
Glacial Lake Outburst Flood Risk in the Poiqu/Bhote
Koshi/Sun Koshi River Basin in the Central Himalayas

Authors: Khanal, Narendra Raj, Hu, Jin-Ming, and Mool, Pradeep

Source: Mountain Research and Development, 35(4) : 351-364

Published By: International Mountain Society

URL: https://doi.org/10.1659/MRD-JOURNAL-D-15-00009

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles
in the biological, ecological, and environmental sciences published by nonprofit societies, associations,
museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your
acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use.
Commercial inquiries or rights and permissions requests should be directed to the individual publisher as
copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit
publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to
critical research.

Downloaded From: https://bioone.org/journals/Mountain-Research-and-Development on 18 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



Glacial Lake Outburst Flood Risk in the Poiqu/
Bhote Koshi/Sun Koshi River Basin in the
Central Himalayas
Narendra Raj Khanal1, Jin-Ming Hu2, and Pradeep Mool1*
* Corresponding author: pradeep.mool@icimod.org
1 International Centre for Integrated Mountain Development, Dhapakhel, Lalitpur, GPO Box 3226, Kathmandu, Nepal
2 Institute of International Rivers and Eco-Security, Yunnan University, No. 2 North Road of the Green Lake, Kunming 65009, China

Open access article: please credit the authors and the full source.

The Himalayas have

experienced several

glacial lake outburst

floods (GLOFs), and the

risk of GLOFs is now

increasing in the context

of global warming. Poiqu

watershed in the Tibet

Autonomous Region,

China, also known as the

Bhote Koshi and Sun Koshi downstream in Nepal, has been

identified as highly prone to GLOFs. This study explored the

distribution of and changes in glacial lakes, past GLOFs and

the resulting losses, risk from potential future GLOFs, and risk

reduction initiatives within the watershed. A relationship was

established between lake area and volume of lake water

based on data from 33 lakes surveyed within the Hindu Kush

Himalayan region, and the maximum possible discharge was

estimated using this and other previously developed empirical

equations. We recommend different strategies to reduce

GLOF risk and highlight the need for a glacial lake monitoring

and early-warning system. We also recommend strong

regional cooperation, especially on issues related to

transboundary rivers.

Keywords: Poiqu River; Bhote Koshi River; Sun Koshi River;

transboundary river; damage; GLOF risk; exposure; early-
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Introduction

Glacial lake outburst floods (GLOFs), resulting from
the sudden release of water from lakes impounded by
moraine or ice dams, can be a major hazard in high
mountain areas. Many moraine and ice dams are
comparatively weak and can fail suddenly, resulting in
the release of a debris-filled flood wave. Such flooding
often results in injury and loss of life as well as
serious damage to property and livelihoods far
downstream (Hewitt 1982; Haeberli 1983; Ives 1986;
Vuichard and Zimmermann 1987; Xu 1988; Ding and
Liu 1992; Watanabe and Rothacher 1996; Dwivedi et
al 2000; Richardson and Reynolds 2000; Carey et al
2012; NEC 2012; Khanal et al 2013; Liu et al 2013).
The Hindu Kush–Himalayan (HKH) region has
experienced many GLOF events over the years. At
least 14 GLOF events have been reported that
originated within Nepal (ICIMOD 2011), 30 in the
Tibet Autonomous Region (TAR) in China (Liu et al
2013), and 21 in Bhutan and adjacent areas in the
TAR (Komori et al 2012). GLOFs are becoming more
frequent in the Pakistan Himalayas (Rehman et al
2013); there were 5 GLOFs in the Hunza basin of the
Karakoram during 2007 and 2008, which severely
affected nearby communities and pose a threat for
the future (Ashraf et al 2012).

A small (statistically insignificant) increase in GLOF
events in the Himalayas between 1940 and 2000 has been
reported (Richardson and Reynolds 2000), but it is still
not possible to determine whether there has been an
increase in such events in recent years (Komori 2012).
Observations in the Himalayas show a warming trend,
increasing temperature extremes, and recession of
mountain glaciers (Field et al 2012), and all projections
for the 21st century show glaciers continuing to lose mass.
Expansion or formation of lakes as a result of ice melt at
the margins of receding glaciers increases the likelihood
of GLOFs (Barros et al 2014; Field et al 2014). Climate
change played a major role in the substantial increase in
glacial lake area in the eastern Himalayas (Bhutan and
Nepal) between 1990 and 2009 (Gardelle et al 2011), where
the hazard from moraine- and ice-dammed lakes
continues to increase (Field et al 2014).

The Poiqu watershed in TAR, China, is highly prone to
GLOFs. The Poiqu River extends into Nepal, where it is
known as the Bhote Koshi as far south as Barhabise and
then as the Sun Koshi. Five GLOF events have been
reported in this watershed since 1935. Wheat fields were
damaged and several yaks were swept away by a GLOF
from Taraco glacial lake on 28 August 1935 (LIGG et al
1988). Two GLOF events have been reported from
Zhangzambu (Ci-Ren-Ma-Co) glacial lake, 1 in 1964 and 1
in 1981 (LIGG et al 1988; Xu 1988). The latter resulted in
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the destruction of Quxiang village and a highway bridge
in China and damage to 47 houses, 12 bridges, 27 km of
road, 1 of the gates in the Sun Koshi hydropower dam,
and a transmission line in Nepal. In Nepal, 5 people were
swept away, the power supply was cut for 31 days, traffic
was blocked and trade disrupted for 36 days, and
transport services were affected for 3 years; total losses
were estimated to be close to US$ 4 million (Khanal and
Acharya 2008). The maximum discharge in the 1981
GLOF was estimated to be 15,920 m3/s 23 minutes after
bursting. The flood lasted for 60 minutes, and the total
outflow was 19 million m3 (Xu 1988). The peak discharge
of 2316 m3/s (gauge height of 6.99 m) at Barhabise about
50 km downstream was 16 times greater than the average
annual flood (maximum flow). The flood carried nearly 4
million m3 of mixed debris; the debris flow dammed the
Poiqu River, and the water level rose to 30 m, destroying
Quxiang village, located upstream of the confluence
between the Zhangzambu tributary and Poiqu River (Xu
1988). Two GLOF events were also reported from Jia-
Long-Co glacial lake in 2002. The event on 29 June 2002
destroyed bridges and resulted in an estimated economic
loss of 3.05 million yuan renminbi (approximately US$
370,000) (Chen et al 2013).

The glaciers in the Poiqu watershed are shrinking, and
their retreat has been accelerating since 2000 (Xiang et al
2014). The rapid expansion of glacier-fed lakes has
increased the risk of GLOFs (Chen, Cui, Li, et al 2007;
Xiang et al 2014; Wang et al 2015). In this article, we
discuss the GLOF risk in the transboundary watershed
and propose management strategies.

Study area

The Poiqu/Bhote Koshi/Sun Koshi is a transboundary
river that originates in TAR in China and flows across the
high mountain region into Nepal and then India. The
study site (27u209–28u409N latitude, 85u409–86u209E
longitude) comprises the Poiqu watershed in China and
the Bhote Koshi/Sun Koshi watershed to Dolalghat in
Nepal (Figure 1). The elevation ranges from 649 m above
sea level at Dolalghat to more than 8000 m above sea level
in China. The total watershed area is about 3393 km2 with
a river length of 146 km, about 78 km in China and 68 km
in Nepal. Annual mean precipitation ranges from more
than 1100 mm in the southern part to less than 700 mm in
the north.

International trade and tourism between Nepal and
China have been growing rapidly since the opening of the
Kodari Highway along the Poiqu/Bhote Koshi/Sun Koshi
valley, which links Kathmandu, the capital of Nepal, with
Khasa (Zhang-Mu) in TAR, China. The records of the
Customs Office in Nepal show a value of US$ 135.9
million in imports and US$ 4.1 million in exports in 2011/
2012, with both governments benefiting from the
revenue. Nearly 69,000 tourists cross the border annually.

Four hydroelectricity projects are in operation, and many
more are planned.

Approximately 200,000 people live in the watershed,
only 2.7% of whom live in China. Agriculture is still the
major source of family income. In Nepal, remittances,
wage labor, portering, and services also contribute to
family income; trade and business contribute in both
Nepal and China. The other major economic activities in
the watershed are international trade, tourism, and
hydroelectricity production.

In 2010 a total of 124 glaciers were mapped in TAR,
China, with an area of 203.4 6 5.3 km2 (Xiang et al 2014).
Both the number and the area of glaciers have decreased,
with large glaciers shrinking and smaller glaciers
retreating at a faster rate (Xiang et al 2014). The average
monthly temperature in the watershed is projected to
increase under A1B, B1, and A2 climate-change scenarios
(CDG and AIRC 2013). The winter temperature is likely to
increase at a higher rate. The increase in temperature will
cause more glacier ice to melt, potentially leading to
higher-magnitude GLOFs (CDG and AIRC 2013).

Methods

Four main processes are considered in GLOF risk
management: hazard identification, hazard estimation,
risk evaluation, and risk reduction (Reynolds
Geo-Sciences 2003; Huggel 2004; Carter et al 2007). This
study looked at each of these in the following steps:
(1) identification of potentially dangerous glacial lakes,
(2) estimation of the volume of water in each lake and
potential magnitude of flooding, (3) identification and
quantification of past losses and elements exposed to
future GLOF risk, and (4) identification of risk reduction
strategies.

Identification of potentially dangerous lakes

Various authors have attempted to develop ways to
estimate the qualitative or relative probability of a GLOF
(Huggel, Haeberli et al 2004; Wu et al 2005; McKillop and
Clague 2006; Wang et al 2009; ICIMOD 2011; Mergilli and
Schneider 2011; Wang et al 2011; Worni et al 2013; Che et
al 2014; Wang et al 2015). The main parameters used to
identify potentially dangerous glacial lakes are dam type,
ratio of freeboard to dam height, ratio of dam width to
height, likelihood of impact waves from ice or rock falls
into the lake, likelihood of extreme meteorological events,
presence or absence of an ice core in the moraine, lake
area, lake drainage area, lake area development, lake
volume, mother glacier area, distance between the lake
and glacier terminus, and slope between the lake and
glacier terminus.

This study selected several indices easily obtained
through field survey and interpretation of remote
sensing images to identify potentially dangerous lakes.
They included the type of lake (moraine-dammed,
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glacier erosion, or other), dam texture (consolidated or
unconsolidated, bedrock, or other), outlet position
(channel on the dam surface, drainage underneath
the dam, or no outlet), presence and size of any
mother glacier, distance from mother glacier to lake,

and the lake’s current area and changes in area over
time.

An inventory of all the glacial lakes in the watershed in
2012 was prepared using Landsat ETM+ images (22
October 2012). Glacial lakes with an area greater than 0.1

FIGURE 1 Location of study area. (Map by authors)

MountainResearch

Mountain Research and Development http://dx.doi.org/10.1659/MRD-JOURNAL-D-15-00009353Downloaded From: https://bioone.org/journals/Mountain-Research-and-Development on 18 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



km2 were selected for field survey using Google Earth
maps. Detailed information for these lakes was obtained
during a field survey in September and October 2012
(Table 1). The area of the 21 largest of these lakes was also
derived from Landsat images (30 November 1991 and 11
October 2002) to give values for 1991, 2002, and 2012 for
trend analysis. Past GLOF events were identified through
literature review and interviews with the local
community.

The information derived from the investigations
was used to determine potentially dangerous lakes
based on criteria such as whether or not a GLOF had
already been recorded, the characteristics of the lake
(eg size and growth rate) and glacier (eg speed of
retreat), and the condition of the dam (eg stability)
and surroundings (Table 1). Details of the basic
approach are provided in ICIMOD (2011). Four levels
were differentiated: outburst plus very critical, very
critical, critical, and stable. For example, a glacial lake
dammed by an unconsolidated mixed moraine with
a very large mother glacier was identified as very
critical, a glacier lake dammed by a mixed moraine
with a small mother glacier was considered critical,
and a glacier erosion lake with a bedrock bank was
considered stable.

Estimation of the volume of water in a lake and potential

magnitude of flooding

Lake volume and maximum possible discharge,
important factors in GLOF risk level, were estimated
based on 7 empirical equations (Table 2), 6 developed by
others (Huggel et al 2002; Huggel 2004; Huggel,
Haeberli, et al 2004; Huggel, Kääb, and Salzmann 2004;
McKillop and Clague 2006; Wang et al 2008) and 1
developed for this study. The new equation (equation 3
in Table 2) was derived from regression analysis of
a plot of published data on volume and area of 33
Himalayan glacial lakes measured in the field by various
authors (for details see Supplemental material, Table S1
(http://dx.doi.org/10.1659/MRD-JOURNAL-D-15-00009.
S1). The trend line has an R2 value of 0.94, indicating
a good fit (Figure 2).

Volume and maximum possible discharge were
estimated for the 10 critical lakes using these empirical
equations and the lake areas derived from remote sensing
images.

Identification and quantification of past losses and potential

future losses

Information on past GLOF events and associated losses
and elements exposed to a potential GLOF in the
downstream area in Nepal were collected along the Bhote
Koshi/Sun Koshi River through discussions with local
people and key informants. Similar information for the
upstream area in TAR, China, was collected through
observation by the research team, discussion with key

informants, and review of published articles. Fieldwork
was carried out during 2008, 2012, and 2014.

Two flood scenarios were used to assess the potential
GLOF risk in downstream areas in Nepal. The first was
the flood level experienced during the disastrous flood in
1981. Local people were asked to mark the 1981 flood
level at different places; these were noted on
a topographical map and linked by contours to delineate
the total area affected. The second scenario was a flood
level 10 m higher than the 1981 level, and the area that
would be affected was again delineated on
a topographical map. Local people were then asked to
describe in detail the elements that would be exposed in
the areas affected under the scenarios, including people,
property, infrastructure, livestock, elements that
contribute to livelihoods such as tourism and trade, and
environmental resources such as forest, grassland, and
fisheries.

For the purpose of data collection, the Bhote Koshi/
Sun Koshi River was divided into 10 blocks between
Dolalghat in the south and the Nepal-China Friendship
Bridge in the north, incorporating at least 1 major
settlement in each block. At least 1 meeting was held with
8 to 12 key informants in each block. Community-based
interactive GLOF hazard mapping was carried out with
direct field observation along the river. In addition,
interviews were conducted with wholesale agents,
personnel of the Tatopani customs office at the Nepal–
China border, and local traders to collect information on
trade and traffic flow and associated employment and
livelihoods.

A structured checklist was prepared to record
information on different aspects necessary for
vulnerability and risk assessment: (1) GLOF and other
flash flood hazards and losses in the past; (2) people,
houses, land, crops, biodiversity, infrastructure, and other
elements exposed to potential hazards; (3) flow of
vehicles, people, goods, and services; and (4) information
related to vulnerability and adaptive capacity—such as
ethnicity, family type, level of education, landholding size,
livelihood options, annual income, food sufficiency, social
networks and institutions, indigenous knowledge,
preparedness and mitigation strategies and activities, and
expected mitigation measures and adaptation strategies
for GLOF risk management.

A cost-per-unit approach was used to estimate
potential loss in monetary terms. The value of individual
property was calculated and summed to give a figure for
total potential loss. Prevailing local purchase values were
used for household assets (houses, land, crops, and
livestock) and replacement costs for infrastructure
(buildings, roads, trails, bridges, hydropower and water
supplies, and communication cables). National average
per-unit cost was used to estimate the replacement cost of
infrastructure (except private houses). Revenue from

MountainResearch

Mountain Research and Development http://dx.doi.org/10.1659/MRD-JOURNAL-D-15-00009354Downloaded From: https://bioone.org/journals/Mountain-Research-and-Development on 18 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



TABLE 1 Information on selected glacier lakes obtained by field survey. (Continued next page.)

Lake Type Dam texture

Dam outlet

position

Mother

glacier

Distance from

mother glacier

to water surface

Jia-Long-Co Moraine
dammed

Consolidated mixture
(small boulders,
gravels, coarse
sands)

Channel on
surface

Large
hanging
glacier

,100 m
horizontally
about 500 m
vertically

Ci-Ren-Ma-Co

south

(Zhangzangbo)a)

Moraine
dammed

Unconsolidated
mixture (big boulders,
gravels, coarse
sands)

Channel on
surface

Not surveyed Not surveyed

Co-Jiang-Gu Moraine
dammed

Unconsolidated
mixture (big boulders,
gravels, coarse
sands)

Channel on
surface and
drainage from
underneath

Large
hanging
glacier

,600 m
horizontally
,200 m
vertically

You-Mo-Jian-Co Moraine
dammed

Unconsolidated
mixture (boulders,
gravels, coarse
sands)

Channel on
surface

Large glacier Adjacent/in
contact

Qie-Ze-La-Co Moraine
dammed

Unconsolidated
mixture (boulders,
gravels, coarse
sands)

Drainage from
underneath

Large trough
glacier

Adjacent/in
contact

Ta-La-Co Moraine
dammed

Unconsolidated
mixture (boulders,
gravels, coarse
sands)

Channel on
surface and
drainage from
underneath

Large glacier ,300 m
horizontally
,100 m
vertically

Ga-Long-Co Moraine
dammed

Unconsolidated
mixture (big boulders,
gravels, coarse
sands)

Drainage from
underneath

Large glacier Adjacent/in
contact

Gang-Xi-Co Moraine
dammed

Unconsolidated
mixture (big boulders,
gravels, coarse
sands)

Drainage from
underneath

Large glacier Adjacent/in
contact

Pa-Ju-Co Moraine
dammed

Consolidated mixture
(boulders, gravels,
coarse sands)

Channel on
surface

Large glacier ,400 m
horizontally
,200 m
vertically

Cha-Wu-Qu-Deng Moraine
dammed

Unconsolidated
mixture (boulders,
gravels, coarse
sands)

Channel on
surface and
drainage from
underneath

Large
hanging
glacier

,200 m
horizontally
,100 m
vertically

Gong-Co Glacier
erosion

Consolidated mixture
(boulders, gravels,
coarse sands) with
underlying bedrock

No outlet Small glacier .1000 m
horizontally
.1000 m
vertically

Ta-Ro-Co Glacier
erosion

Consolidated mixture
(boulders, gravels,
coarse sands) with
underlying bedrock

No outlet Large glacier Not clear
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international trade and supply of electricity were also
taken into account.

The estimates did not include potential loss of internal
household property such as jewelry and ornaments,
furniture, radios, televisions, and vehicles. It was also not
possible to incorporate the potential indirect tangible
losses such as to communication, health care and
education, utility supplies, income, emergency services,
and mitigation activities.

Identification of risk reduction strategies

Information on GLOF risk management initiatives at
local and national levels was also collected during the
discussions. Following the identification of potentially
dangerous lakes, appropriate sites for discharge
monitoring and early warning were identified, keeping in
view both the need to maximize lead time and the
location of major settlements and market towns.

Results

Glacial lakes

A total of 74 glacial lakes were identified and mapped in
the watershed, based on Landsat ETM+ (22 October 2012)
(see Supplemental material, Table S2; http://dx.doi.org/
10.1659/MRD-JOURNAL-D-15-00009.S1). Of the 74 lakes
identified, 65% were very small (area , 0.10 km2), 12%
were small (area 0.10–0.25 km2), 19% were large (area
0.25–1.00 km2), and 4% were very large (area . 1.00 km2).
Table 3 shows the 21 larger lakes selected for closer study,
their area in 1991, 2002, and 2012, and their estimated
level of GLOF risk. Almost all the lakes showed an
increase in area. Three (Qie-Ze-La-Co, Ga-Long-Co, and
Co-Na-Nang-Song) more than doubled in area, and 7
grew by 50–100%. After analyzing the characteristics of
the lakes, glaciers, dams, and surroundings, 10 lakes were
identified as having a critical potential for a GLOF event.
Of these, 6 were identified as very critical.

Water volume and discharge

Table 4 shows the volume of water and maximum possible
discharge from the 10 critical lakes estimated using the
empirical equations shown in Table 2.

Risk of glacial lake outburst flood

The level of GLOF hazard along the various rivers in the
watershed was assessed using the glacial lake hazard as
a base. The level of hazard along the Chong-Dui Pu, Ji-Nai
Pu, Ko-Ya Pu, Ru-Jia Pu, Ta-Jie-Ling Pu, and Zhang-Zang-
Bo Rivers (Figure 1) is high or very high as the glacial lakes
that feed into these rivers have a high potential of
breaching. The gradient of the upper part of the Poiqu
River is relatively low, and it is further from Nepal; thus,
the risk of a GLOF along the Ko-Ya Pu, Ru-Jia Pu, and Ta-
Jie-Ling Pu Rivers would remain within these valleys,
whereas a GLOF along the Chong-Dui Pu, Ji-Nai Pu, and
Zhang-Zang-Bo Rivers could have a much greater impact
downstream.

Elements exposed to a potential glacial lake outburst flood

There are 17 settlements with around 5000 people, 21
bridges, and 1 hydropower plant in the valleys in the
upstream area in China that could be affected by a GLOF.
Of these, 2 settlements (Ou-Re and Ru-Jia), 4 bridges, and
1 hydropower plant are close to the rivers and likely to be
at risk, but detailed modeling could not be carried out to
determine the precise risk level.

In the downstream area to Dolalghat in Nepal,
modeling showed that a GLOF at a level 10 m above the
level in 1981 along the Bhote Koshi/Sun Koshi River
would potentially affect approximately 3000 households
with 16,000 people, 170 ha of cultivated land, 1500 t of
agricultural crops, 2000 houses, 30 public buildings, 37 km
of roads, 21 km of trails, 7 road bridges, 23 suspension
footbridges, 3 hydropower projects, 11 water mills, 25 km
of transmission line, 8 km of drinking water pipeline, and
9 km of communication cable.

The total estimated value of property exposed to
potential risk from a GLOF in the Nepal part of the
watershed ranged from US$ 153 million (for a GLOF of
the same magnitude as in 1981) to US$ 189 million (for
a GLOF 10 m higher than 1981), which is very high
compared to the estimated losses during the 1981 GLOF.
The higher value is partly due to the fact that
a considerable amount of infrastructure—including
hydropower plants, communication cables, bridges,
public buildings, and private houses—has been developed

Lake Type Dam texture

Dam outlet

position

Mother

glacier

Distance from

mother glacier

to water surface

Ga-Long-Co

southwest

Moraine
dammed

Unconsolidated
mixture (boulders,
gravels, coarse
sands)

Channel on
surface

No glacier Not applicable

Co-Na-Nang-

Song

Moraine
dammed

Consolidated mixture
(boulders, gravels,
coarse sands)

Channel on
surface

Small glacier Not clear

a) Not surveyed; information is based on previous observations.

TABLE 1 Continued. (First part of Table on previous page.)
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since 1981, and partly to the fact that the estimated loss in
1981 was based on actual loss, which is less than potential
loss. Infrastructure comprised about 65% of the total
value exposed to a GLOF at the 1981 level, followed by
government revenue (10%) and real estate (private
buildings and cultivated land). Figure 3 shows the value of
the elements exposed along the different reaches of the
river. The value was higher at locations with expensive
infrastructure and more developed markets.

GLOF risk reduction initiatives

The need to work on GLOF risk management was
recognized at both national and local levels after the
devastating GLOF event of 1981. In Nepal, the National
Strategies for Disaster Risk Management (2009), National
Adaptation Program of Action (2010), and Climate
Change Policy (2011) and in China the National
Adaptation Strategies for Climate Change and National
Disaster Reduction Plan (2006–2010) emphasized and

TABLE 2 Empirical equations used for estimating lake volume and maximum possible discharge.

Equationa) References

Lake volume V 5 0.104A1.42 (1) Huggel et al 2002 ; Huggel, Haeberli et al 2004

V 5 0.035A1.5 (2) Evans 1986; Huggel et al 2002

V 5 0.0578A1.4683 (3) Trend line derived from data for area and volume of 33 glacial lakes in
the HKH region (see Figure 2 and Table S1)

Maximum

possible

discharge

Qmax 5 0.00077V1.017 (4) Huggel et al 2002

Qmax 5 0.0048V0.896 (5) Popov 1991 (cited in Huggel et al 2002; Wang et al 2008)

Qmax 5 0.72V0.53 (6) Evans 1986 (cited in Huggel et al 2002; Wang et al 2008)

Qmax 5 0.045V0.66 (7) Walder and O’Connor 1997 (cited in Wang et al 2008)

a) V 5 volume in m3; A 5 area in m2.

FIGURE 2 Relationship between glacial lake volume and area for 33 Himalayan lakes. (Sources provided in Supplemental material, Table S1 (http://dx.doi.org/10.
1659/MRD-JOURNAL-D-15-00009.S1)
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prioritized flood risk management. Sino-Nepalese
investigation of glacial lakes and GLOFs in the Poiqu/
Bhote Koshi/Sun Koshi watershed, including the Pumqu
(Arun) basin, was started in April 1987 with contributions
from Canadian scientists, and a report was published in
1988 (LIGG et al 1988). The joint expedition team of
experts recommended monitoring of glacial lakes and
establishment of an early-warning system in the source
area.

During the rehabilitation work following the 1981
GLOF, the road was realigned in several places to a higher
altitude and away from the flood plain, and arch-type
bridges were introduced in place of truss bridges at
Phupling and Zhangzambu. The Bhote Koshi

hydroelectricity project has installed an early-warning
system with 5 sensors near the Nepal-China Friendship
Bridge with automatic sirens at 4 locations. The system is
tested every 3 months and is fully functional. People living
in the locality have been trained by the project, and
signboards about the siren system have been placed at
many sites within the project area. However, there is no
monitoring and early-warning system downstream from
the powerhouse, and the lead time of 6 minutes between
the flood sensor and the powerhouse is too short for real
action.

This study identified sites that would be appropriate
for the installation of a monitoring and early-warning
system to manage some of the risk from a potential GLOF

TABLE 3 Area of selected glacial lakes, 1991–2012, and their level of outburst flood risk.

Lake Risk of outburst

Area (km2)
% change

1991–20121991 2002 2012

Jia-Long-Coa) Outburst in the past + very critical CC IC 0.552 – d)

Ci-Ren-Ma-Co south

(Zhangzangbo)

Outburst in the past + very critical 0.312 0.471 0.477 53

Co-Jiang-Gua) Outburst in the past + very critical 0.204 0.236 0.376 84

You-Mo-Jian-Coa) Very critical 0.347 0.335 0.546 57

Qie-Ze-La-Coa) Very critical 0.133 0.180 0.349 162

Ta-La-Coa) Very critical 0.151 0.171 0.239 58

Ga-Long-Coa) Critical 2.372 2.577 5.289 123

Gang-Xi-Coa) Critical 2.785 3.602 5.283 90

Pa-Ju-Coa) Critical 0.608 0.627 0.873 44

Cha-Wu-Qu-Denga) Critical 0.675 0.601 0.679 ,1

Gong-Coa),b) Stable 0.851 1.406 2.273 –d

Ta-Ro-Coa) Stable 0.540 CC 0.543 ,1

Yin-Ra-Co Stable 0.315 0.344 0.341 8

Ga-Long-Co southwesta) Stable 0.258 0.326 0.321 24

Co-Na-Nang-Songa) Stable 0.122 0.178 0.312 156

Xia-Huc) Not yet studied Small 0.320 0.419 – d

Gang-Pu-Co Not yet studied 0.178 0.233 0.309 74

Co-Nong-Jue Not yet studied 0.295 0.281 0.288 22

Duo-Ka-Pu-Co Not yet studied 0.159 0.143 0.198 25

Ma-Bi-Ya Not yet studied 0.091 0.141 0.155 70

Mu-La-Co Not yet studied 0.114 0.113 0.119 4

a)Lake was surveyed for this study.
b)Lake was covered by ice in 1991; area was larger than shown here.
c)Very small for mapping. Dates of measurement: 30 November 1991, 11 October 2002, 22 October 2012.
d)The percentage change is given by “for those lakes for which the area for the base year was not determined accurately due to either cloud cover or ice cover, or was

too small for mapping.”
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in the watershed (Figure 4). These sites are
recommendations. Six sites were identified where
a monitoring system could be installed to observe the
discharge from (and water level of) the 10 critical glacial
lakes (Table 3). Of these, 4 (MS1, MS2, MS3, and MS6) are
located near single lakes (Jia-Long-Co, Ga-Long-Co,
Gang-Xi-Co, and Ci-Ren-Ma-Co) to observe both water
level and discharge, and 2 (MS4 and MS5) are located
downstream of a group of lakes to observe discharge (on
the Ru-Jia River to observe discharge from You-Mo-Jian-
Co, Qie-Ze-La-Co, and Cha-Wu-Qu-Deng lakes, and on
the Ta-Jie-Lin River to observe discharge from Co-Jiang-
Gu, Ta-La-Co, and Pa-Ju-Co lakes). It is recommended
that the monitoring systems transmit information by
wireless technology in real time to a management center
staffed with (or linked to) experts who can judge whether
the discharge or water level is abnormally high and
indicative of an increased GLOF risk. Warning messages
would be sent via multiple media to downstream
communities and managers of important infrastructure
(hydropower plants, trade centers, and bridges) through
the early-warning system. About 20 sites associated with
downstream communities and infrastructure were
identified for installation of early-warning systems
(Figure 4).

Discussion

All 21 lakes selected for study over time increased in area
between 1991 and 2012 (Table 3). Previous studies have
also shown an increase in both number and area of glacial
lakes in the watershed. The number of lakes with an area
of more than 0.02 km2 increased by 11% and the total
area by 47% between 1986 and 2001; the total area

increased by 83% over the 35 years from 1976 to 2010
(Wang et al 2015). The area of large glacial lakes such as
Ga-Long-Co, Gang-Xi-Co, and Ci-Ren-Ma-Co increased
by more than 100% over the same period (Chen, Cui,
Yang, and Qi 2007).

Four of the lakes identified as critical in the present
study (Jia-Long-Co, Ci-Ren-Ma-Co, Ga-Long-Co, and Cha-
Wu-Qu-Deng) were also identified as potentially
dangerous by Chen, Cui, Yang, and Qi (2007), and 3 (Ci-
Ren-Ma-Co, Ga-Long-Co, and Gang-Xi-Co) by Wang et al
(2015).

The lake volume estimated using the new equation
derived from 33 glacial lakes in the HKH region
(equation 3) was higher than the volume estimated using
the previously published empirical equations (Table 2).
The original author has already reported that using
equation 1 to estimate the volume of large Himalayan
glacial lakes results in underestimation by 16–80%
(Huggel, Haeberli, et al 2004). However, field
measurement is needed to confirm whether equation 3
results in over- or underestimation.

The range of possible peak discharge estimated using
the 4 published empirical equations is very large. Some
indication of the extent to which the estimates reflect the
real situation can be gathered from field measurements
and modeling experiments carried out for 2 lakes. The
maximum possible discharge from Ci-Ren-Ma-Co
(Zhangzambu Lake), the lake that gave rise to the GLOF in
1981, estimated using the empirical equations, ranged
from 2000 to 13,000 m3/s. The peak discharge estimated
from field measurement of channel geometry and water
level (taking into account the contribution of sediment to
water level) after the GLOF of 1981 was 15,920 m3/s (Xu
1988), and the simulated discharge estimated using the

TABLE 4 Estimated volume of water and maximum possible discharge for critical glacial lakes, 2012.a)

Lake

Volume (m3) Possible discharge (m3/s)

Equation 1 Equation 2 Equation 3 Minimum Maximum

Jia-Long-Co 14,816,799 14,359,974 15,595,175 2382 15,913

Ci-Ren-Ma-Co (Zhangzangbo) 12,053,438 11,546,753 12,597,886 2063 12,808

Co-Jiang-Gu 8,578,076 8,061,512 8,862,414 1627 8957

You-Mo-Jian-Co 14,577,312 14,114,907 15,334,605 2355 15,643

Qie-Ze-La-Co 7,716,201 7,208,408 7,943,309 1511 8013

Ta-La-Co 4,522,615 4,099,721 4,571,891 1041 4569

Ga-Long-Co (Phu Chhu, Lumichimi) 366,611,694 425,706,145 430,367,197 20,211 464,628

Gang-Xi-Co 365,991,732 424,945,729 429,614,687 20,188 463,802

Pa-Ju-Co 28,376,289 28,526,831 30,534,462 3734 31,515

Cha-Wu-Qu-Deng 19,876,222 19,584,869 21,130,471 2923 21,673

a) Range of possible discharge is based on calculations using equations 4, 5, 6, and 7; all minimum values were calculated using equation 7, and all maximum
values using equation 4.
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Simplified Dam-Break (SMPDBK) model was 2846 m3/s
(WECS 1987). The range of estimates made using the
empirical equations lies between these 2 values. Similarly,
the maximum possible discharge from Ga-Long-Co
estimated using the empirical equations ranged from
20,000 to 465,000 m3/s. The peak discharge estimated by
WECS in 1987 from modeling of the same lake (called Phu
Chhu in that study) was 31,724 m3/s (WECS 1987), while
other modeling estimates for the same lake (also called
Lumuchimi) were between 5040 and 12,286 m3/s (Shrestha
et al 2010; Ghimire and Misra 2013), somewhat less than
the discharge modeled by WECS, and much less than the
maximum possible discharge estimated using the
empirical equations.

It seems likely that the empirical equations
overestimate the peak discharge, especially in bigger lakes
such as Ga-Long-Co and Gan-Xi-Co (Table 4), but it is still
difficult to ascertain which of the empirical equations
gives the best estimates. Nevertheless, the estimated peak
discharge does provide a basis for estimating the relative
risk from the critical lakes, although improved equations
are needed for quantifying this risk.

The estimated total value of property exposed to
a potential GLOF risk of US$ 153–189 million (in Nepal) is
less than the estimate for Thulagi glacial lake on the
Marsyangdi River in western Nepal and higher than the
estimate for Imja and Tsho Rolpa glacial lakes in eastern
Nepal (Khanal et al 2015). The total monetary value at risk
depends largely on the level of development of infrastructure
along the river valley. In theBhoteKoshi watershed, revenues
from international trade and supply of hydropower are
among the highest-value elements exposed to potential
GLOF risk and are likely to increase as trade volume
increases and new hydropower projects are developed.

A number of GLOF risk reduction strategies have been
initiated at the national level, but activities have not yet
been developed and implemented at the watershed level.
The Poiqu/Bhote Koshi/Sun Koshi is a transboundary
river, with all the glacial lakes that are a potential GLOF
hazard located in China, while most of the people and
properties exposed to the risk lie downstream in Nepal.
Thus, strong bilateral cooperation is needed between the
2 countries to develop and implement effective GLOF risk
reduction activities at the watershed level. The current

FIGURE 3 Estimated monetary value of elements exposed to a potential GLOF risk in different reaches of the Bhote Koshi/Sun Koshi watershed in Nepal. (A) At the
same flood level as the 1981 GLOF; (B) at a level 10 m higher. Area of disk indicates total value. (Based on Khanal and Acharya 2008)
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FIGURE 4 Location of sites recommended for the installation of discharge and water level monitoring and early-warning systems in the Bhote Koshi/
Sun Khoshi watershed. (Based on Khanal et al 2014)
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early-warning system in Nepal does not provide sufficient
lead time to manage the risk.

Conclusion

The Poiqu/Bhote Koshi/Sun Koshi is a transboundary
river and prone to GLOFs. Glacial lakes have been
expanding as a result of glacier recession. This study
identified 10 critical lakes in the watershed with
a potential for a GLOF outburst based on the
characteristics of the lake, glacier, dam, and surroundings.
An empirical equation derived using data from the HKH
region appeared to improve the estimation of lake
volume from lake area but needs to be checked and
modified using more field data. The range of possible
peak discharges estimated using published empirical
equations was very large. The maximum peak discharge
estimated using empirical equations for Ci-Ren-Ma-Co
(Zhangzambu) was within the estimates for peak discharge
for the 1981 GLOF based on field measurement of
channel geometry and water level, but for Ga-Long-Co
lake the estimates were far higher than the modeled
discharge. Further studies are needed to improve

estimates of peak discharge and understand the
contribution of sediment in modeling GLOF. The level of
GLOF risk in terms of potential economic loss is likely to
increase in the watershed, as the volume of international
trade is increasing and new hydropower projects are
planned and under construction.

GLOF risk reduction strategies should focus on (1)
limiting the exposure of life, property, and infrastructure
in flood-prone areas by formulating and implementing
land use guidelines and building codes and standards; (2)
improving livelihood and service facilities in communities
that are more vulnerable to flood risk; (3) improving
awareness and skills among people with less adaptive
capacity; and (4) establishing monitoring and early-
warning systems. The most important early-warning need
is for more lead time for those downstream to respond to
a GLOF event. This requires monitoring as far upstream
as possible, real-time transmission of information from
monitoring sites, and rapid forwarding to warning
systems—all of which will require strong bilateral
cooperation. Mechanisms are also needed for sharing
information on GLOFs between countries and at the local
and regional levels.
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