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ABSTRACT—In beginning of muscle development, determination is induced in the mesoderm, and then
differentiation occurs with accumulation of muscle structural proteins. Mesoderm cells differentiate to many
type cells, but the direct signaling activator for muscle determination is still unknown. In this paper we report
some of the conditions required for determination of muscle. Muscle determination during Xenopus develop-
ment was found to be marked by Xmyf-5 and XmyoD expression, but not by expression of Xmyogenin or
Xmrf4. Xmyf-5 and XmyoD expression was first detected in the early gastrula stage. Xmyf-5 expression was
first detected on the dorsal side, whereas XmyoD was initially expressed on the ventral side. Subsequently,
expression of both genes was strongly induced on the dorsal side. The expression of Xmyf-5and XmyoD did
not continue to increase on the ventral side when it was separated from the dorsal side, although muscle
originates from the both sides. These findings suggest that a continuous increase in expression of both
genes require the dorsalizing signal. The mesoderm inducers bFGF and Activin A induced both genes in
animal caps, and the inductive activity of Activin A was stronger than that of bFGF. Overexpression of Xbra,
a pan-mesoderm marker, alone induced both genes, but weakly. The inductive activity of Xbra was en-
hanced by co-injection with noggin. This suggests that inhibition of BMP4 by noggin in the mesoderm medi-

ates dorsalizing signal, and may induce the direct dorsalizing activator genes of Xmyf-5 and XmyoD.

INTRODUCTION

The discovery of MyoD, a mouse gene that can convert
cultured fibroblasts into myoblasts (Davis et al., 1987), has
been followed by isolation of three more mammalian myo-
genic factors related to MyoD: myogenin (Edmonson and
Olson, 1989; Write et al., 1989), myf-5 (Braun et al., 1989),
and MRF4/myf-6/herculin (Rhodes and Konieczny, 1989;
Braun et al., 1990; Miner and Wold, 1990). They are all mem-
bers of the basic helix-loop-helix (bHLH) family of DNA-bind-
ing proteins (Murre et al., 1989) and can bind to muscle-spe-
cific promoters (Lassar et al., 1989; Brennan and Olson, 1990;
Piette et al., 1990). The pattern of expression of the all four
myogenic factors has been reported in normal mouse devel-
opment. In axial skeletal muscle, myf-5 (day 8), myogenin (day
8.5), MRF4 (day 9) and MyoD (day 10.5) are expressed se-
quentially, but a different sequence of expression of these
genes is observed in the developing limb bud: myf-5 was ex-
pressed transiently at day 10-12, myogenin and MyoD are
expressed after day 10.5, and MRF4 was detected after day
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16 (Sassoon et al., 1989; Bober et al., 1991; Hinterberger et
al., 1991; Ott et al., 1991). In vitro and gene-targeting studies
suggest that myf-5 and MyoD are involved in muscle cell de-
termination and that myogenin and MRF4 are involved in dif-
ferentiation and maturation (reviewed by Weintraub, 1993;
Olson and Klein, 1994; Rudunicki and Jaenisch, 1995). In
Xenopus, the complete cDNAs of XmyoD (Hopwood et al.,
1989; Harvey, 1990; Scales et al., 1990), Xmyf-5 (Hopwood
et al., 1991), and Xmrf4 (Jennings, 1992) have been cloned
and described, and a partial genomic Xmyogenin clone with
Xmrf4 was also described by Jennings (1992). Injection of
both Xmyf-5 and XmyoD mRNAs at the 2-cell stage results in
fairly normal embryos (Hopwood et al., 1991) with no large
scale conversion of non-muscle cells into muscle (Gurdon et
al., 1992). Late blastula stage animal caps from embryos in-
jected with 1-9 ng of XmyoD (Hopwood and Gurdon, 1990) or
Xmyf-5 mRNA (Hopwood et al., 1991) were found to express
muscle-specific cardiac actin, but the differentiated muscle-
specific antigen 12/101 was not expressed in these explants.
Injection of XmyoD mRNA together with RNA encoding its
dimerization partner Xenopus E12 (XE12) appeared to lead
to limited muscle differentiation (12/101 antigen expressed),
although morphological muscle was still not observed
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(Rashbass et al., 1992). A recent study, however, yielded dif-
ferent results, i.e., that injection of XmyoD or Xmyf-5 mRNA
at the 2- to 32- stage activates precocious and ectopic ex-
pression of muscle-specific antigens and induces the forma-
tion of ectopic muscle. Phenotypically, the embryos displayed
enlarged myotomes with increased numbers of myocytes that
were shown to be derived at least in part by recruitment of
cells of nonsomitic lineage (Ludolph et al., 1994). In either
case, the results showed that XmyoD and Xmyf-5 have in-
ducing activity for some muscle-specific genes, and indicate
that XmyoD and Xmyf-5 play important roles in early muscle
development in Xenopus.

The initial trigger of myogenesis in early development
remains unknown. In amphibian development, mesoderm is
formed in the equatorial region of the blastula by induction of
the nearby animal pole by growth factors released by vegetal
pole cells (Nieuwkoop, 1969; Nakamura et al., 1971; Asashima,
1975). Recently, members of the TGF superfamily and ba-
sic fibroblast growth factor (0FGF) have been reported to in-
duce mesoderm (reviewed in Asashima, 1994). Activin A has
the strongest mesoderm-inducing activity of these factors
(Asashima et al., 1989, 1990; Smith et al., 1990; van den
Eijnden-Van Raaij et al., 1990). Activin A induces mesoder-
mal gene-expression and tissues in a concentration-depen-
dent manner (Green and Smith, 1990; Ariizumi et al., 1991;
Green et al.,, 1992). Xbra has been reported as an early re-
sponse gene (Smith et al., 1991). Overexpression of Xbrain-
duces ectopic muscle in the animal cap (Cunliffe and Smith,
1992), and acts synergistically with noggin (Cunliffe and Smith,
1994) and pintallavis (O'Reilly et al., 1995). These observa-
tions may provide an important clue to the identity of the initial
muscle determination gene. Very recently, a number of Xe-
nopus genes encoding a T-box, a motif also found in Xbra,
have been reported, including Eomesodermin (Ryan et al.,
1996), Antipodean (Stennard et al., 1996), Xombi (Lustig et
al., 1996), VegT (Zhang and King, 1996), and Brat (Horb and
Thomsen, 1997). These genes are expressed at an early stage
of embryogenesis, suggesting that they play a role in meso-
derm determination.

MATERIALS AND METHODS

Eggs and embryos

Xenopus laevis eggs were obtained by injecting of female ani-
mals with 600 IU of human chorionic gonadotropin (Gestron; Denka
Seiyaku Co., Kanagawa, Japan). Fertilized eggs were chemically
dejellied by treatment containing 3% cystine hydrochloride in
Steinberg’s solution (pH 7.8) with kanamycin sulfate (100 mg/l; Banyu
Pharmaceutical Co., Tokyo, Japan), then washed with sterile
Steinberg’s solution (pH 7.4). Embryos were transferred to Steinberg’s
solution and allowed to develop until stage 9 (Nieuwkoop and Faber,
1956).

RNA extraction, RT-PCR and Southern blotting

RT-PCR analysis of RNA samples was performed as described
by Sambrook et al. (1989). Total RNAs were isolated by the acid
guanidinium thiocyanate-phenol-chloroform (AGPC) method with sev-
eral modifications (Chomczynski and Sacchi, 1987). Oligo(dT)-primed
first strand cDNA was prepared from the total RNA of Xenopus whole

Downloaded From: https://bioone.org/journals/Zoological-Science on 25 Apr 2024
Terms of Use: https://bioone.org/terms-of-use

embryos and explants, and PCR reactions were carried out in a Ther-
mal Cycler (Perkin-Elmer Cetus). Internal negative controls to which
no reverse transcriptase was added were prepared in parallel. After
amplification, RT-PCR products were subcloned for Southern blot-
ting, and the sequences were confirmed with an automatic DNA se-
quencing analyzer (ABI). *P-labeled probes were used to perform
Southern blotting. The PCR products were transferred to a nylon
membrane, and signals were detected with X-ray film. The sequences
of the primers used in this study were as follows: in the 5’ to the 3’
orientation, Xmyf-5 at 27 cycles, upstream CAACTCCACTGAGCA-
TCTTTCTAAG, downstream CGTCTTCATCCGATTCTTCAAGGTC;
XmyoD at 27 cycles, upstream TGCCAAGAGTCCAGATTTCCTACAA,
downstream TTATGGTGGGGTTCCTCTGGTTTCA; Xmyogenin at 27
cycles, upstream AGGTGTGCAAGAGGAAGACG, downstream
GCCAATAGTGTCTGCAAGCG; Xmrf4 at 27 cycles, upstream
CACAGTTTGGATCAGCAGGACAAGC, downstream GGATAGTA-
GAGCAGTTGATCCTGTA,; alpha skeletal muscle actin (muscle spe-
cific actin; ms-actin), (Stutz and Spohr, 1986) at 27 cycles, upstream
AACAGCAGCTTCTTCCTCAT, downstream TACACAGAGCGAC-
TTGAACA; eff-o (Krieg et al.,, 1989) at 28 cycles, upstream
TTGCCACACTGCTCACATTGCTTGC, downstream ATCCTGCTG-
CCTTCTTTTCCACTGC; ornithine decarboxylase (odc), (Bassez et
al., 1990; Osborne et al., 1991) at 27 cycles, upstream GTCAAT-
GATGGAGTGTATGGATC, downstream TCCATTCCGCTCTC-
CTGAGCAC.

Whole-mount in situ hybridization

Whole-mount in situ hybridization was performed according to
the method described by Harland (1991). The subcloned RT-PCR
products were used for synthesis of the digoxigenin-labeled RNA
probe. Embryos obtained from albino females were used. Anti-
digoxigenin antibodies were purchased from Boehringer Mannheim
GmbH. (Mannheim, Germany).

mRNA synthesis and embryo manipulations

pSP64T vector cDNA was provided by Dr. D. A. Melton. Full-
length Xbra of pXT1, provided by Dr. J. C. Smith, was ligated into
pSP64T. The noggintemplate was A5’-noggin provided by Drs. W. C.
Smith and R. M. Harland (Smith and Harland, 1992). Capped mRNA
was synthesized in vitro as described previously (Krieg and Melton,
1984). The mRNAs dissolved in Gurdon’s buffer (88 mM NaCl, 1 mM
KCI, 15 mM Tris-HCI, pH 7.5) were injected into both blastomeres at
the 2-cell stage in 5% Ficoll-Steinberg’s solution. Animal caps were
dissected from stage 9 embryos, then cultured in Steinberg’s solution
(pH 7.4) containing 0.1% BSA and 0.1 g/l kanamycin sulfate at 20°C,
in the presence and absence of human recombinant Activin A or bFGF.
Human recombinant Activin A was kindly provided by Dr. Yuzuru Eto
of the Central Research Laboratory, Ajinomoto Co., Kawasaki, Ja-
pan (Eto et al., 1987; Murata et al., 1988). Human recombinant bFGF
was obtained from Mallinckropt Co. (Paris, France).

RESULTS

Xmyf-5 and XmyoD are expressed during determination
of muscle

In Xenopus, the complete cDNAs of three myogenic fac-
tors, Xmyf-5, XmyoD and Xmrf4, and part of the sequence of
genomic Xmyogenin DNA have been cloned. Analysis by
Northern blotting detected expression of all three cDNAs dur-
ing normal development, but did not detect Xmyogenin ex-
pression at any time. RT-PCR was used to examine the pat-
terns of expression of these factors with greater sensitivity
(Fig. 1). Xmyf-5and XmyoD were expressed at stage 10, with
the level of transcripts increasing during gastrulation, as re-
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Fig.1. Temporal expression of four myogenic factors. Total RNA isolated from embryos at the indicated stage of development (f. egg, st. 6 - 50)
and from adult leg muscle (AM) and adult heart (AH) was analyzed by RT-PCR for levels of expression of myogenic factors and odc RT+, which
served as a loading control. odc RT- is an internal negative control. Only Xmyf-5and XmyoD were expressed at the muscle-determination stage.

Fig. 2. Spatial distribution of Xmyf-5 and XmyoD. Whole-mount in situ hybridization showed different expression of Xmyf-5 (a—e) and XmyoD
(f—j) at the determination stage [(a,f) st.9, (b,g) st.10, (c,h) st.11, (d,i) st.12, (e,j) st.15].

ported previously. Very weak Xmyogenin expression was
detected at stage 15 but not during the early gastrula stage,
similar to Xmrf4 and muscle-specific actin. The highest ex-
pression of Xmyogenin was transient, at stage 35-40. Thus
only Xmyf-5 and XmyoD were expressed at the muscle-de-
termination stage.

Comparison of Xmyf-5and XmyoD expression
Xmyf-5transcripts increased up to the neurula stage and
then decreased more rapidly than XmyoD (Fig. 1). This unique
pattern of expression of Xmyf-5 suggested that it may oper-
ate in a different activation pathway. We therefore closely
compared the pattern of expression of Xmyf-5 and XmyoD
during muscle determination. Whole-mount in situ hybridiza-

Downloaded From: https://bioone.org/journals/Zoological-Science on 25 Apr 2024
Terms of Use: https://bioone.org/terms-of-use

tion was used to compare the expression of Xmyf-5 and
XmyoD in early stage embryos (Fig. 2). No signals were de-
tected in the late blastula (stage 9; Fig. 2a, f). In early gastrula
(stage 10; Fig. 2b, g), very weak expression of both XmyoD
and Xmyf-5were detected by RT-PCR (Fig. 1), but the region
of expression was ill-defined. In the mid-gastrula (stage 11;
Fig. 2¢c, h), both genes were strongly and specifically expressed
in developing somitic mesoderm, but not in the presumptive
notochord. XmyoD expression was detected in all somitic
mesoderm, but Xmyf-5 expression was restricted to the pos-
terior region. In the late gastrula (stage 12; Fig. 2d, i) and
neurula (stage 15; Fig. 2e, j), this difference became more
distinct. Xmyf-5 was transiently expressed, and expression
then gradually decreased as the cells extended. Xmyf-5 was
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expressed in a dorsal-to-ventral gradient (Fig. 2e, j). The re-
gion of highest Xmyf-5 expression was immediately adjacent
to the notochord, which did not express Xmyf-5 at all.

Both Xmyf-5 and XmyoD were expressed in the early
gastrula stage (Fig. 1), but the specific sites of expression
could not be clarified by whole-mount in situ hybridization.
Therefore RT-PCR with divided embryos was used to resolve
Xmyf-5 and XmyoD expression (Fig. 3). Embryos were di-
vided into dorsal and ventral explants at stage 10 and cul-
tured until the stage at which they were sampled. Xmyf-5was
expressed in stage 10 whole embryos, but expression began
on the dorsal side and was not detected on the ventral side.
In contrast, XmyoD was expressed on both sides, but more
strongly on the ventral side than the dorsal side at stage 10.
Xmyf-5 expression increased greatly on the dorsal side as
well as in the whole embryo, with some low-level expression
becoming evident on the ventral side. XmyoD expression was
also detected and increased on the dorsal side of advanced
stage explants, with increased transcript levels compared to
the ventral side. The ratio of ventral/whole embryo XmyoD
expression was higher than that of Xmyf-5 expression. These
results suggest that Xmyf-5 induction was affected by
dorsalizing and that this effect on Xmyf-5 was larger than on
XmyoD.

Xmyf-5was induced by growth factors

bFGF and Activins are mesoderm-inducing factors, with
bFGF generally inducing ventral mesoderm in animal caps,
and Activins inducing both ventral and dorsal mesoderm, de-
pending on the dose. Figure 4 shows Xmyf-5 and XmyoD in-
duction by these factors in animal caps. High-dose bFGF in-
duced Xmyf-5in the animal caps, but a lower concentration of
bFGF (1 ng/ml) did not induce Xmyf-5. The greatest induction

WE Dorsal

9 10 11 12 10 11 12 10 11 12
- -
XmyoD - e e

efi-a RT-

Ventral

Xmyf-5

Fig. 3. Activation of Xmyf-5 and XmyoD by the dorsalizing signal.
The embryos were divided in two, a dorsal half and a ventral half, at
st.10 and cultured until the sampling stage at which sibling embryos
developed (WE: whole embryos), and then were analyzed by RT-
PCR. eff-a RT+ is a loading control, and eff-a RT- is an internal
negative control.
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of Xmyf-5by Activin A was at a dose of 10 ng/ml. XmyoD was
induced at all concentrations of both growth factors, including
1 ng/ml bFGF. These results indicate that Xmyf-5and XmyoD
can be induced by mesoderm-inducing factors, and that Activin
A, which include a dorsalizing signal, is more effective than
bFGF.

Xbra and noggin induce Xmyf-5 expression

Other studies have shown that ectopic expression of Xbra
in animal caps can induce muscle differentiation, and that Xbra
is an activator of XmyoD and muscle-specific actin expres-
sion (Cunliffe and Smith, 1992; Horb and Thomsen, 1997).
Xbrais also an early response gene for both bFGF and Activin
A. We showed that bFGF and Activin A can induce Xmyf-5in
animal caps, similar to XmyoD. We therefore then examined
whether Xbra could also induce Xmyf-5 expression (Fig. 5a).
When a lower dose of Xbra (0.5-2 ng/embryo) was injected
into both blastomeres at the 2-cell stage, Xmyf-5 and XmyoD
were not induced in the animal caps, but high-dose Xbra (4
ng/embryo) induced expression of both genes. Only very weak
Xmyf-5 expression was induced, however, and required a long
exposure time for detection (compare with whole embryos;
WE, at the right of Fig. 5a and b). We therefore co-injected
noggin and Xbra, since this has been described as leading to
high induction of muscle-specific actin at a low dose of Xbra
(Cunliffe and Smith, 1994). Neither noggin (200 pg/embryo)
nor Xbra (1 ng/embryo) alone induced Xmyf-5or XmyoD (Fig.
5b), but when noggin (200 pg/embryo) and Xbra (1 ng/em-
bryo) were injected together at the same doses they induced
both Xmyf-5 and XmyoD.

bFGF Activin A

(ng/ml) (ng/ml)
Xmyf-5 - oas o
XmyoD ——— SRS

OH-0 RT+ - -
ef1-a RT-

Fig. 4. bFGF and Activin A induced Xmyf-5 and XmyoD. Animal
caps were dissected at stage 9 and cultured in the presence and
absence of growth factors for 6 hr, and then were analyzed by RT-
PCR. eff-a RT+ is a loading control, and eff-a RT- is an internal
negative control.
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Fig. 5. Xbrainduced Xmyf-5and XmyoD, and acts in synergy with noggin. Synthetic mMRNA was injected at the 2-cell stage, and animal caps
were isolated at stage 10 and analyzed by RT-PCR. eff-o RT+ served as a loading control, and ef7-a RT- is an internal negative control. (a)
High-dose Xbra alone weakly induced both Xmyf-5and XmyoD. (b) Co-injection of low doses of Xbra and noggin induced both genes.

DISCUSSION

Four myogenic factors that contain a bHLH domain are
expressed sequentially and play an important role in determi-
nation and differentiation of muscle. We have identified the
initial stage of Xmyogenin expression in Xenopus for the first
time. Jennings (1992) isolated a genomic DNA fragment of
Xmyogenin, but was unable to detect any transcripts and could
not isolate any cDNAs. Highly sensitive RT-PCR Southern
blotting analysis detected very low levels of transcripts at the
same stage as Xmrf4 transcripts were detected before. A tran-
sient peak of expression was observed at stage 35-40. At
this point in the development of the muscle cell lineage,
myofibers accumulate before the start of multinucleation
(Boujelida and Muntz, 1987). Transient expression of
Xmyogenin transcripts in forming myotubes has been reported
during regeneration of adult muscle following cardiotoxin in-
jury (Nicolas et al., 1996). These observations indicate that
Xmyogenin may play a role in muscle differentiation and may
not function in muscle determination. We therefore concluded
that only two of the four factors, Xmyf-5and XmyoD, function
in the muscle determination step.

Xmyf-5 and XmyoD expression was previously reported
to begin in the early gastrula (stage 10) (Hopwood et al., 1989,
1991; Harvey, 1990). Our present study showed that Xmyf-5
expression begins at the early stage in the dorsal hemisphere,
and that in contrast to XmyoD, it is expressed in the ventrolat-
eral mesoderm (Frank and Harland, 1991). Xmyf-5 was sub-
sequently detected in the divided ventral side, but was only
weakly and unstably expressed (Fig. 3). XmyoD did not show
continuous expression on the ventral side too. Moreover, the
ventral explants expressed very little muscle-specific actin at
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stage 28 (data not shown). It is well known that the presump-
tive fate of muscle in Xenopus blastula lies in the mesoderm
region of both the dorsal and ventral hemispheres (Keller,
1975, 1976; Dale and Slack, 1987; Moody, 1987a,b; Moody
and Kline, 1990). Previous reports and our current whole-
mount in situ hybridization study have shown that Xmyf-5and
XmyoD are also expressed at the neurula stage in the poste-
rior region derived from the ventral hemisphere of early gas-
trula embryos. However, Xmyf-5 transcripts did not accumu-
late in ventral explants from which the dorsal side had been
cut off. Therefore, these phenomena suggest that the
dorsalizing effect that was released from the organizer and
led to muscle formation actually persists during gastrulation,
and that this continuing dorsalization occurs under conver-
gent-extending movement (Vogt, 1929; Gerhart and Keller,
1986). The cells may continuously express the muscle deter-
mination genes Xmyf-5 and XmyoD in response to a dor-
salizing signal from the extended presumptive notochord when
the presumptive muscle cells derived from the ventral hemi-
sphere of early gastrula embryos move to the dorsal side.
Activins and bFGF are potent mesoderm-inducing fac-
tors (reviewed by Slack, 1994; Asashima, 1994), and XmyoD
is induced by bFGF and XTC-MIF (Harvey, 1990). We exam-
ined the ability of bFGF and Activin A to induce Xmyf-5. Both
mesoderm-inducing factors induced Xmyf-5, similar to XmyoD,
but Activin A was the stronger inducer of both genes. Thus,
both factors may have basal inducing activity, and Activin A
may also be a dorsalization signal. Activin A induces gene
expression and differentiation of dorsal mesoderm depend-
ing on the dose (Green et al., 1990; Ariizumi et al., 1991).
Activin A induced the strongest expression of the both myo-
genic factors at 10 ng/ml, the concentration at which explant
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elongation and muscle tissue induction occur. Treatment of
Activin A at 100 ng/ml showed weaker inductive activity than
at 10 ng/ml. The reason for this is suspected of being that
high-dose Activin A mainly induces the notochord. If the
dorsalization signal is excessive, it may cause deactivation of
organizer genes and notochord formation, and the myogenic
factors Xmyf-5 and XmyoD may be suppressed. Thus,
myogenesis may be both up- and down-regulated by dorsaliza-
tion.

Both bFGF and Activin A have been reported to induce
the T-box gene Xbra, a pan-mesoderm marker, and ectopic
expression of Xbra induces mesoderm, including muscle
(Cunliffe and Smith, 1992). Our experiments suggest that in-
duction of muscle by Xbrais mediated by Xmyf-5and XmyoD
expression. Injection of high doses of Xbra was required to
induce of these genes, especially Xmyf-5, and lower doses
acted synergistically action at lower doses with noggin, a
dorsalization molecule. Therefore, muscle determination may
be activated by two different signals, basal mesoderm induc-
tion and dorsalization, and Xbra and noggin may be the medi-
ating molecules in vivo. Xbra encodes a DNA-binding nuclear
protein containing a T-box and may direct activation of Xmyf-
5 and XmyoD. Other recently cloned T-box genes may have
similar functions. The secreted proteins noggin and chordin
have been reported to act as BMP4 suppressors by direct
binding (Piccolo et al., 1996; Zimmerman et al., 1996). This
suggests that inhibition of BMP4 by noggin and chordinin the
mesoderm mediates dorsalization signal and may induce the
direct dorsalizing activator genes of Xmyf-5 and XmyoD. A
candidate direct dorsalizing activator is pintallavis, which en-
codes a nuclear protein, and has been reported to act syner-
gistically with Xbra (O'Reilly et al., 1995).
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