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Natural disturbance and forest management in riparian zones:
comparison of effects at reach, catchment, and landscape scales

R. Dan Moore1

Department of Geography and Department of Forest Resources Management, University of British
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John S. Richardson2

Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia,
Canada V6T 1Z4

Abstract. Forest disturbance agents, such as wildfire and windthrow, often differ in magnitude and
frequency between upland and riparian zones. Riparian forests may be subject to additional disturbance
agents that do not affect uplands, including debris flows, floods, bank erosion, and avulsions. Forest
harvesting, with or without a streamside buffer, is an additional riparian disturbance agent in managed
landscapes. The effects of riparian harvesting on stream habitat and ecology are qualitatively similar to
those of wildfire, with the important exception of recruitment of large in-stream wood. For most other
disturbance agents, current knowledge is insufficient to assess the degree to which natural disturbance can
be emulated via riparian forest harvesting. In particular, the effects of the spatial patterns and frequencies
of disturbance on the trajectories and rates of postdisturbance recovery are poorly understood for many
landscapes and are complicated by the potential for propagation of effects down the stream network.
Broadly based, long-term research on riparian disturbance regimes is needed to provide the scientific basis
required for designing strategies for sustainable streamside forest management.
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In forested catchments, streams and their riparian
areas are subject to disturbances, such as wildfire
and insect outbreaks, across a range of spatial and
temporal scales. Riparian disturbances can have
deleterious effects on water quality, habitat, and
biota, at least over short and medium time scales.
However, as is the case for natural disturbances in
other ecosystems, stream and riparian disturbances
are integral to the long-term function and evolution of
riverine ecosystems and can play an important role
in the spatial patterns of channel morphology and
stream–riparian habitat complexity (Everett et al. 2003,
Bigelow et al. 2007, Florsheim et al. 2008, Eaton and
Giles 2009, Death 2010).

The objective of our paper is to compare the effects
of natural disturbance and forest management on
riparian–stream systems with a focus on in-stream

habitat and ecology. First, we summarize the effects of
forest management activities on riparian processes
and stream environments and review the character-
istics of riparian forest disturbance regimes in the
context of catchment-scale and broader landscape-
level processes of forest disturbance. Then, we use
the specific example of wildfire, for which the greatest
knowledge base exists (Nitschke 2005), to compare the
effects of riparian harvesting and natural disturbance
on riparian–stream interactions and aquatic habitat.
Last, we identify some operational implications and
research needs associated with the application of the
Emulation of Natural Disturbance (END) paradigm
for riparian management.

Forest Management as a Stream and
Riparian Disturbance

Forestry operations influence a number of riparian
and stream processes. Harvesting in the riparian zone
can reduce shade and increase stream temperature
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(Moore et al. 2005), modify the recruitment of in-
stream wood (Bilby and Ward 1991), decrease root
strength and bank stability (Millar 2000), and influ-
ence the supply of allochthonous and autochthonous
material (Kiffney et al. 2003, Kiffney and Richardson
2010). Effects of disturbance on water quality, such as
increased water temperatures and suspended sedi-
ment concentrations, can propagate downstream and
influence stream reaches flowing in undisturbed
forest (Story et al. 2003, Feller 2005, Wilkerson et al.
2006).

Even where forested buffers are retained along a
stream, upland forest removal influences riparian and
stream processes. The presence of a riparian buffer
typically has little effect on harvesting-related chang-
es in stream flow (Moore and Wondzell 2005) and
may not protect against increases in sediment input
(Rivenbark and Jackson 2004). Removal of upland
forest can increase windthrow in riparian zones, and
thus, influence patterns of recruitment of in-stream
wood (Grizzel and Wolff 1998). Upland forest
harvesting also increases light penetration in riparian
forest (Kiffney et al. 2003) and releases understory
growth from shade limitation.

After harvest, the trajectory of riparian vegetation
development will depend on ongoing silvicultural
activities. In some instances, forest harvesting without
riparian buffers can result in conversion of near-
stream forest to N-fixing species, such as red alder
(Alnus rubra) in western North America and black
locust (Robinia pseudoacacia) in southeastern USA,
resulting in a long-term increase in stream NO3

2

concentrations (Swank et al. 2001, Wipfli and
Musslewhite 2004). In other cases, such as in western
Oregon, silvicultural practices encouraged develop-
ment of densely stocked coniferous stands in the

riparian and upland zones of headwater streams
(Anderson et al. 2007).

Roads and their drainage systems can be significant
sources of sediment to streams even in the presence
of riparian buffers (Gomi et al. 2005). In addition,
removal of forest cover in road right-of-ways can
increase solar radiation and wind penetration into
the riparian zone, resulting in changes in riparian
microclimate and stream temperature (Herunter et al.
2003). Increased penetration of solar radiation could
affect vegetation growth within the buffer and in-
stream primary productivity.

Natural Disturbance Regimes and
Stream–Riparian Systems

Natural disturbance regimes in forests can be
broadly described in terms of the disturbance agent
(e.g., fire, windthrow, insects; Table 1), the spatial
extent and pattern of disturbance, and the frequency
and intensity of disturbance. These characteristics
vary geographically as a function of climate, topog-
raphy, vegetation, and their interactions. For example,
in British Columbia, Canada (Fig. 1), natural distur-
bance regimes at a coarse scale differ between those
in the wet coastal forests, where fire is rare and
individual tree mortality, blowdown, and landslides
are the dominant disturbance agents, and those in the
drier interior forests, where frequent stand-replacing
and stand-maintaining fires predominate (Wong et al.
2003, Daniels and Gray 2006). Within these coarse
divisions, substantial finer-scale variability exists,
including mixed-severity fire regimes (Klenner et al.
2008).

Riparian zones often differ from upland sites in
terms of topography, microclimate, moisture dynam-
ics, and vegetation, and therefore, should differ from

TABLE 1. Forest disturbance agents and their geographic characteristics. Agents denoted with an asterisk are restricted to
riparian forest. Others influence both upland and riparian zones.

Disturbance agent Geographic characteristics

Crown fire Drier forest types
Surface fire Drier forest types with high fuel load or low ignition points
Windthrow Exposed, or wind-prone areas; particularly significant along streams

with riparian buffers
Insect disturbance Most forest types; affected tree species depends on insect
Individual tree mortality Predominantly in moist ecosystems dominated by gap dynamics
Treefall caused by snow loading Areas subject to heavy falls of cohesive snow, particularly near the coast
Treefall caused by ice accumulation Regions subject to freezing rain, such as Quebec and New England
Snow avalanching Snow-dominated, steep landscapes
Debris flows* Steep landscapes; initiation in headwaters with potential to propagate

down to intermediate and larger streams
Floods* Most significant in downstream reaches in larger catchments
Bank erosion* Larger channels where streams are competent to move sediment
Avulsions* Larger streams flowing in alluvium
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upland sites in forest disturbance regime. The typically
moister conditions in riparian zones can result in
shallower rooting depths and, for some forest types,
greater vulnerability of riparian forests to processes
such as windthrow and falldown caused by snow
loading. Wildfire disturbance may be less frequent in
riparian zones than in upland sites (Everett et al. 2003,
Pettit and Naiman 2007), although the disturbance
frequencies may be similar in drier regions, such as
eastern Oregon and Alberta (Macdonald et al. 2004,
Olson and Agee 2005) and along intermittent headwa-
ter streams (Tollefson et al. 2004). However, wildfire
disturbance may be more intense in riparian zones
than on sideslopes because of greater accumulation
of fuel between fires (Everett et al. 2003). The recent
outbreak of mountain pine beetle (Dendroctonus pon-
derosae) in western North America, which has caused
widespread mortality of pine trees (Fauria and Johnson
2009), is a good example of the contrasts in disturbance
regimes between riparian and upland forest. In areas
of central British Columbia identified as having pine-
dominated forest stands, spruce is commonly the

dominant species in riparian zones (Rex et al. 2009).
Thus, riparian forests are likely to be less affected by
mountain pine beetle than upland forests, where pine
is typically the dominant species.

Some disturbance agents, such as debris flows and
floods, are unique to riparian zones (Table 1). Debris
flows in tributary reaches can contribute sediment
and large wood to mainstem reaches (Hogan 1989,
Bigelow et al. 2007). During floods, these pieces of
large wood can be mobilized. Mobilization of large
wood can increase disturbance to the channel and the
riparian forest along the mainstem reach (Johnson
et al. 2000) and can prompt stream avulsion. The
legacy of past disturbance can be important. In a
catchment in the Oregon Cascades, Johnson et al.
(2000) inferred that logging in the 1940s and 1950s
increased the wood available for transport during a
major flood in 1964, which resulted in toppling and
uprooting of old-growth conifers in the riparian zone.
Subsequent forest harvesting decreased the availabil-
ity of large wood for transport in a 1996 flood.

Stream and riparian disturbance regimes vary with
catchment scale and stream size. Headwater reaches
will be more strongly influenced by debris flows than
floods, whereas floods can significantly influence
larger, downstream channels flowing in floodplains
(Johnson et al. 2000). For streams below a threshold
bankfull width (,15–20 m in the Pacific Northwest),
riparian forest can provide sufficient cohesion that
bank erosion and lateral channel migration are
minimal (Beechie et al. 2006). For larger streams,
shear stress on the banks will exceed their shear
strength on a more regular basis, promoting channel
migration, disturbance to the riparian forest, and
wood recruitment to the channel (Eaton and Giles
2009).

Stream channels and riparian zones exhibit a range
of states across a landscape. These states reflect
different disturbance histories and recovery trajecto-
ries and inherent intersite differences in conditions
(Bigelow et al. 2007, Naiman et al. 2010). The spatial
pattern of these states influences the resilience of
the system to disturbance. For example, undisturbed
tributary reaches can provide critical refugia that
provide a source of colonists to promote recovery of
downstream, disturbed reaches (Lamberti et al. 1991,
Nakamura et al. 2000).

Comparison of Wildfire and Harvesting as
Disturbance Agents

The body of available research on wildfire as a
forest disturbance provides a basis for comparison
with forest harvesting at the reach and catchment

FIG. 1. Geographic distribution of natural disturbance
types (NDTs) in British Columbia, Canada (Province of
British Columbia 1995; http://www.for.gov.bc.ca/tasb/
legsregs/fpc/fpcguide/biodiv/biotoc.htm). This figure pro-
vides an example of the coarse-scale geographic variation
in a single jurisdiction, with dominant disturbance agents
ranging from infrequent tree death (NDT1) to frequent,
stand-maintaining disturbances (NDT4).
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scales. Wildfire and harvesting influence catchment-
scale generation of stream flow by affecting snow
dynamics and snowmelt runoff. Reduction of canopy
cover increases snow accumulation by reducing
interception loss and increases melt rate by decreased
shading (Winkler et al. 2005, Winkler 2011). However,
following a wildfire, standing dead trees can provide
substantial shading (Leach and Moore 2010), leading
to lower melt rates than after clearcut harvesting
(Burles and Boon 2011, Winkler 2011). Harvesting and
wildfire both typically result in an earlier onset of
snowmelt (Moore and Scott 2005, Eaton et al. 2010,
Seibert et al. 2010). In addition, both types of
disturbance reduce interception loss and transpira-
tion, resulting in increased annual runoff (Cheng
1980, Moore and Wondzell 2005, Seibert et al. 2010).
Most investigators have found that both harvesting
and wildfire increase snowmelt-generated peak flows,
although partial disturbance of a catchment can, in
some circumstances, apparently result in desynchro-
nized snowmelt and reduced peak flows (Verry et al.
1983, Eaton et al. 2010). The duration of these effects
depends on the rate of hydrologic recovery, which, in
turn, depends on the rate at which the regenerating
stand grows after disturbance (Huggard and Lewis
2008).

Catchment-scale effects of wildfire and harvesting
can differ significantly in cases where intense fire
results in loss of soil organic matter and development
of a hydrophobic layer within the soil (Huffman et al.
2001). In these cases, infiltration of rainfall is impeded
and water runs over the soil surface, resulting in more
intense peak flows, widespread surface erosion, and
dramatically increased suspended sediment loads
(Moody and Martin 2001, Silins et al. 2009). In
contrast, reduced infiltration and increased overland
flow are rarely observed after harvesting except from
roads and areas where the soil has been disturbed by
compaction (Moore and Wondzell 2005). In moun-
tainous catchments, debris flows often occur after
wildfire (Wondzell and King 2003). However, an
increase in surface erosion and stream sediment
concentrations does not follow wildfire in all cases
(Eaton et al. 2010), especially where the duff layer is
only partially consumed in a fire (Martin et al., in
press).

Wildfire and harvesting both result in decay of tree
roots and, thus, loss of soil cohesion. On steep slopes,
the result can be increased risk of landslides during
intense rain or snowmelt events (Benda and Dunne
1997). In riparian zones, decay of tree roots can result
in loss of bank strength and increased rates of bank
erosion (Millar 2000, Eaton et al. 2010). Eaton and
Giles (2009) hypothesized that loss of bank strength

after wildfire may strongly influence stream habitat
complexity. For a stream that normally cannot erode
its banks, loss of bank strength after riparian wildfire
can trigger a period of lateral instability, leading to
an increase in the frequency of pool–riffle units and
formation of side channels, both of which provide
habitat complexity on land and in the water. As the
riparian forest regenerates over the following de-
cades, lateral stability is re-established, leading to a
gradual loss of complexity.

The severity of and potential for interactions
between catchment-scale and riparian disturbances
depend on the types and intensities of disturbance
and on the nature of postdisturbance weather, which
introduces an element of contingency. For example,
the effects of catchment-scale harvesting are likely to
be more benign than those of wildfire in cases where
intense rainfall, which can trigger widespread over-
land flow on hydrophobic soils and debris flows,
occurs in the first year or two after a fire. However, in
cases where intense rain and overland flow do not
occur, clearcut harvesting is likely to result in a
greater increase in peak flow than fire in snow-
dominated catchments. Increased peak flows com-
bined with the loss of bank strength after riparian
harvesting could promote increased bank erosion and
channel instability.

In the first few years after disturbance, harvesting
and wildfire can lead to increased nutrient export,
which can promote increased primary production in
stream ecosystems (Feller 2005, Bladon et al. 2008).
Large-scale fire and forest harvesting have qualita-
tively similar effects on stream communities and often
cause simplification of the community with increases
in generalist species (e.g., Baetis spp.) and species with
short-generation times (e.g., Chironomidae) (Minshall
et al. 1997, Ely and Wallace 2010, Malison and Baxter
2010).

Wildfire and harvesting in the riparian zone differ
importantly in their effect on recruitment of large
wood. In the wake of fire, wood loading increases
dramatically as a result of the toppling of trees as their
roots fail and increased bank erosion. The legacy of
this pulse of recruitment lasts for decades (Bragg
2000, Scherer 2008). In the case of riparian harvesting,
recruitment is likely to decrease for several decades,
decreasing in-stream wood load (especially of large
pieces) and its associated fluvial and ecological
functions (Scherer 2008).

The decrease in shading associated with harvesting
and wildfire leads to increases in stream temperature
(Minshall et al. 1997), which can influence many
aspects of stream ecosystems. However, after a
wildfire, standing dead trees function more like a
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partial-retention riparian buffer than a clearcut in
terms of shading (Leach and Moore 2010). The
thermal sensitivity of a stream to a decrease in canopy
shading depends on channel characteristics. For
example, Dunham et al. (2007) found that the thermal
effects of wildfire were greater for channels that had
experienced postfire geomorphic disturbance than for
channels that experienced only a reduction in canopy
cover.

Fire may have relatively little effect on riparian-
dependent plant and animal species (Hossack and
Corn 2007), may be highly detrimental (Hossack et al.
2006), or may increase habitat supply. In some cases,
riparian areas provide a refuge from upslope wild-
fires that stop in the relatively moister riparian
vegetation (Pettit and Naiman 2007). In some land-
scapes, the community structure of riparian plants
does not differ significantly between sites that have
been harvested and sites that have been burned to the
stream’s edge (Lamb et al. 2003). However, harvesting
and fire do differ in their implications for animal
species that are riparian obligates or riparian associ-
ates (Marczak et al. 2010). In the few studies that have
compared the effects of wildfire and forest harvesting
on terrestrial wildlife, responses have ranged from
almost no difference (Macdonald et al. 2004, Kardynal
et al. 2009) to relatively large changes (Hobson and
Schieck 1999; but this latter study did not include
riparian areas).

Implications for Forest Management

Application of the emulation of natural disturbance
(END) paradigm for managing riparian forest rests
on the assumption that the effects of harvesting can
mimic those of natural disturbance agents. In the case
of riparian wildfire, many of the effects are qualita-
tively similar to those of riparian harvesting (Table 2).
However, an important difference between natural
disturbances and riparian harvesting is the effect
on recruitment of in-stream wood. This observation
reinforces the motivation for at least partial retention
of the riparian forest during harvesting along streams
where fire is a dominant agent of disturbance and in-
stream wood is an important structural component.
Blowdown is often higher in riparian buffers than in
intact stands (Grizzel and Wolff 1998, Bahuguna
et al. 2010), and this increase in blowdown appears
to mimic the pulsed input of wood to streams that
typically follows wildfire (Bragg 2000). Retention of
some riparian forest also would emulate the shading
provided by standing dead trees after a fire.

In some cases, riparian forest harvesting could also
be a tool for ecological restoration in a manner similar
to the use of prescribed fire where fire suppression
has led to undesirable ecological changes (Bêche et al.
2005). For example, reduced frequency of riparian
wildfire could result in decreased complexity of the
channel and riparian areas, with implications for
aquatic and riparian habitats (Eaton and Giles 2009).

TABLE 2. Comparison of harvest and wildfire impacts on the functions of riparian forest. Note that the effects of riparian
wildfire depend on intensity and, especially, on the percentage of riparian trees that survive the fire.

Function of riparian forest Effect of riparian wildfire Effect of riparian harvest Comment

Bank strength Decreased Decreased Effects should be
roughly equivalent

Recruitment of
in-stream wood

Input rate increased
in the short-to-
medium term

No recruitment for up
to several decades

In-stream loss rates not
compensated by new
recruitment, reducing
habitat complexity

Shade Decreased Decreased Dead standing trees can
provide some shade;
effect is equivalent to
partial-harvest treatments

Allochthonous plant
litter inputs from
riparian forest

Decreased Decreased Roughly equivalent

Habitat for riparian
obligate species

Remnant trees,
hydrophobic soils

No residual trees
remaining, possible
compaction

Dead standing trees can
provide habitat to cavity
nesters and foraging sites for
flycatchers; changes to soil
may affect burrowers

Sediment interception
and storage

Reduced, especially
where organic matter
is lost and soils
become hydrophobic

Possibly reduced,
depending on extent
of soil disturbance
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In such a case, riparian harvesting could lead to a
period of channel instability and the associated
creation of side channels after re-establishment of
riparian forest. However, potential short-term con-
flicts with other resource values, such as maintenance
of fish populations, and potential downstream effects,
should be considered before using riparian harvesting
as a tool for restoration (Rieman et al. 2010).

Compelling reasons may exist for using riparian
harvesting to mimic natural disturbances in some
landscapes. However, if END is used as a hypothesis
to guide riparian forest management, the scale and
pattern of disturbance will have to be evaluated
carefully with consideration of catchment- and
landscape-scale contexts of each site. For example,
how will reach-scale riparian harvesting interact
with upstream and catchment-scale disturbances?
To what extent will the effects of reach-scale distur-
bance propagate downstream? How will reach-scale
harvesting influence the spatial distribution of
stream habitat conditions, particularly the locations
of refugia? How will riparian harvesting interact
with other disturbance agents to influence the
trajectory of this distribution? Progress has been
made in understanding landscape-scale patterns of
stream–riparian disturbance in the Pacific Northwest
(Hogan 1989, Cissel et al. 1999, Johnson et al. 2000,
Nakamura et al. 2000, Tollefson et al. 2004, Bigelow
et al. 2007), but this knowledge may not be
applicable in other landscapes, such as the boreal
forest. Long-term research on riparian disturbance
regimes is needed to provide the basis for address-
ing these questions. This research should include
retrospective studies (e.g., using dendrochronology)
to reconstruct disturbance histories for stream–
riparian systems, adaptive-management trials to
increase understanding of the short-term impacts
and longer-term recovery dynamics following forest
harvest, and landscape-scale modelling to under-
stand the longer-term effects of different manage-
ment approaches on the spatial pattern of stream
and riparian habitat conditions.
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