, 1991). This inhibits
cloud formation and precipitation on the high mountain tops,
thereby increasing E/P ratios in the lakes and surrounding wa-
tersheds. Conversely, northward migration of the ITCZ promotes
convective activity in the region, and weakens and raises the eleva-
tion of the TWI, allowing for cloud formation and precipitation
on Cerro Chirripó and the other high peaks of the Cordillera de
Talamanca.

If ITCZ and TWI dynamics are the primary controls on millen-
nial-scale precipitation dynamics on Cerro Chirripó, this could ex-
plain the predominantly inverse relationship between the LMI C25

and C27 �D record and the C29, C31, and C33 �D record (Figs. 2
and 4). A more southerly mean annual position of the ITCZ and
a related lowering of the mean annual height of the TWI during
the early and late Holocene could lower mean annual cloud heights
and lifting condensation level (LCL). This would increase aridity
in páramo ecosystems, but could leave subalpine and montane for-
ests at lower elevations relatively unaffected, as these forests would
still lie within, or below, the cloud belt. Limited available climate
data from the Monteverde Cloud Forest of Costa Rica indicate
relatively stable monthly average relative humidity (always �77%;
Pounds et al., 1999; Johnson et al., 2005), even during periods of
intensified TWIs that can cause relative humidity on the high peaks
to drop well below 50% (Dohrenwend, 1972).

This altitudinal humidity and precipitation pattern would ex-
plain the relative stability of the C29 and C31 biomarker �D records
that we interpret as having a primarily montane or subalpine source
when compared to the C25 and C27 biomarker �D records that we
interpret as primarily originating from the high-elevation páramo
ecosystem (Fig. 2). This could also explain why C29, C31, and C33
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�D values increase between �7700 and 4200 cal yr B.P. while C25

and C27 �D values are becoming more negative. If the ITCZ were
located in a more northerly mean annual position during this time,
the TWI would have been positioned, on average, at a higher eleva-
tion, promoting cloud formation and precipitation in the páramos
and perhaps increasing water stress at lower elevations via an up-
ward vertical displacement of the LCL and associated clouds that
typically bathe montane and subalpine cloud forests year-round.
Pollen evidence from the La Chonta bog at 2600 m elevation in
the Cordillera de Talamanca (Hooghiemstra et al., 1992) suggests
shifts in forest composition that may be associated with early to
middle Holocene aridity, perhaps resulting from an increase in
mean annual TWI altitude. Existing climate models support this
hypothesis as they indicate higher LCLs and reduced cloud contact
with tropical cloud forests with increased temperatures (Still et al.,
1999). This was likely the situation in southern Central America
during the early to middle Holocene, when northern hemisphere
solar insolation was significantly higher than southern hemisphere
solar insolation (Voorhies and Metcalfe, 2007) and the ITCZ was
located in a more northerly mean annual position (Haug et al.,
2001). Simultaneous evidence of increased aridity in pollen records
from relatively low- (�1360 m) and high-elevation (�3280 m)
sites located near the lower and upper boundary of modern cloud
forest distributions in the Peruvian Andes (Bush et al., 2004, 2005)
may indicate a narrowed altitudinal range of these specialized eco-
systems during the early to middle Holocene in South America.
This pattern would be consistent with decreased ITCZ-sourced
rainfall and related evapotranspiration rates at low elevations that
can significantly impact cloud formation (Lawton et al., 2001) and
lowered LCLs as a result of a lower mean annual TWI altitude.
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FIGURE 4. Comparison of �13C and C27 n-alkane �D isotope data with Lago de las Morrenas 1 core 2 macroscopic charcoal data (League
and Horn, 2000), C27 n-alkane �D values, and C31 n-alkane �D values. Inferred climate conditions on Cerro Chirripó are based on relative
changes in C27 n-alkane �D values. Inferred climate conditions at lower elevations (montane and subalpine forests below the páramo) are
based on relative changes in C31 n-alkane �D values. The terms ‘‘mesic’’ and ‘‘arid’’ are relative and refer to temporal changes in n-
alkane �D values compared to the preceding time period. VSMOW � Vienna Standard Mean Ocean Water.

MILLENNIAL-SCALE PRECIPITATION VARIABILITY AND FIRE
DYNAMICS IN THE LM1 WATERSHED

The C27 �D record supports the interpretations of League and
Horn (2000), who speculated that millennial-scale patterns of mac-
roscopic charcoal deposition in LM1 core 2 were related to Holo-
cene precipitation variability, with wetter conditions leading to
fewer fires and lower charcoal influx. The lowest C25 and C27 �D
values in LM1, between �7700 and 4200 cal yr B.P., coincide
with very low macroscopic charcoal influx, supporting the hypothe-
sis that relatively moist conditions during the middle Holocene
suppressed fires on the Chirripó massif (Fig. 4). Mayle and Power
(2012) documented a coincident mid-Holocene rise in fire activity
in the Amazon basin that they associate with increased aridity. This
pattern of a wetter Central American isthmus and a drier Amazon
basin would be expected if the ITCZ were located in a more north-
erly mean annual position during this time. Conversely, the sudden
rise in C27 �D values after �4200 cal yr B.P. coincides with a steep
increase in macroscopic charcoal influx, suggesting that increased
regional aridity led to increased fire activity around LM1. This rise
in charcoal �4200 cal yr B.P. also coincides with a sudden decrease
in mean Ti concentrations in the Cariaco Basin, interpreted as de-
creased ITCZ-related precipitation in northern South America, fur-
ther indicating a tight linkage between ITCZ dynamics and fire
dynamics in the Chirripó páramo.
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The documentation of the relationship between millennial-
scale precipitation and fire dynamics in the Chirripó páramo helps
fill a gap in the understanding of neotropical páramo environments.
While modern fire regimes are strongly shaped by humans, charcoal
in ancient sediments shows that fire was present in neotropical
páramos long before human settlement (Horn and Kappelle, 2009).
Fires require dry fuels to spread, and, whether set by humans or
nature, depend on short-term climate and weather. The relation-
ships between human activity, climate, and fire are complex and
are only beginning to be documented in neotropical highlands
(Asbjornsen and Wickel, 2009; Horn and Kappelle, 2009). Resolv-
ing links between climate and fire over millennial time scales, as
we have done for the Chirripó páramo with hydrogen isotope and
macroscopic charcoal analysis, may provide key information for
modeling and managing potential changes in fire susceptibility or
frequency in páramo habitats under changing climate.
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Domingo de Heredia, Costa Rica: Instituto Nacional de Biodiversi-
dad, 577–592.

Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16:
438–468.

Dohrenwend, R. E., 1972: The Energetic Role of the Trade Wind Inver-
sion in a Tropical Alpine Ecosystem. Ph.D. Dissertation, Syracuse
University, Syracuse, New York, 297 pp.

Eglinton, G., and Hamilton, R. J., 1967: Leaf epicuticular waxes. Sci-
ence, 156: 1322–1334.

Garcin, Y., Schwab, V. F., Gleixner, G., Kahmen, A., Todou, G., Séné,
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Appendix

Average �D and �13C values of duplicate analyses of Lago de las Morrenas 1A sedimentary n-alkanes typically attributed to emergent or
terrestrial plants. Depths are average depths of the sub-sampled sediment, and ages are based on linear interpolation of weighted calibrated

ages bracketing the sample position.

Depth (cm) Age (cal yr B.P.) �D (‰)

C23 � C25 � C27 � C29 � C31 � C33 �
16.00 201.28 �147.85 2.05 �139.07 2.74 �149.81 0.70 �147.92 0.46 n.d. � n.d. �
65.00 937.15 �179.64 0.91 �179.44 5.57 �184.86 0.11 �181.16 2.71 �193.24 14.96 �187.56 4.67
85.00 1257.15 �177.57 6.59 �171.62 2.19 �171.09 1.48 �172.97 1.32 �188.63 0.15 �185.11 7.73

190.00 3772.70 �173.38 0.75 �172.33 0.90 �180.55 1.94 �176.95 1.57 �190.78 1.54 �186.99 5.61
240.00 4234.26 �184.62 0.27 �185.72 0.20 �193.53 0.30 �186.35 0.70 �204.58 0.60 �195.35 0.27
302.00 4854.96 �147.69 11.57 �181.95 10.27 �193.27 4.49 �171.43 0.32 �192.28 4.40 �166.52 1.96
390.00 6404.93 �137.11 1.22 �169.83 0.21 �187.93 4.82 �166.61 0.38 �190.04 0.89 �159.80 0.79
440.00 7709.45 �126.54 1.89 �159.70 2.11 �180.89 0.27 �159.74 2.05 �187.97 2.50 �157.28 1.68
545.50 11,383.49 �161.99 6.14 �135.79 8.94 �162.54 12.15 �173.19 9.40 �211.18 10.82 �194.27 11.84
598.50 13,228.60 �172.34 5.76 �152.41 4.36 �175.70 3.04 �181.89 6.31 �205.75 10.13 �190.11 2.23

Depth (cm) Age (cal yr B.P.) �13C (‰)

C23 � C25 � C27 � C29 � C31 � C33 �
3.47 52.04 �34.24 0.30 �31.68 0.72 �33.07 1.64 �31.90 0.50 �31.39 2.48 �28.06 0.91

57.00 856.01 �33.30 0.47 �31.08 1.23 �31.67 0.96 �32.17 1.28 �31.13 0.70 �27.29 0.54
136.29 2571.17 �33.08 0.54 �29.56 1.29 �29.57 0.05 �30.97 1.04 �29.90 1.17 �27.95 0.04
194.50 3817.74 �34.20 0.53 �31.15 0.40 �32.20 0.14 �32.50 1.12 �30.69 0.03 �31.76 0.60
243.25 4305.79 �34.15 0.23 �32.50 0.13 �32.00 0.76 �32.98 0.55 �31.86 0.82 �31.35 0.86
305.00 4924.00 �36.44 0.99 �31.45 0.71 �32.55 0.58 �33.39 0.68 �31.95 0.15 �31.94 0.48
386.25 6360.32 �33.31 1.39 �30.18 0.14 �30.54 0.06 �32.31 1.63 �30.95 0.66 �26.99 0.53
436.25 7618.29 �34.11 0.76 �29.36 0.09 �30.26 0.21 �31.72 0.28 �30.98 0.44 �31.29 0.60
500.25 9846.66 �34.85 2.05 �30.56 0.20 �26.96 0.11 �29.69 0.42 �28.79 1.90 �31.14 1.47
546.00 11,439.60 �21.21 2.35 �24.06 0.54 �23.29 0.10 �29.03 0.79 �29.23 0.99 �31.11 0.02
560.00 11,927.10 �22.75 0.83 �26.12 1.21 �27.08 0.86 �31.02 0.75 �31.84 1.35 �32.09 0.64
595.25 13,154.40 �23.86 0.31 �26.29 0.08 �25.97 0.80 �29.84 0.95 �31.54 0.04 �31.59 0.34
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