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ABSTRACT—Protogynous wrasses (Thalassoma duperrey): females (F), primary males (PM) along with a
few terminal-phase males (TM) and sex-changed males (SM), were used to characterize the topographical
organization of the pituitary. In general, immunocytochemical and ultrastructural features of the adenohypo-
physeal cell types of the saddleback wrasse pituitary resemble those of other teleosts. In the rostral pars
distalis (RPD), corticotropic cells were found bordering the neurohypophysis (NH) and surrounding the
centroventrally located prolactin cells. Thyrotropic cells formed a small group in the anteriodorsal part of the
rostral and proximal pars distalis (PPD). The somatotropic cells were distributed in large clusters, mostly
organized in cell cords around the interdigitations of the NH of the dorsal PPD. Cells containing gonadotropin
Ib subunit were localized in the dorsal parts of the PPD, in close association with somatotropic cells and
gonadotropin IIb subunit containing cells were seen in the centroventral parts of the PPD and along the
periphery of the pars intermedia (PI). The pars intermedia was composed of melanotropic cells and somatolactin
cells that lined the neurohypohysis.

Distinct ultrastructural differences in corticotropic and somatotropic cells were not observed between
the four groups. In all groups, prolactin cells in the ventral-most RPD could be immature cells or actively
secreting prolactin. Gonadotropic II cells of PM and F had relatively higher incidence of “nuclear budding”
and cell organelles compared to TM and SM. Besides gonadotropic, the active melanotropic and somatolactin
cells might be associated with some aspect(s) of reproduction.

INTRODUCTION

Several groups of coral reef fish, including many species
of wrasse (Labridae), are sequential hermaphrodites. Vari-
ous external factors (Ross, 1981; Shapiro, 1990) have been
found to induce sex change, but little is known of the internal
processes which mediate their effects. A change in steroid
levels has been observed during sex change in the saddleback
wrasse Thalassoma duperrey (Nakamura et al., 1989; Hourigan
et al., 1991). The effects of sex steroids on behavioral or go-
nadal sex change could operate via the hypothalamo-hypo-
physeal axis. Using techniques which include histochemistry
(Nagahama, 1973; Bern et al., 1974), immunocytochemistry
(Munro, 1985; Quesada et al., 1988; Toubeau et al., 1991;

Garcia-Hernandez et al., 1996) and ultrastructure (Bern et al.,
1974; Batten, 1986; Quesada et al., 1988; Garcia-Ayala et
al., 1997) the different cell types in the pituitary of teleosts
have been shown to segregate between three zones of the
adenohypophysis. The prolactin cells and the corticotropic cells
are located in the rostral pars distalis. The somatotropic cells
and the gonadotropic cells are found in the proximal pars
distalis. The somatolactin and the melanotropic cells are
present in the pars intermedia. The neurohypophysis, on the
other hand, consists of peptidergic, aminergic and GABAergic
axons innervating from the hypothalamus (Kah et al., 1987;
Batten et al., 1990; Holmqvist and Ekstrom, 1995). Thus, the
adenohypophyseal cell activity in teleost is under a direct hy-
pothalamic control (Peter et al., 1990). To our knowledge, the
pituitary of only two sex-changing fishes (Crenilabrus melops :
Benjamin, 1979; Monopterus albus : O and Chan, 1974) have
been studied at light microscopic level.
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Thalassoma duperrey is found in abundance on Hawai-
ian coral reefs. This protogynous hermaphrodite is diandric,
i.e. primary males (PM) are born as males and mature to be-
come terminal-phase males (TM) without the prior existence
of a female (F) phase, whereas functional secondary males
(SM) are derived from mature F that undergo sex change
(Ross, 1981). F, PM and TM are easily caught and identified
from the reefs. SM, however, can only be ascertained histo-
logically (after death) or experimentally by rearing caged F
(Ross et al., 1983).

In the present study, pituitaries from F, PM and TM caught
in the field, as well as a small sample of transformed second-
ary males (F induced to change sex), were included to ob-
serve the immunocytology and the ultrastructure of the ad-
enohypophyseal cells. This study will provide a basis for fu-
ture research on the relationship between hypothalamo-hy-
pophyseal control of various physiological processes includ-
ing sex change.

MATERIALS AND METHODS

Immunocytochemistry
Thalassoma duperrey (males and females; n = 9) collected from

the Kaneohe Bay around the Hawaii Institute of Marine Biology were
rapidly decapitated, pituitaries were removed and fixed in Bouin’s
solution. All the tissues were then dehydrated through a graded se-
ries of ethanols, cleared in n-butanol and embedded in paraffin
(Paraplast Plus: Oxford Labware, USA). Serial sections (8 mm) in sag-
ittal, horizontal and coronal planes were cut and processed for immu-
nocytochemistry. Localization of pituitary cell types was carried out
by immunocytochemical procedures, as previously described by
Parhar et al. (1995).

The rabbit anti-coho salmon gonadotropin Ib-subunit (Lot #8510,
diluted 1 : 2,000), anti-coho salmon gonadotropin IIb-subunit (Lot
#9010, diluted 1 : 2,000), anti-chum salmon growth hormone (Lot
#8502, diluted 1 : 2,500), anti-chum salmon prolactin (Lot #8208, di-
luted 1 : 2,000), and anti-cod fish somatolactin (Lot #9105, diluted
1:900) were provided by Dr. H. Kawauchi, Kitasato University, Japan.
The rabbit anti-rat thyrotropin b-subunit (Lot #HAC-RT29-01RBP86,
diluted 1 : 2,000) was provided by Dr. K. Wakabayashi, Gunma Uni-
versity, Japan. All dilutions were made with 0.01 M phosphate buff-
ered saline (PBS; pH 7.6).

The sections were deparaffinized in xylene, rehydrated through
graded ethanols, washed in phosphate buffered saline, and incubated
in a solution of gelatin (0.75%) and a solution of normal goat serum
(1%), each for 10 min.

After 48 hr incubation with primary antiserum at 4∞C, sections
were incubated in biotinylated anti-rabbit IgG followed by avidin-bi-
otin-horseradish peroxidase complex (Vectastain “ABC” Elite Kit,
Vector Labs.). Following incubation in the “ABC” complex, the sec-
tions were thoroughly washed in PBS followed by a wash in 0.05 M
Tris buffer, pH 7.6 (Sigma). The sections were then immersed in 0.05%
DAB (3,3’-diaminobenzidine tetrahydrochloride) or 4-chloro-napthol
as a chromogen, with 0.001% H2O2 in 0.05 M Tris buffer, washed
thoroughly in water, dehydrated through graded ethanols, cleared in
xylene and coverslips applied with Permount (Fisher Scientific, USA).

The specificity of the antisera and validation for localization of
pituitary hormones was determined at the time of its production by
Prof. H. Kawauchi and co-workers (Naito et al., 1983; Nozaki et al.,
1990; Rand-Weaver et al., 1991). These pituitary antisera have been
used in our previous studies (Parhar and Iwata, 1994; Parhar et al.,
1995) and have been shown to be highly specific.

Ultrastructure
Thalassoma duperrey were collected by hook and line from

Kaneohe Bay, Oahu, Hawaii between May and July, 1987. Fish were
either decapitated at sea and their pituitaries fixed for electron mi-
croscopy (F: n = 13; PM: n = 8; TM: n = 4) or they were brought back
to the Hawaii Institute of Marine Biology (HIMB) for experimental study.

Males were classified as PM or TM males based on size (stan-
dard length) and morphology (Hourigan et al., 1991). PM(s) ranged in
size from 80–90 mm. These individuals had large testis. TM(s) ranged
from 130–140 mm. These individuals had thin, “thread-like” testis.
Females, like PM were 80–90 mm in standard length.

Female wrasses were identified for experimental sex change by
either cannulation (insertion of a small diameter tubule into the repro-
ductive tract for gamete extraction) or by gently squeezing the abdo-
men to exude gametes as in Ross (1984). Females thus identified
were placed in submerged pens constructed of 12.7 mm2 wire mesh
with approximate dimensions of 1 m3. Females induced to change
sex after 9 weeks in these pens (Ross et al., 1990) were used as
secondary males (SM: n = 2; standard length 90 and 101 mm) for this
study. The probability of sex change in females of this fish is a func-
tion of their relative size in the social group (Ross et al., 1990).

For ultrastructural study, pituitaries were fixed in Karnovsky’s
formaldehyde-glutaraldehyde fixative (1–3 hr) and then washed over-
night in 0.1 M sodium cacodylate buffer (pH 7.2). After post-fixation in
cacodylate-buffered 1% osmium tetroxide and subsequent dehydra-
tion through a graded series of alcohols, the pituitaries were embed-
ded in Spurr resin (Sigma, USA). Sections 1 mm thick were stained
with 1% toluidine blue in 1% borax. Ultrathin sections picked on cop-
per grids (100–150 mesh) were stained with uranyl acetate/lead cit-
rate. A JEOL 100CX transmission electron microscope was used for
observations.

For any one cell type, a random sample of about 10 electron
micrographs were photographed from mid-sagittal sections of the pi-
tuitary gland. Electron micrographs printed at an initial magnification
of ¥ 7,200 and the final, magnification of ¥ 14,000 were used to deter-
mine the diameter of the secretory granules. Using the limiting mem-
brane as the boundary, the major (a) and minor (b) axes of secretory
profiles were measured. Each secretory profile was then considered
to be a circle whose diameter was (a + b)/2. An estimate of mean
secretory diameter was obtained from several measurements per cell
type. But for prolactin and thyrotropic cells all granules present in
each cell were measured. From this, the mean and the standard de-
viation of the granule diameter was estimated.

The functional morphology of each cell type was classified ac-
cording to the extent of rough endoplasmic reticulum (RER), the
amount of secretory granules, presence or absence of mitochondria
and Golgi zones. These were then, subjectively, represented as scores
on a five-point scale as follows: –, absent; +, few/scarce; ++, moder-
ate; +++, many; ++++, very many.

RESULTS

As in the majority of teleost fish, the pituitary of T. duperrey
consists of the adenohypophysis and the neurohypophysis.
The adenohypophysis can be subdivided into three distinct
regions: rostral pars distalis (RPD), the proximal pars distalis
(PPD) and pars intermedia (PI). Nerve fibers innervating the
pars distalis and pars intermedia form the neurohypophysis
(NH). The distribution of the different endocrine cell types is
shown in Fig. 1.

Rostral pars distalis (RPD)
Corticotropic (ACTH) cells

In 1 mm thick, toluidine blue stained sections, ACTH cells
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were distributed as a compact mass of chromophilic cells lin-
ing the interdigitation of the NH of the rostral pars distalis.
These cells formed a layer between the NH and the prolactin
cells (Fig. 2a–c).

At the ultrastructural level ACTH cells were irregular in
shape. The cytoplasm contained numerous secretory gran-
ules with electron-dense center separated by a clear ring (Fig.
3). Granules averaged 150.1 ± 7.2 nm in diameter. Some RER,
dilated into small cisternae were scattered throughout the cy-
toplasm. The mitochondria were moderately developed and
the Golgi zones were rarely observed.

The ACTH cells of all groups were similar (Table 1).

Prolactin (PRL) cells
In one micron thick, toluidine blue stained sections, PRL

cells appeared chromophobic. The prolactin cells, revealed
by anti-chum salmon PRL, were located throughout the RPD
and were numerous compared to ACTH cells located dorsally
(Fig. 2b).

At the ultrastructural level PRL cells were polygonal with
slightly indented nuclei. Their cytoplasm was pale, with a small
number of secretory granules (Fig. 5a). The average granule
diameter (153.8 ± 6.7 nm) was almost the same as that of

Fig. 1. Diagrammatic pituitary of Thalassoma duperrey, showing the
distribution of endocrine cell types. RPD, rostral pars distalis; PPD,
proximal pars distalis; PI, pars intermedia; NH, neurohypophysis;
ACTH, corticotropic cells; PRL, prolactin cells; STH, somatotropic cells;
GTH I, gonadotropin I cells; GTH II, gonadotropin II cells; TSH, thyro-
tropic cells; MSH, melanotropic cells; SL, somatolactin cells; pituicytes
(**).

Fig. 2a–f. Photomicrographs of Thalassoma duperrey pituitary, showing the distribution of immunoreactive endocrine cell types (dark regions).
(a) Somatotropic cells; (b) prolactin cells; (c) somatolactin cells; (d) GTH I cells; (e) GTH II cells; (f) arrowheads indicate cells immunoreactive to
anti-rat thyrotropin but not to anti-gonadotropin Ib or IIb; (a–c) arrows indicate ACTH cells. ¥ 40.
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ACTH granules (150.1 ± 7.2 nm). More ventrally located pro-
lactin cells, near the peripheral zone of the RPD, were either
almost devoid of or had few mature granules (Fig. 5b). A few

cells had electron-dense globular structures (lysosomes-like
structure). The RER was fairly dilated to form small cisternae,
and remained moderate in number. The mitochondria and the

Fig. 3. ACTH cell of primary male full of granules. Note (arrow) granules with electron-dense centers separated by a clear ring. ¥ 18000.
Fig. 4. STH cells of female filled with numerous electron-dense granules. ¥ 9000.
Fig. 5a–b. PRL cells of female: (a) dorsally located cells having many secretory granules (¥ 6900) relative to; (b) ventrally located cells.
¥ 12000. Lysosomes (arrow) seen in some cells. Stellate cells (＊) interspaced among PRL cells.
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Golgi zones were moderately developed.
In females, the more dorsally located PRL cells had many

mature granules relative to other groups (Fig. 5a, b; Table 1).

Stellate cells
Ultrastructurally many of these cells, with a very pale cy-

toplasm, were present among the prolactin cells. These cells
did not contain granules but had mitochondria and large pro-
cesses spreading between PRL cells, in a honeycomb-like
form (Fig. 5a, b).

Proximal pars distalis (PPD)
Somatotropic (STH) cells

The somatotropic cells, revealed by anti-chum salmon
STH were distributed in large clusters in the dorsal regions of
the proximal pars distalis. These cells were mostly organized
in cell cords around the interdigitations of the NH of the proxi-
mal pars distalis (Fig. 2a).

Ultrastructurally, STH cells were columnar in shape and
had an oval nucleus. An eccentrically placed nucleolus was
seen in a few cells (Fig. 4). The cytoplasm contained numer-
ous electron-dense granules of varying diameter (391.8 ± 21.5
nm) and shapes. The RER was dilated into small cisternae.
The well developed mitochondria, round or rod-shape were
scattered throughout the cytoplasm. The Golgi zones were
moderately developed.

STH cells of all groups were similar (see Table 1).

Gonadotropin (GTH) I cells
Cells in the wrasse pituitary were not immunoreactive to

anti-coho salmon GTH Ib. However, in one specimen GTH Ib
immunoreactivity was seen located in the dorsal proximal pars
distalis similar in distribution to somatotropic cells but distinct
from GTH IIb immunoreactivity (Fig. 2d, e).

At the ultrastructural level GTH I cells appeared polyhe-
dral in shape with a cytoplasm paler than the adjacent STH

Table 1. Sizes of granules and scores of organelles in endocrine cells of T. duperrey, during various reproductive phases

Cell Granule size (nm) Sexual Globule Granule Golgi
Mitochondria RER

types Mean ± S.E phase number number zones

F – +++ + ++ +
ACTH 0150.1 ± 07.2 PM – +++ + ++ +

TM – +++ + ++ +
SM – +++ + ++ +

F – ++ ++ ++ ++
PRL 0153.8 ± 06.7 PM – + ++ ++ ++

TM – + ++ ++ ++
SM – + ++ ++ ++

F – + + ++ +
TSH 0135.2 ± 04.1 PM – + + ++ +

TM – + + ++ +
SM – + + ++ +

F – +++ ++ ++ +
STH 0391.8 ± 21.5 PM – +++ ++ ++ +

TM – +++ ++ ++ +
SM – +++ ++ ++ +

F ++ ++ ++ ++ ++
GTH I 0283.5 ± 13.4 PM + ++ ++ ++ ++

0660.7 ± 31.7 (globule) TM + +++ ++ ++ ++
SM + +++ ++ ++ ++

F – +++ ++ ++ ++
GTH II 0320.5 ± 18.9 PM – +++ ++ ++ ++

TM – +++ + + +
SM – +++ + + +

F + +++ ++ ++ +++
MSH 0322.7 ± 13.7 PM + +++ ++ ++ +++

TM + +++ ++ ++ ++++
SM + +++ ++ ++ ++++

0158.0 ± 05.8 (round) F + +++ +++ +++ +++
SL 0234.9 ± 09.4 (Oval) PM – +++ +++ +++ +++

1081.3 ± 64.4 (globule) TM + ++ +++ +++ +++
SM – +++ + + +

Score scale: –, absent; +, few/scarce; ++, moderate; +++, many; ++++, very many.
RER, rough endoplasmic reticulum.
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cells. They had an indented nucleus. A small number of secre-
tory granules and globules (semi-dense/pale matrix) were
present. The secretory granules of GTH I cells were less elec-
tron dense than those of STH cells; they were mostly spheric,
of varying sizes. The granules were 283.5 ± 13.4 nm and the
globules were 600.7 ± 31.7 nm in diameter. The cisternae of
RER coalesced to form small vacuoles and occupied a large
part of the cytoplasm (Fig. 6a). The mitochondria and the Golgi
zones were moderately developed.

TM and SM had more granules (Table 1) and the F had
more semi-dense membrane-bound globules per cell than the
PM (Fig. 6a, b).

Gonadotropic (GTH) II cells
Cells immunoreactive to anti-coho salmon GTH IIb were

located within the ventral regions of the proximal pars distalis
and surrounding the pars intermedia. The location and distri-
bution of GTH Ib and GTH IIb immunoreactivity was different
(Fig. 2d, e).

In electron micrographs GTH II cells, found in the ventral
part of the PPD, had an unusual nuclear morphology. Margin-
ation of chromatin along the nuclear membranes was promi-
nent (Fig. 8a–e). Prior to nuclear protrusion development, the
portion of the inner nuclear membrane immediately adjacent
to the developing protrusion became thickened (Fig. 8a, e).

Fig. 6a–b. GTH I cell: (a) with large amount of dilated cisternae of RER in the primary male (¥ 14000) and; (b) with numerous electron-dense
globules in the female. ¥ 14000.
Fig. 7. A cluster of TSH cells. These cells have a large nucleus and very few small granules (arrow). ¥ 16000.
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Clusters of protrusions were seen within dilations from the
perinuclear cisterna (Fig. 8a–d). Protrusions, in the final stages

of “budding” and those that eventually “bud-off” had four dis-
tinct morphological features: Each individual particle was oval

Fig. 8a–e. GTH II cells in the female showing clusters of nuclear protrusions in the process of development/pinching-off, within dilations of
perinuclear cisterna. (a) Inner nuclear membrane thickening seen prior to protrusion formation (arrow: ¥ 28000); (b) a pinched-off nuclear
protrusion (double arrow: ¥ 16000); (c) An extensive cluster of nuclear protrusions line the periphery of the nucleus in the primary male (¥ 21000).
These spherical particles have an electron-lucent center, surrounded by an electron-dense amorphous material (see insert: ¥ 120,000); (d) less
pronounced budding seen in terminal-phase male (¥ 14000); (e) a developing nuclear protrusion in a female, seen as a thickening of the nuclear
membrane within the nuclear envelope (arrowheads). ¥ 53000.
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or spherical. These particles had an electron-lucent center,
surrounded by an electron-dense amorphous material (Fig.
8c). There was evidence that some particles acquired their
envelope from the cell’s nuclear membrane (Fig. 8e). The
secretory granules (320.5 ± 18.9 nm) were more regular,
round, and less electron dense than the STH granules. Many
small cisternae of RER were present. The mitochondria and
the Golgi zones were moderately developed.

In the TM and SM (Fig. 8d), the extent of budding, vacu-
olization and the number of RER, mitochondria or Golgi zones
were not as pronounced as in the PM and F (Fig. 8a–c; Table

1).

Thyrotropic (TSH) cells
Anti-rat TSH showed a distribution similar to that of GTH

II cells. However, cells immunoreactive to anti-rat TSH were
also present in the dorsal RPD-PPD interface, along the neu-
rohypophysis. These cells showed no immunoreactivity to anti-
GTH Ib, anti-GTH IIb, anti-GH, anti-PRL or anti-SL (Fig. 2f).

Ultrastructurally, TSH cells present in the dorsal RPD-
PPD interface appeared polyhedral in shape. They had a large
nucleus. The cytoplasm contained only a few granules. Each

Fig. 9a–c. MSH and SL cells in the pars intermedia of primary male: (a) Vesicles with incomplete limiting membrane are typical of MSH cells
¥ 8400; (b) dilated cisternae of RER in the MSH cells of the terminal-phase male, filled with an amorphous substance and vesicles with incom-
plete membrane (¥ 15000); (c) SL in the female with numerous immature granules (arrow), Golgi zones, many small dilated cisternae of RER
and globules. ¥ 9000.
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granule had an electron-dense center with a clear ring of space.
Although they were similar to ACTH granules, they appeared
smaller in size (135.2 ± 4.1 nm). Immature granules were seen
around the many Golgi zones. The cells had few small cister-
nae of RER and moderately developed mitochondria (Fig. 7;
Table 1). These cells were few in number and were therefore
difficult to detect.

Pars intermedia (PI)
Melanotropic (MSH) cells

In one micron thick, toluidine blue stained sections, these
cells were chromophobic. In electron micrographs, these cells
appeared polyhedral in shape. The oval nucleus was some-
times deeply indented. The cytoplasm was paler than the
somatolactin cells but was full of vesicles (322.7 ± 13.7 nm)
whose limiting membrane appeared incomplete and opened
into the cytoplasm (Fig. 9a, b). A small number of electron-
dense membrane-bound granules were present. Large globu-
lar structures with a semi-dense matrix, probably lysosomes,
were present in some cells. A few profiles were active (Fig.
9b). A large part of their cytoplasm was filled with a slightly
dilated parallel lamellae of RER. Many dilated cisternae of
RER were often filled with an intracisternal material. The mi-
tochondria were moderately developed and the Golgi zones
were observed with some immature vesicles.

The cells in the female were similar to PM but those in
the TM and SM had a higher frequency of very active profiles
(Fig. 9b; Table 1).

Somatolactin (SL) cells
A large number of cells immunoreactive to anti-cod fish

somatolactin were found in close proximity to the inter-
digitations of the neurohypophysis of the pars intermedia (Fig.
2c). Some cells were scattered amongst melanotropic cells.

In electron micrographs, somatolactin cells appeared al-
most spherical. The nucleus was generally oval and placed
towards the periphery of the cell (Fig. 9a). In some cells the
nucleus had a distinct eccentrically-placed nucleolus. The elec-
tron-dense cytoplasm was full of rounded (158.0 ± 5.8 nm),
often ovoid (long axis 314.8 ± 13.5 nm; short axis 155.0 ± 9.0
nm) granules (Fig. 9a; Table 1).

Cells in the F and PM had numerous immature granules,
several Golgi zones, many mitochondria and RER (Fig. 9c).
TM had relatively fewer granules but as in the F, these cells
contained an average of 2–4 large globules (1081.3 ± 64.4
nm; Table 1). In the SM these cells were full of mature gran-
ules but contained fewer RER, Golgi zones and mitochon-
dria.

The cytoplasm of some cells scattered among the
somatolactin and melanotropic cells was intensely electron-
dense, these cells could be degenerating.

Neurohypophysis
The PPD and the RPD had a dense and a highly inter-

digitating, although smaller, zone of NH than the PI. The NH
of the PI was devoid of axonal granules but had few rounded

cells as the NH of the RPD and the PPD (Fig. 10a). The ax-
onal types could be identified (Table 2) as: type A i.e granules
with an electron dense core having either a closely (Ac: 82.4
± 2.6 nm) or loosely (Al: 128.6 ± 6.8 nm) adhering limiting
membrane (Fig. 10a, c). The type B (82.1 ± 3.7 nm) were
similar to type Al but their electron-dense centers were smaller
(Fig. 10b). Axons type B and Al were seen to form direct con-
tacts with STH (Fig. 10b) and GTH cells (Fig. 10c).

DISCUSSION

The different endocrine cells of the adenohypophysis,
identified by immunocytochemistry and ultrastructure, were
found to be segregated in one of the three divisions of the
pituitary. The location and general characteristics of adeno-
hypophyseal cells of T. duperrey are comparable to those of
similar cells in other teleosts. (Bern et al., 1974; Munro, 1985;
Cambre et al., 1986; Quesada et al., 1988; Garcia-Hernandez
et al., 1996).

Corticotropic cells. The secretory granules of cells lin-
ing the invaginating NH into the RPD have a central dense
core surrounded by a clear narrow halo. This is a characteris-
tic feature of ACTH cells in other teleosts (Bern et al., 1974;
Quesada et al., 1988). Likewise, cells in a similar position in
the RPD of various other teleosts are immunoreactive with
ACTH antisera (Munro, 1985; Quesada et al., 1988; Toubeau
et al., 1991; Garcia-Hernandez et al., 1996). Thus, the ACTH
cells identified here correspond both topographically and ul-
trastructurally with those identified in other teleosts. There were
no apparent differences between the ACTH cells of PM, TM,
F and SM derived from caged F.

Prolactin cells. The anti-chum salmon PRL antiserum
specifically immunostained PRL cells but weakly cross-reacted
with GH and SL cells in the T. duperrey. The cross-reactivity
of PRL antiserum with GH and SL cells is probably due to the
molecular similarities between PRL/GH/SL genes (Ono and
Kawauchi, 1994). PRL cells have been characterized on the
basis of immunocytochemistry (Cambre et al., 1986; Quesada
et al., 1988; Huang and Specker, 1994; Garcia-Hernandez et
al., 1996), electron-microscopic immunocytochemistry (Specker
et al., 1993; Garcia-Ayala et al., 1997) and recently PRL mRNA
localization by in situ hybridization (Nishioka et al., 1993). As
in most other fish, PRL cells are the principle component of
the RPD. Unlike the follicular arrangement in some teleost
(Naito et al., 1983; Parhar and Iwata, 1994; Quesada et al.
1988), in the T. duperrey, PRL cells are chromophobic and
arranged as a compact mass (Naito et al., 1983; Cambre et
al., 1986; Huang and Specker, 1994). However unlike another
wrasse (Crenilabrus melops : Benjamin, 1979), there was no
evidence for vacuolization. The moderately developed Golgi
zones and mitochondria and relatively few secretory granules,
in more ventrally located PRL cells, may indicate that these
are immature/undifferentiated cells. Alternatively, the presence
of a few small secretory granules has been related to high-
salinity environment (Nagahama, 1973; Quesada et al., 1988)
and therefore these cells could be actively secreting PRL.
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Fig 10a–c. Axonal profiles with : (a) Ac type granules and cells (probably pituicytes) in the NH (¥ 13000); (b) type B axons in close contact with
STH cells (¥ 58000); (c) type Al axons seen in direct contact with GTH I and GTH II cells. ¥ 20000.

Table 2. Axon types in the neurohypophysis and their mean vesicles
diameters in T. duperrey

Axon type
Vesicles diameters
Mean ± S.E. (nm)

A11 128.6 ± 6.8
Ac2 082.4 ± 2.6
B 082.1 ± 3.7

1Loose limiting membrane; 2Closely adhering membrane

Stellate cells. Except for their non-electron-dense cyto-
plasm, the stellate cells of T. duperrey are similar to those in
other teleosts (Bern et al., 1974; Chiba and Honma, 1988;
Quesada et al., 1988). Stellate cells might help in phagocyto-
sis, support of the pituitary gland and transporting hormone
from the endocrine cells to the blood vessels (see Chiba and
Honma, 1988; Garcia-Ayala et al., 1997).
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Somatotropic cells. The columnar cells in the dorsal re-
gions of the PPD along the neurohypophyseal boundaries
resemble the STH cells described by immunocytochemistry,
electron-microscopy and in situ hybridization in other teleosts
(Nagahama et al., 1981; Ueda et al., 1985; Quesada et al.,
1988; Toubeau et al., 1991; Nishioka et al., 1993; Parhar and
Iwata, 1994; Garcia-Hernandez et al., 1996; Garcia-Ayala et
al., 1997). Two forms of somatotropic hormones and two dis-
tinct STH cell populations differing in shape, immunostaining
intensity and organization have been reported (Huang and
Specker, 1994; Garcia-Hernandez et al., 1996). However, in
the T. duperrey STH cells contained a heterogeneous popu-
lation of secretory granules, but there was no morphological
distinction between cells.

Gonadotropin I cells. Two GTHs, structurally and func-
tionally different and localized in distinctly separate cells have
been reported in salmonids (see Nozaki et al.,1990; Naito et
al., 1991, 1993). In the T. duperrey, cells present in the dorsal
PPD resemble the GTH cells identified immunocytochemically
and ultrastructurally in other teleosts (see Van Oordt and
Peute, 1983; Kaneko et al., 1986; Nozaki et al., 1990). The
dilated RER cisternae (vacuoles) might contain secretory prod-
ucts or by-products of degraded secretory granules (see
Kaneko et al., 1986). The large globular inclusions contain
lytic enzymes and the b-subunit of the GTH molecule (Naito
et al., 1995; Sharp-Baker et al., 1996). The large amount of
dilated cisternae of RER, semi-dense globules but fewer gran-
ules in the GTH I cells of PM and F, relative to SM and TM,
presumably represents active hormone synthesis and secre-
tion. In the female wrasse, GTH may be necessary for initia-
tion of interstitial tissue proliferation and testicular lobule for-
mation, as has been demonstrated in the female Monopterus
(Tang et al., 1974) with exogenous mammalian LH. Active
synthesis of GTH I hormone during the onset of vitellogenesis
and, in males, during the early phases of spermatogenesis
(see Nozaki et al., 1990; Naito et al., 1991) suggests the im-
portant role GTH Ib plays during early stages of gonadal de-
velopment, and therefore explains the lack of GTH Ib immu-
noreactivity in our adult specimens.

Gonadotropin II cells. Ultrastructurally, a second cell
type was observed adjacent to GTH I cells in the ventral PPD
in all groups used in the present experiment. These cells had
budding nuclear protrusions. There is no evidence to indicate
that the nuclear protrusions are fixation artifacts or just aber-
rant structures. One possibility is that these cells are in the
initial phase of apoptosis. However, it is also possible, the
nuclear protrusions may represent the “budding-off” of the
nucleus into the cytoplasm. The structural components of the
budding protrusions i.e., an electron-lucent center surrounded
by an electron-dense amorphous material (tegument), which
separates the center from the envelope and the “budding-off”
appearance of nuclear protrusions is a characteristic feature
of herpes virus (Fleckenstein and Desrosiers, 1982; Hay et
al., 1987; King et al., 1974). On the contrary, these viral-like
particles are too large to qualify as herpes virion (generally
150–300 nm). These particles could be the product of a very

highly active cell, where the message for protein synthesis is
being delivered in its genomic form. The extensive nuclear
protrusions seen in both the PM and the F could be a marked
increase message for oocyte maturation, ovulation and sper-
miation. Thus, as in salmonids, GTH II hormone could be a
maturational GTH hormone (Naito et al., 1991).

If, on the other hand, these nuclear protrusions are virus
of some form, then they may be some non-pathogenic agents
harbored in the GTH II cells in an incomplete form, since they
show no episodes of infections. However, like some herpes
virus, they may have the capacity to establish latent infec-
tions (Stevens, 1980). Clearly, further work is required to de-
termine the processes underlying nuclear protrusions forma-
tion, their subsequent fate and their functional significance.

Although we have classified the second cell group as GTH
II cells, this distinction is based on immunocytochemical lo-
calization and their distinct nuclear morphology from GTH I
cells. However, it remains to be tested whether these two cell
groups (GTH I and GTH II) in the T. duperrey synthesize chemi-
cally distinct gonadotropins, GTH I and GTH II (see Kawauchi
et al., 1989; Xiong et al., 1994) or they are different functional
phases of a single cell type (see Van Oordt and Peute, 1983;
Kaneko et al., 1986)

Thyrotropic cells. Isolated TSH cells in the PPD have
been reported in some teleost species (see Quesada et al.,
1988). However, immunoreactive thyrotropic cells seen as a
discrete cell population distinct from the GTH cells at the dor-
sal RPD-PPD interface in the T. duperrey are similar to those
described in the pituitary of other teleost (Ueda et al., 1983;
Garcia-Hernandez et al., 1996). In electron micrographs,
thyrotropic cells in the same location, with their characteristic
small electron-dense secretory granules have been described
in the Oreochromis mossambicus (Bern et al., 1974). In the
T. duperrey, anti-rat TSHb antiserum did not specifically
immunostain TSH cells but also cross-reacted with GTH cells.
Similarly, using anti-human TSHb antiserum a specific (Munro,
1985; Garcia-Hernandez et al., 1996) and also a weak cross-
reaction with GTH cells has been reported (Ueda et al., 1983;
Yan and Thomas, 1991).

Melanotropic cells. The predominant cell-type in the pars
intermedia of all fish was the polyhedral osmiophobic cell,
which has been described as lead haematoxylin-positive in
many teleosts (Bern et al., 1974; Benjamin, 1979; Quesada
et al., 1988). The melanotropic cells are the source of
proopiomelanocortin, the precursor of melanophore stimulat-
ing hormones (Naito et al., 1984). Melanotropic cells specifi-
cally immunostain with a-MSH antisera but also cross-react
with anti-ACTH 1-24 (Munro, 1985; Quesada, 1988; see
Garcia-Hernandez et al., 1996). The melanotropic cells have
been implicated in melanogenesis and in background colour
adaption (Van Eys, 1980; Van Eys and Peters, 1981) in other
teleosts. In TM, and SM these active melanotropic cells could
be associated with the development and ‘flashing’ of a lateral
bar during courtship. In TM, it could also be a stress response
while defending territory since some types of stress can acti-
vate melanotropic cells (Sumpter et al., 1985).
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Somatolactin cells. Somatolactin cells identified by ul-
trastructure, immunocytochemistry and in situ hybridization
(Rand-Weaver et al., 1991; Kaneko et al., 1993; Parhar and
Iwata, 1994; Garcia-Hernandez et al., 1996; Garcia-Ayala et
al., 1997) are found mainly in close proximity to the inter-
digitations of the neurohypophysis of the pars intermedia, and
correspond to the periodic-acid-Schiff (PAS)-positive cells of
other teleosts (Bern et al., 1974; Benjamin, 1979; Quesada et
al., 1988). As in the Seriola dumerilii, somatolactin cells with
predominantly round secretory granules and large local dila-
tations of endoplasmic reticulum cisternae seem to be under-
going an intense process of hormone synthesis and storage,
whereas cells with very irregular granules, which seemed to
result from the fusion of other secretory granule populations,
might represent an active stage of granular release (Garcia-
Ayala et al., 1997). The function of these cells is not clear: in
other teleosts, they have been implicated in ion regulation,
adaptation to stressful environment and dark background (Ono
and Kawauchi, 1994; Kakizawa et al., 1995; Rand-Weaver et
al., 1993; see Kaneko et al., 1993; Zhu and Thomas, 1996).
In some teleost, the presence of gonadotropin-releasing hor-
mone immunoreactive fibers in close association with
somatolactin cells (Parhar and Iwata, 1994; Parhar et al.,
1995), their activation by gonadotropin-releasing hormone
(Kakizawa et al., 1997), and their role in gonadal maturation,
gonadal recrudescence and gonadal steroidogenesis
(Schreibman et al., 1973; Planas et al., 1992; Olivereau and
Rand-Weaver, 1994) suggests that somatolactin cells might
be functionally important for reproduction.

Dark somatolactin cells showing ultrastructural features
of involutive cells have been reported in the Seriola dumerilli
(Garcia-Ayala et al., 1997). The large number of cell deaths
(cells with intensely electron-dense cytoplasm) and relatively
inactive (or hyperactive) cells in SM may be a stress-induced
response to the unnatural environment in the cages. Elevated
plasma somatolactin has been observed during stress (Rand-
Weaver et al., 1993; Kakizawa et al., 1995). However little is
known about stress and sex change.

Neurohypophysis. Both A- and B-type axons found close
to adenohypophyseal cells in the pars distalis is an evidence
of direct innervation as in other teleosts (Batten et al., 1990;
Holmqvist and Ekstrom, 1995). The cells in the NH are prob-
ably pituicytes which may help in the disposal of neurosecre-
tory products (Leatherland, 1972).

In conclusion, the topographical organization of immuno-
cytochemically and ultrastructurally identified adenohypophy-
seal cells in the T. duperrey is similar to that of other teleost
(see introduction). An increased gonadotropic cell activity in
PM and F, and an increased somatolactin and melanotropic
cell activity in TM and SM indicates the possible role of these
cell types at different stages of reproduction. However, any
opinion drawn must be tentative because of the small sample
size of sex changed males and our subjective method of analy-
sis of cell activity.
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