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Establishment success of sooty beech scale insects,
Ultracoelostoma sp., on different host tree species in
New Zealand

Carl W. Wardhaugh and Raphael K. Didham
School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand

Abstract
The sooty beech scale insect (Ultracoelostoma sp.) (Hemiptera: Margarodidae) exhibits a highly patchy
distribution at local and regional scales. A major factor driving this common distributional phenomenon in
other phloem-feeding insects is aggregation and local adaptation. The aim of this study was to determine if
Ultracoelostoma was locally adapted to its natal host trees, by contrasting the establishment rates of first
instar “crawlers” in reciprocal transfers to natal versus novel hosts. Although there are two closely-related
species of sooty beech scale insect, the morphological characters of crawlers in this study were
intermediate between those of U. assimile and U. brittini. However, all of the voucher specimens examined
had consistent morphology, indicating that they belong to one species which we refer to as
Ultracoelostoma sp. Reciprocal transfers of crawlers were carried out between individual red beech
(Nothofagus fusca), as well as between mountain beech (N. solandri) and red beech trees, to ascertain if
insects had become locally adapted to their individual host tree or to host species. In total, 480 crawlers
were placed in enclosures on their natal and novel host trees, of which only 32 (6.7 %) became established.
No evidence for local adaptation, either to individual host trees or to host tree species, was found. There
was also no difference in crawler establishment between natal and novel hosts. However, crawlers
originating from mountain beech trees had significantly higher establishment rates on both natal mountain
beech and novel red beech hosts, than did crawlers originating from red beech trees. The superior ability of
mountain beech crawlers to become established, even on novel red beech trees, suggests that scale insects
on mountain beech trees have higher individual fitness (possibly due to maternal effects mediated by
differences in host nutritional quality, defensive compounds or growth rate). This increased fitness may
result in crawlers being better provisioned to search for appropriate establishment sites. The results of this
study indicate that beech scale insects perform better on mountain beech at this site, although crawlers did
not preferentially establish on mountain beech.
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Introduction
Herbivorous insects are not randomly dispersed
among their host plants (Downing 1986), but rather
they attack some species or individuals
preferentially over others. This could be the result
of several factors, such as the dispersal abilities of
the insect, environmental variation, the
heterogeneous effects of parasites and predators, or
variation between host plants in their nutritional
quality, susceptibility or defensive phenotypes
(Strauss 1990). Local adaptation to these factors
has been found in many polyphagous insect
species, with genetically distinct populations
forming on different host species (Mopper et al.
1984; Moran 1984; Via 1984; Pashley 1986, 1988;
Feder et al. 1988; Roininen et al. 1993; Downie and
Granett 1999; but see Faeth et al. 1981). For
example, Via (1984) found that the pea aphid,
Acyrthosiphon pisum, had significantly higher
performance on its natal species (alfalfa for some
individuals, and clover for other individuals),
despite both host plants being in proximity to one
another. Alternatively, some host species or
individuals may simply be more susceptible to
herbivorous insects (Fox and Morrow 1981; Mopper
et al. 1990, 1991; Price 1991; Preszler and Price
1995). Thus, the heterogeneous distribution of
some insect species on their host plants could be a
function of the varying degrees of susceptibility in
the host plant population. For example, Mopper et
al. 1990 found that the survival rate of the sawfly,
Neodiprion edulicolis, was significantly higher on
susceptible pinyon pines, Pinus edulis, compared to
resistant trees.

Many species of insects produce hundreds of
generations on an individual host tree (Mopper et
al. 1995). Phenotypic variation in long-lived host
plants presents herbivorous insects with a patchy
resource that they may become adapted to if the
right conditions prevail (Van Zandt and Mopper
1998). Thus, the distribution of heterogeneous
plant defensive phenotypes can lead to the
evolution of herbivorous insects into locally
adapted subpopulations, or demes, on individual
trees within single host species (Cobb and Whitham
1993). Many species of herbivorous insects have
been found to form genetically distinct demes on
individual host plants since the hypothesis was first
proposed by Edmunds and Alstad (1978) (e.g.,
Alstad et al. 1980; Wainhouse and Howell 1983;
Alstad and Edmunds 1987; Karban 1989; Komatsu
and Akimoto 1995; Mopper et al. 2000). For
example, Mopper et al. (2000) showed that demes

of the leaf miner, Stilbosis quadricustatella, formed
after only 10 generations on its host, Quercus
geminata. In contrast, some studies have found no
evidence for local adaptation (Cobb and Whitham
1993; Memmott et al. (1995); Kimberling and Price
1996; Strauss 1997; Downie 1999). Memmott et al.
1995 found that the mortality of the aphid, Cinara
cupressi, was similar on both novel and natal trees
with equal levels of infestation.

Many researchers have also found varying degrees
of local adaptation (Unruh and Luck 1987; Strauss
1990; Hanks and Denno 1993; Eliason and Potter
2000). For instance, Unruh and Luck (1987) only
found differences in pinyon pine scale insect
(Matsucoccus acalyptus) survival when transfers
were carried out between different mountain
ranges. Thus, local adaptation can occur at a range
of spatial scales, from between individual hosts to
between mountains. These studies suggest that
populations of many insect species do not consist of
one large homogeneous population, but a matrix of
locally-adapted subpopulations, depending on the
spatial scale at which gene flow occurs (Lajeunesse
and Forbes 2002).

In New Zealand, arguably the most ecologically
important herbivorous insects are the beech scale
insects (Ultracoelostoma assimile and U. brittini)
(Hemiptera: Margarodidae), which feed on the
phloem sap of Nothofagus beech trees across
approximately one million ha of the northern South
Island (Beggs 2001). The large amounts of
honeydew produced by beech scale insects are an
important food source for many arthropods, birds,
fungi and microorganisms (Hughes 1972; Gaze and
Clout 1983; Clout and Gaze 1984; Didham 1993;
Beggs 2001; Ewers 2002). The beech scale insect
fits all the requirements of the adaptive deme
formation hypothesis (see Mopper 1996; Holt and
Gomulkiewicz 1997; Van Zandt and Mopper 1998)
being sedentary, endophagous, and possibly
facultatively parthenogenetic (Crozier 1981), since
parthenogenesis is widespread within the
Coccoidea (see Nur 1971; Miller and Kosztarab
1979; Gullan and Kosztarab 1997) and male beech
scale insects only occur in summer but each female
instar has been found in every month of the year.
One of the most conspicuous features of the beech
scale insect is the highly patchy distribution that it
exhibits at regional (Crozier 1978) and local (Belton
1978; Gaze and Clout 1983; Kelly 1990; Didham
1993) scales. Although winged males emerge from
December to March (Morales et al. 1988;
Wardhaugh and Didham 2004), and first instar
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crawlers are present throughout the year, it is
unknown how much gene flow or migration occurs
between populations on different trees.

In this study reciprocal transfers of first instar
crawlers were made between red beech and
mountain beech trees to ascertain if populations of
beech scale insects are specializing on particular
host species. Simultaneously, we also carried out
reciprocal transfers of crawlers intraspecifically on
red beech trees to see if demes have formed on
individual trees within species.

Materials and Methods
Study site
This study was conducted during February and
March, 2004, at the Lake Rotoiti Nature Recovery
Project (41°49′ S 172°51′ E; 650 m. a. s. l.) in
Nelson Lakes National Park, New Zealand. All field
measurements were carried out in a 0.96 ha plot
(divided into 96 10 x 10 m subplots) within a
continuous beech forest, on a gentle west-facing
slope over 100 m from the forest edge. The forest is
dominated by red (Nothofagus fusca) and silver (N.
menziesii) beech, with a few mountain (N.
solandri) beech in some areas.

Species identification
Two closely related species of Ultracoelostoma
have been identified on southern beech trees in
New Zealand. Identification of 30 voucher
specimens of crawlers from transfer trees was
undertaken using the taxonomic key in Morales
(1991). However, of the three major morphological
traits used by Morales (1991) to distinguish
between first instar crawlers of the two species, one
was indicative of the crawlers being U. assimile
(there were less than 16 complex disc pores dorsally
around the anus on the terminal abdominal
segment) and two were indicative of the crawlers
being U. brittini (the setae around the anus were
pointed, rather than spatulate, and simple disc
pores contained predominately four loculi).
Although a definitive species identification using
Morales’ (1991) descriptions was not possible, all
voucher specimens did display this same mix of
morphological traits, which indicates that only one
species was used for transfers in this study.
Detailed descriptions and illustrations of first instar
U. assimile and U. brittini are given in Morales
(1991) (Fig. 40 and Fig. 44, respectively) (online
version available at
http://faunaseries.landcareresearch.co.nz/).

Reciprocal transfers
First instar crawlers were collected from the lower
trunks of 10 mountain beech and 20 red beech trees
to use in the reciprocal transfers between host
trees. Although it was impossible to be certain if
crawlers were born on the trees they were collected
from, a number of factors make it highly likely that
it was their natal tree. First, crawlers were only
collected if they were found clustered in a newly
emerged group around a scale insect test on the
trunk, rather than being randomly distributed.
Wardhaugh and Didham (2005) showed that
crawlers are retained inside the female test until all
the eggs have hatched, and then emerge en masse
before dispersing. Thus, the crawlers used in this
study were likely to have originated from that
particular host tree and to be of similar ages across
all trees. Second, although beech scale insect
crawlers have been shown to disperse on the wind
(Morales et al. 1988; Wardhaugh and Didham
2004), members of the family Margarodidae are
typically not active wind dispersers (Hanks and
Denno 1998). Crawlers of actively dispersing
species possess physical and behavioral adaptations
to aid them in their dispersal activities (Gullan and
Kosztarab 1997). The beech scale insect lacks any
such obvious adaptations and appears to be highly
positively thigmotactic (personal observation).
Insects were incredibly reluctant to let go of the
substrate they were clinging to and would even
cling to tiny pieces of sooty mould fungus that
would fall into the collection containers. Third,
because crawlers might occasionally be blown on
the wind, we took a conservative approach and only
conducted transfers on calm, windless days.
Therefore it is highly likely that most, if not all, of
the 480 crawlers used in these experiments
emerged on the trees they were collected from.

Reciprocal transfers were carried out between 10
red and 10 mountain beech trees (10 reciprocal
pairs of red/mountain) to determine if scale insects
have become adapted to the defensive or
nutritional characteristics of their host species, or if
scale insects prefer one species relative to the other.
To determine if insects have become adapted to
individual trees within a host species, crawlers were
also reciprocally transferred between 10 red beech
trees not used in the between-species transfers (five
reciprocal pairs of red beech trees). Source trees
used in the reciprocal transfers were selected
randomly after measuring tree diameter and scale
insect density at breast height (1.4 m) from every
red and mountain beech tree over 5 cm in diameter
at breast height within our 0.96 ha study site. The
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distance between each pair of randomly selected
trees was recorded to determine if difference in
establishment rates was related to distance from
the source tree. The average distance between pairs
of trees was 50.7 m (range 5 – 133 m). In each
reciprocal transfer, eight crawlers from the novel
host tree and eight from the natal host tree were
placed in four enclosures (four natal insects in two
enclosures and four novel insects in two enclosures)
on each tree. Thus, 80 enclosures were used on the
20 trees in the red-mountain reciprocal transfers
and 40 were used on the 10 trees in the red-red
reciprocal transfers. In all cases insects were
removed from, and transferred to, trunks, not
branches.

Enclosures consisted of a 50 mm length of 26 mm
diameter steel pipe, with a 20 mm length of 31 mm
diameter plastic pipe as a removable cap (Figure 1).
To ensure that the plastic pipe fitted tightly on the
end of the steel pipe, a 10 mm section of the inside
of the plastic pipe was reamed out and the end 10
mm of the outside of the steel pipe was turned
down in a lathe. A circular piece of nybold mesh (31
mm diameter with 250 μm mesh) was placed
between the steel pipe and plastic cap to prevent
crawlers from escaping out of the end. To attach the
steel pipe to the tree, a headless nail was welded
onto the steel pipe so that it protruded 5–8 mm
past the end of the steel pipe. To prevent crawlers
from escaping through small gaps between the steel
pipe and the tree, the inside of the steel pipe was
bored out in a lathe to create a sharp edge that
pierced into the bark of the tree (but did not
penetrate through to the phloem). To attach these

enclosures to the tree, the steel pipe was hammered
into the bark, then crawlers were placed inside and
the nybold mesh was placed over the end of the
steel pipe before the plastic cap was placed tightly
over the end. This configuration allowed the
placement and inspection of crawlers inside the
enclosure without removing it from the tree.

Enclosures were placed at breast height on each
tree (one per cardinal aspect) and were chosen at
random to house natal or novel crawlers. It was
previously determined that aspect had no effect on
scale insect density at this study site (Wardhaugh et
al. 2006), therefore the effect of aspect on
reciprocal transfer survival rates was not explicitly
tested. The area where enclosures were placed on
the trunk was cleared of sooty mould and any
established scale insects prior to attaching the
enclosures to the tree. All crawlers, regardless of
being transferred to a novel tree or being placed
back on the natal tree, were held in transit for
approximately the same length of time, with all
transfers completed within 1 1/2 hours of collecting
the crawlers. Enclosures were left for 10–14 days to
allow sufficient time for crawlers to become
established (McAllum 1992). A crawler was
considered to be established if it had inserted its
mouthparts into the bark, which was easily
determined by gently nudging the insect aside to
view its stylet.

The diameter at breast height (DBH) and density of
scale insects on the lower trunk were recorded to
determine if the size of the host tree or the local
density of scale insects on the trunk influenced

Figure 1. Cross section of the enclosures used for reciprocal transfers of crawlers.
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crawler establishment. The lower trunk density of
scale insects was determined by counting the
number of anal tubes protruding from the bark
inside a 10 x 10 cm quadrat placed on each cardinal
aspect of the tree at breast height (1.4 m).

Statistical analyses
For the mountain to red beech reciprocal transfers
(between-species), an Analysis of Covariance
(ANCOVA) was performed using the arcsine square
root (x + 0.25) transformed proportion of crawlers
established as the dependent variable. Differences
in establishment rate were tested against tree
species (mountain versus red beech) and the origin
of the crawlers (natal versus novel), with the
distance between transfer trees, density of scale
insects on the lower trunk and the DBH of the
experimental trees as covariates. Because natal
transfers all represent a distance of transfer of 0 m
(i.e., placed back on the tree they were collected
from), the covariate effect of distance on natal
transfers is not meaningful. We overcame this
problem by including in the analysis an interaction
term between distance of transfer versus origin of
the crawlers (natal versus novel).

For the red to red beech reciprocal transfers
(within-species), a similar ANCOVA was
performed, with the origin of the crawlers (natal
versus novel) as a categorical predictor, and
distance between transfer trees, tree DBH and
density of scale insects on the lower trunk as
covariates. All analyses were performed in
Statistica version 6.0 (StatSoft 2003).

Results
Of the 480 crawlers used in the adaptive deme
formation trials between red to red beech trees and
the trials between mountain and red beeches, only
32 individuals (6.7 %) became established. In the
between-species reciprocal transfers, there were no
significant effects of host tree size (F 1, 32 = 0.597, P
= 0.445), distance between reciprocal pairs of trees
(F 1, 32 = 2.800, P = 0.104), or the density of scale
insects on the lower trunk (F 1, 32 = 0.797, P =
0.378) on crawler settlement, so these variables
were omitted from subsequent analyses. There was
no significant difference in establishment rate on
novel and natal hosts in the between-species
transfers (F 1, 36 = 0.068, P = 0.796; Table 1).
However, there was a significant difference in
establishment rate between crawlers originating
from red and mountain beech trees, with the
establishment rate of crawlers from mountain

beech being significantly higher than the
establishment rate of crawlers from red beech (F 1,

36 = 5.115, P = 0.030; Table 1; Figure 2). Thus,
crawlers from mountain beech trees established
better on both natal mountain and novel red beech
hosts, than did crawlers from red beech trees.

Table 1. Minimum adequate ANCOVA model for
establishment success of crawlers in reciprocal transfers
between red and mountain beech trees, with sums of squares
recalculated after the removal of non-significant covariate
effects of DBH and density of scale insects on the lower trunk.
Removal of covariates did not alter the statistical significance
of main effects or interaction terms.

Sources of variation SS d.f. MS F P
Source tree species 0.11248 1 0.11248 5.1151 0.030

Natal/novel host 0.00149 1 0.00149 0.0678 0.796
Interaction 0.00808 1 0.00808 0.3676 0.548

Error 0.79166 36

In the within-species reciprocal transfers, no
evidence for adaptive deme formation within scale
insect populations on red beech trees was found,
and no difference was found in establishment rate
between natal and novel hosts (F 1, 16 < 0.0001, P >
0.992).

Discussion
There was no evidence in this study that local
adaptation for specific host trees or host species
had occurred in Ultracoelostoma. Crawlers from
mountain beech trees consistently had higher
establishment rates on both natal and novel hosts
than crawlers from red beech trees, indicating that
scale insects from mountain beech may have higher
fitness (produce more strong, healthy offspring)
than those from red beech. Mountain beech
crawlers even established better than red beech
crawlers did on their natal red beech trees. The
superior establishment rate and higher individual
fitness of mountain beech crawlers may be due to a
more nutritious or poorly defended host species.
Thus females may molt into larger adults that
produce greater numbers of better provisioned
young, which can survive longer while trying to find
an appropriate establishment site. The low
proportion of crawlers that established in this study
suggests that the number of available settlement
sites may be a limiting resource. Therefore,
crawlers that were longer-lived may have had more
time to find the limited number of available
settlement sites.

The apparent superior fitness of mountain beech
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Figure 2. Back-transformed mean (± SE) proportion of scale insect crawlers from mountain beech (closed circles) and
red beech (open circles) that successfully established on natal and novel trees.

crawlers, and the results from previous studies
showing that mountain beech trees are often more
heavily infested with scale insects than other beech
tree species (Wardle 1984; but see Kelly 1990),
suggests that mountain beech is the optimal host
species for Ultracoelostoma. However, the specific
characteristics of the host tree that affect beech
scale insect fitness are unknown. One possibility is
that mountain beech trees grow more vigorously
than red beech trees. Scale insects are known to
survive better on more vigorous, and hence more
nutritious host trees (Price 1991). Rapid growth
rates would also cause widespread cracking of the
bark (Wardle 1984), which could increase the
number of potential establishment sites. McAllum
(1992) has previously shown that beech scale insect
crawlers rapidly colonized newly created fissures in
the bark. Indeed, our anecdotal observations
suggest that establishment was higher when the
experimental enclosures were situated over a crack
in the bark. Similarly, Wainhouse and Howell
(1983) found that transplanted crawlers of the scale
insect, Cryptococcus fagisuga (Eriococcidae) on

Fagus sylvatica were associated with fissures in the
bark within their enclosures. However, this does
not explain the higher establishment rate of
mountain beech crawlers on red beech trees.

Although a number of studies have discovered
preferred or more susceptible host species for
herbivorous insects (e.g., Fox and Morrow 1981;
Mopper et al. 1990, 1991; Preszler and Price 1995),
our results are unusual in that the optimal host
species was detected via the superior fitness of the
focal insect rather than the superiority of the focal
plant. For example, the survival rate of sawflies was
significantly higher on susceptible host trees
(Mopper et al. 1990), whereas in this study, the
survival rate was significantly higher for crawlers
from susceptible host trees. This suggests that there
is a strong maternal influence on the fitness of
crawlers, and that the benefits of settling on an
optimal host tree are only realized via a greater
growth rate and subsequent offspring fitness than
via a higher establishment rate. This is an
important difference since scale insect crawlers
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appear to be limited by the number of suitable
establishment sites available.

The lack of any sympatric scale insect races on
different host species suggests that either the
chemical defenses of the host trees do not vary
between species in ways that significantly affect
scale insects, or that gene flow among trees is
relatively high. Secondary chemicals, such as
flavonoids, are often restricted to storage sites and
may be in very dilute concentrations in the phloem
(Dreyer and Jones 1981). Therefore, scale insects
may bypass many of the beech tree’s chemical
defenses via their feeding activities. However, the
low number of crawlers that actually became
established indicates that physical host tree
attributes may be important to scale insect
settlement. Thus, a lack of suitable establishment
sites within the enclosures could have been the
limited resource that restricted the settlement of
crawlers.

One of the main elements of the adaptive deme
formation hypothesis is that gene flow between
populations of insects occupying neighboring host
plants needs to be very small (Slatkin 1987). Very
little is known of the reproductive behavior of the
beech scale insect, therefore it is impossible to
guess how much gene flow occurs between
populations. Although male scale insects are
relatively rare in time and space, crawlers are
relatively abundant (Wardhaugh and Didham
2004), and can be blown on wind currents.
Provided the immigration rate is high enough, any
local selection could be swamped (Slatkin 1987;
Holt and Gomulkiewicz 1997). The rate of
immigration within the canopy (where most scale
insects occur, Wardhaugh et al. 2006) needs to be
quantified to fully assess the potential for local
adaptation in the beech scale insect.

Despite the fact that no evidence for fine-scale
adaptation in the beech scale insect was found in
this study, it is still possible that some degree of
local adaptation occurs. We only recorded the
establishment rate of crawlers, so any host-driven,
post-settlement factors that affect survival, growth
rate or fecundity are unknown. Future studies on
local adaptation in the beech scale insect should
include a greater number of trees to carry out
reciprocal transfers, and more crawlers should be
used per transfer to control for the small
proportion that become established. Microsite
variation could also be controlled for (McAllum
1992) and established insects should be monitored

throughout their life cycles. Furthermore, since
local adaptation can occur at a range of spatial
scales (Kaltz and Shykoff 1998), reciprocal transfers
should be carried out between novel and natal trees
separated by greater distances. Hanks and Denno
(1993) only detected local adaptation for the
armored scale insect when the host trees were
separated by over 300 m, whereas all the host trees
in this study were within 150 m of each other. Until
the role of specific host tree attributes can be
identified at a local scale at least, extrapolations
and generalizations about the distribution and
abundance of beech scale insects are likely to be
inaccurate.
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